Abstract
In this paper, a hybrid meta-heuristic search algorithm is proposed with the combination of harmony search (HS) algorithm and differential evolution (DE) algorithm, which is named as HS-DE. HS is an optimization method mimicking the music improvisation process where musicians invent their instruments’ pitches searching for a perfect state of harmony. DE is a stochastic and population-based heuristic approach having the capability to solve global optimization problems. The main idea is to hybrid together the fine tuning capability of DE with the ability of exploration in HS to get better near-global solution by utilizing both algorithms’ strengths. Here, HS-DE is used for optimal symmetric switching characterization of CMOS inverter. The performance of HS-DE is compared with conventional particle swarm optimization reported in the recent literature. HS-DE-based design results are also compared with the PSPICE results. Extensive simulation results justify superior optimization capability of HS-DE over the afore-mentioned optimization technique for the examples considered and can be efficiently used for optimal CMOS inverter design.
Access this article
Rent this article via DeepDyve
![](http://media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs00500-015-1731-4/MediaObjects/500_2015_1731_Fig1_HTML.gif)
![](http://media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs00500-015-1731-4/MediaObjects/500_2015_1731_Fig2_HTML.gif)
![](http://media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs00500-015-1731-4/MediaObjects/500_2015_1731_Fig3_HTML.gif)
![](http://media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs00500-015-1731-4/MediaObjects/500_2015_1731_Fig4_HTML.gif)
![](http://media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs00500-015-1731-4/MediaObjects/500_2015_1731_Fig5_HTML.gif)
![](http://media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs00500-015-1731-4/MediaObjects/500_2015_1731_Fig6_HTML.gif)
![](http://media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs00500-015-1731-4/MediaObjects/500_2015_1731_Fig7_HTML.gif)
![](http://media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs00500-015-1731-4/MediaObjects/500_2015_1731_Fig8_HTML.gif)
![](http://media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs00500-015-1731-4/MediaObjects/500_2015_1731_Fig9_HTML.gif)
![](http://media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs00500-015-1731-4/MediaObjects/500_2015_1731_Fig10_HTML.gif)
![](http://media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs00500-015-1731-4/MediaObjects/500_2015_1731_Fig11_HTML.gif)
![](http://media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs00500-015-1731-4/MediaObjects/500_2015_1731_Fig12_HTML.gif)
![](http://media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs00500-015-1731-4/MediaObjects/500_2015_1731_Fig13_HTML.gif)
![](http://media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs00500-015-1731-4/MediaObjects/500_2015_1731_Fig14_HTML.gif)
![](http://media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs00500-015-1731-4/MediaObjects/500_2015_1731_Fig15_HTML.gif)
![](http://media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs00500-015-1731-4/MediaObjects/500_2015_1731_Fig16_HTML.gif)
![](http://media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs00500-015-1731-4/MediaObjects/500_2015_1731_Fig17_HTML.gif)
![](http://media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs00500-015-1731-4/MediaObjects/500_2015_1731_Fig18_HTML.gif)
![](http://media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs00500-015-1731-4/MediaObjects/500_2015_1731_Fig19_HTML.gif)
![](http://media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs00500-015-1731-4/MediaObjects/500_2015_1731_Fig20_HTML.gif)
![](http://media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs00500-015-1731-4/MediaObjects/500_2015_1731_Fig21_HTML.gif)
![](http://media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs00500-015-1731-4/MediaObjects/500_2015_1731_Fig22_HTML.gif)
![](http://media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs00500-015-1731-4/MediaObjects/500_2015_1731_Fig23_HTML.gif)
![](http://media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs00500-015-1731-4/MediaObjects/500_2015_1731_Fig24_HTML.gif)
![](http://media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs00500-015-1731-4/MediaObjects/500_2015_1731_Fig25_HTML.gif)
![](http://media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs00500-015-1731-4/MediaObjects/500_2015_1731_Fig26_HTML.gif)
![](http://media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs00500-015-1731-4/MediaObjects/500_2015_1731_Fig27_HTML.gif)
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
Biswal B, Dash PK, Panigrahi BK (2009) Power quality disturbance classification using fuzzy c-means algorithm and adaptive particle swarm optimization. IEEE Trans Ind Electron 56(1):212–220
Chen S, Luk BL (2010) Digital IIR filter design using particle swarm optimization. Int J Modell Identif Control 9(4):327–335
Chiou JP (2007) Variable scaling hybrid differential evolution for large-scale economic dispatch problems. Electr Power Syst Res 77(3–4):212–218
Das A, Vemuri R (2007) An automated passive analog circuit synthesis framework using genetic algorithms. IEEE computer society annual symposium on VLSI (ISVLSI’07), pp 145–152
DeMassa TA, Ciccone Z (1996) Digital integrated circuits. Wiley, New York
Eberhart R, Shi Y (1998) Comparison between genetic algorithm and particle swarm optimization. Evolut Programm VII, pp 611–616
Fang W, Sun J, Xu W (2009) A new mutated quantum behaved particle swarm optimizer for digital IIR filter design. EURASIP J Adv Signal Process, vol 2009, article ID. 367465, pp 1–7
Geem ZW, Kim JH, Loganathan GV (2001) A new heuristic optimization algorithm: harmony search. Simulation 76(2):60–68
Geem ZW, Kim JH, Loganathan GV (2002) Harmony search optimization: application to pipe network design. Int J Modell Simul 22(2):125–133
Geem ZW, Tseng C, Park Y (2005) Harmony search for generalized orienteering problem: best touring in China. Lect Notes Comput Sci 3412:741–750
Gill SS, Chandel R, Chandel A (2009) Comparative study of ant colony and genetic algorithms for VLSI circuit partitioning. World Acad Sci Eng Technol 28:890–894
Gudise VG, Venayagamoorthy GK (2004) FPGA placement and routing using particle swarm optimization. IEEE Computer Society Annual Symposium on VLSI, USA, pp 307–308
Holland JH (1975) Adaptation in natural and artificial systems. University Michigan Press, Ann Arbor
Kang S-M, Leblebici Y (2003) CMOS digital integrated circuits analysis and design. TATA McGraw-Hill, India
Karaboga N (2005) Digital IIR filter design using differential evolution algorithm. EURASIP J Appl Signal Process, vol. 2005, article ID. 8, pp 1269–1276
Karaboga N, Cetinkaya B (2006) Design of digital FIR filters using differential evolution algorithm. Circuit Syst Signal Process 25(5):649–660
Kennedy J, Eberhart R (1995) Particle swarm optimization. Proc IEEE Int Conf Neural Netw 4:1942–1948
Kim JH, Geem ZW, Kim ES (2001) Parameter estimation of the nonlinear Muskingum model using harmony search. J Am Water Resour Assoc 37(5):1131–1138
Krusienski DJ, Jenkins WK (2003) Adaptive filtering via particle swarm optimization. In: Proceedings of 37th Asilomar conference on signals, systems and computers, vol 1, pp 571–575
Lai C (2006) A novel image segmentation approach based on particle swarm optimization. IEICE Trans Fundam Electron Commun Comput Sci E89–A(1):324–327
Lee KS, Geem ZW (2004) A new structural optimization method based on the harmony search algorithm. Comput Struct 82(9–10):781–798
Lee KS, Geem ZW (2005) A new meta-heuristic algorithm for continues engineering optimization: harmony search theory and practice. Comput Methods Appl Mech Eng 194(36–38):3902–3933
Lin C, Qing A, Feng Q (2010) Synthesis of unequally spaced antenna arrays by using differential evolution. IEEE Trans Antenna Propag 58(8):2553–2561
Ling SH, Iu HHC, Leung FHF, Chan KY (2008) Improved hybrid particle swarm optimized wavelet neural network for modelling the development of fluid dispensing for electronic packaging. IEEE Trans Ind Electron 55(9):3447–3460
Lu HC, Tzeng S-T (2000) Design of arbitrary FIR log filters by genetic algorithm approach. Signal Process 80(3):497–505
Luitel B, Venayagamoorthy GK (2010) Particle swarm optimization with quantum infusion for system identification. Eng Appl Artif Intell 23:635–649
Mandal KK, Chakraborty N (2008) Differential evolution technique based short-term economic generation scheduling of hydrothermal systems. Electr Power Syst Res 78(11):1972–1979
Mandal D, Ghoshal SP, Bhattacharya AK (2010) Application of evolutionary optimization techniques for finding the optimal set of concentric circular antenna array. Expert Syst Appl 38:2942–2950
Mastorakis NE, Gonos IF, Swamy MNS (2003) Design of two dimensional recursive filters using genetic algorithms. IEEE Trans Circuit Syst I Fundam Theory Appl 50(5):634–639
Mondal S, Ghoshal SP, Kar R, Mandal D (2012) Craziness based particle swarm optimization algorithm for FIR band stop filter design. J Swarm Evolut Optim 7:58–64
Mondal S, Ghoshal SP, Kar R, Mandal D (2012) Design of optimal linear phase FIR high pass filter using craziness based particle swarm optimization technique. J King Saud Univ Comput Inform Sci 24:83–92
Mukhopadhyay J, Pandit S (2012) Design of a nano-scale CMOS inverter with symmetric switching characteristics using particle swarm optimization algorithm. IEEE 2nd annual international conference on innovative techno-management solutions for social sector (IEMCON 2012), India, 2012
Pei Z, Zhao Y, Liu Z (2009) Image segmentation based on differential evolution algorithm. International conference on image analysis and signal processing (IASP 2009), pp 48–51
Saha SK, Kar R, Mandal D, Ghoshal SP (2011) IIR filter design with craziness based particle swarm optimization technique. World Acad Sci Eng Technol 60:1628–1635
Storn R, Price K (1995) Differential evolution—a simple and efficient adaptive scheme for global optimization. Technical Report over continuous spaces. International Computer Science Institute, Berkley
Tang M, Lau RYK (2007) A parallel genetic algorithm for floor plan area optimization. Seventh international conference on intelligent systems design and application, Rio, Brazil, pp 801–806
Ulker S (2008) Particle swarm optimization applications to microwave circuits. Microw Optic Technol Lett 50(5):1333–1336
Vijayakumar S, Sudhakar JG, Muthukumar GG, Victoire T (2009) A differential evolution algorithm for restrictive channel routing problem in VLSI circuit design. World congress on nature and biologically inspired computing (NaBIC 2009), Coimbatore, India, pp 1258–1263
Vural RA, Der O, Yildirim T (2010) Particle swarm optimization based inverter design considering transient performance. Digital Signal Process 20(4):1215–1220
Vural RA, Der O, Yildirim T (2011) Investigation of particle swarm optimization for switching characterization of inverter design. Expert Syst Appl 38(5):5696–5703
Vural RA, Yildirim T (2012) Analog circuit sizing via swarm intelligence. Int J Electron Commun 66(9):732–740
Author information
Authors and Affiliations
Corresponding author
Additional information
Communicated by V. Loia.
Rights and permissions
About this article
Cite this article
De, B.P., Kar, R., Mandal, D. et al. Optimal design of high speed symmetric switching CMOS inverter using hybrid harmony search with differential evolution. Soft Comput 20, 3699–3717 (2016). https://doi.org/10.1007/s00500-015-1731-4
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00500-015-1731-4