Skip to main content
Log in

Solving the multi-objective path planning problem in mobile robotics with a firefly-based approach

  • Methodologies and Application
  • Published:
Soft Computing Aims and scope Submit manuscript

Abstract

Currently, autonomous robotics is one of the most interesting and researched areas of technology. At the beginning, robots only worked in the industrial sector but, gradually, they started to be introduced into other sectors such as medicine or social environments becoming part of society. In mobile robots, the path planning (PP) problem is one of the most researched topics. Taking into account that the PP problem is an NP-hard problem, multi-objective evolutionary algorithms (MOEAs) are good candidates to solve this problem. In this work, a new multi-objective approach based on the flashing behavior of fireflies in nature, the multi-objective firefly algorithm (MO-FA), is proposed to solve the PP problem. This proposed algorithm is a swarm intelligence algorithm. The proposed MO-FA handles three different objectives to obtain accurate and efficient solutions. These objectives are the following: the path safety, the path length, and the path smoothness (related to the energy consumption). Furthermore, and to test the proposed MOEA, we have used eight realistic scenarios for the path’s calculation. On the other hand, we also compare our proposal with other approaches of the state of the art, showing the advantages of MO-FA. In particular, to evaluate the obtained results we applied specific quality metrics. Moreover, to demonstrate the statistical evidence of the obtained results, we also performed a statistical analysis. Finally, the study shows that the proposed MO-FA is a good alternative to solve the PP problem.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21

Similar content being viewed by others

References

  • Ahmed F, Deb K (2011) Multi-objective path planning using spline representation. In: Proceedings of the IEEE International Conference on Robotics and Biomimetics (IEEE-ROBIO 2011), pp. 1047–1052. doi:10.1109/ROBIO.2011.6181426

  • Ahmed F, Deb K (2013) Multi-objective optimal path planning using elitist non-dominated sorting genetic algorithms. Soft Comput 17(7):1283–1299. doi:10.1007/s00500-012-0964-8

    Article  Google Scholar 

  • Bartle R (2011) The Elements of Integration and Lebesgue Measure. Wiley, Wiley Classics Library

  • Beume N, Fonseca C, López-Ibáñez M, Paquete L, Vahrenhold J (2009) On the complexity of computing the hypervolume indicator. Evol Comput IEEE Trans 13(5):1075–1082. doi:10.1109/TEVC.2009.2015575

    Article  Google Scholar 

  • Chang, H.C., Liu, J.S.: High-quality path planning for autonomous mobile robots with n3-splines and parallel genetic algorithms. In: Robotics and Biomimetics, 2008. ROBIO 2008. IEEE International Conference on, pp. 1671–1677 (2009). doi:10.1109/ROBIO.2009.4913252

  • Davoodi M, Panahi F, Mohades A, Hashemi SN (2013) Multi-objective path planning in discrete space. Appl Soft Comput 13(1):709–720. doi:10.1016/j.asoc.2012.07.023

  • Deb K, Pratap A, Agarwal S, Meyarivan T (2002) A fast and elitist multiobjective genetic algorithm: NSGA-II. Evol Comput, IEEE Trans 6(2):182–197. doi:10.1109/4235.996017

    Article  Google Scholar 

  • Geetha, S., Chitra, G., Jayalakshmi, V.: Multi objective mobile robot path planning based on hybrid algorithm. In: Electronics Computer Technology (ICECT), 2011 3rd International Conference on, vol. 6, pp. 251–255 (2011). doi:10.1109/ICECTECH.2011.5942092

  • Geng, N., Gong, D., Zhang, Y.: Robot path planning in an environment with many terrains based on interval multi-objective PSO. In: Evolutionary Computation (CEC), 2013 IEEE Congress on, pp. 813–820 (2013). doi:10.1109/CEC.2013.6557652

  • Gong DW, Zhang JH, Zhang Y (2011) Multi-objective particle swarm optimization for robot path planning in environment with danger sources. J Comput 6(8):1554–1561. doi:10.4304/jcp.6.8.1554-1561

  • Guo, F., Wang, H., Tian, Y.: Multi-objective path planning for unrestricted mobile. In: Automation and Logistics, 2009. ICAL ’09. IEEE International Conference on, pp. 1046–1051 (2009). doi:10.1109/ICAL.2009.5262574

  • Hao, W., Qin, S.: Multi-objective Path Planning for Space Exploration Robot Based on Chaos Immune Particle Swarm Optimization Algorithm. In: H. Deng, D. Miao, J. Lei, F. Wang (eds.) Artificial Intelligence and Computational Intelligence, Lecture Notes in Computer Science, vol. 7003, pp. 42–52. Springer, Berlin Heidelberg (2011). doi:10.1007/978-3-642-23887-1_6

  • Jun, H., Qingbao, Z.: Multi-objective mobile robot path planning based on improved genetic algorithm. In: Intelligent Computation Technology and Automation (ICICTA), 2010 International Conference on, vol. 2, pp. 752–756 (2010). doi:10.1109/ICICTA.2010.300

  • Kim, Y.H., Kim, J.H.: Multiobjective quantum-inspired evolutionary algorithm for fuzzy path planning of mobile robot. In: Evolutionary Computation, 2009. CEC ’09. IEEE Congress on, pp. 1185–1192 (2009). doi:10.1109/CEC.2009.4983080

  • Kim JH, Kim YH, Choi SH, Park IW (2009) Evolutionary multi-objective optimization in robot soccer system for education. Comput Intell Mag IEEE 4(1):31–41. doi:10.1109/MCI.2008.930985

    Article  Google Scholar 

  • Krishnan, P., Paw, J., Kiong, T.S.: Cognitive map approach for mobility path optimization using multiple objectives genetic algorithm. In: Autonomous Robots and Agents, 2009. ICARA 2009. 4th International Conference on, pp. 267–272 (2009). doi:10.1109/ICARA.2000.4803970

  • LaValle, S.M.: Planning Algorithms. Cambridge University Press (2006)

  • López-Ibáñez, M., Dubois-Lacoste, J., Stützle, T., Birattari, M.: The irace package, iterated race for automatic algorithm configuration. Tech. Rep. TR/IRIDIA/2011-004, IRIDIA, Université Libre de Bruxelles, Belgium (2011)

  • Masehian, E., Sedighizadeh, D.: A multi-objective pso-based algorithm for robot path planning. In: Industrial Technology (ICIT), 2010 IEEE International Conference on, pp. 465–470 (2010). doi:10.1109/ICIT.2010.5472755

  • Masehian E, Sedighizadeh D (2010) Multi-objective PSO- and NPSO-based algorithms for robot path planning. Adv Electr Comput Eng 10(4):69–76. doi:10.4316/AECE.2010.04011

    Article  Google Scholar 

  • Masehian E, Sedighizadeh D (2010) Multi-objective robot motion planning using a particle swarm optimization model. J Zhejiang Univ Sci C 11(8):607–619. doi:10.1631/jzus.C0910525

    Article  Google Scholar 

  • Mo, H., Xu, Z., Tang, Q.: Constrained multi-objective biogeography optimization algorithm for robot path planning. In: Y. Tan, Y. Shi, H. Mo (eds.) Advances in Swarm Intelligence, Lecture Notes in Computer Science, vol. 7928, pp. 323–329. Springer, Berlin Heidelberg (2013). doi:10.1007/978-3-642-38703-6_38

  • Sedaghat, N.: Mobile robot path planning by new structured multi-objective genetic algorithm. In: Soft Computing and Pattern Recognition (SoCPaR), 2011 International Conference of, pp. 79–83 (2011). doi:10.1109/SoCPaR.2011.6089099

  • Sheskin, D.: Handbook of Parametric and Nonparametric Statistical Procedures, Fifth Edition. A Chapman & Hall book. Chapman & Hall/CRC, Boca Raton (2011)

  • Shih BY, Chang H, Chen CY (2013) Path planning for autonomous robots - a comprehensive analysis by a greedy algorithm. J Vib Control 19(1):130–142. doi:10.1177/1077546311429841

    Article  Google Scholar 

  • Wang, D., Kwok, N., Liu, D., Ha, Q.: Ranked pareto particle swarm optimization for mobile robot motion planning. In: D. Liu, L. Wang, K. Tan (eds.) Design and Control of Intelligent Robotic Systems, Studies in Computational Intelligence, vol. 177, pp. 97–118. Springer, Berlin Heidelberg (2009). doi:10.1007/978-3-540-89933-4_5

  • Wang, F., Zhu, Z.: Global path planning of wheeled robots using a multi-objective memetic algorithm. In: Yin, H., Tang, K., Gao, Y., Klawonn, F., Lee, M., Weise, T., Li, B., Yao X. (eds.) Intelligent Data Engineering and Automated Learning IDEAL 2013, Lecture Notes in Computer Science, vol. 8206, pp. 437–444. Springer, Berlin Heidelberg (2013). doi:10.1007/978-3-642-41278-3_53

  • Wei, J.H., Liu, J.S.: Generating minimax-curvature and shorter n3-spline path using multi-objective variable-length genetic algorithm. In: Networking, Sensing and Control (ICNSC), 2010 International Conference on, pp. 319–324 (2010). doi:10.1109/ICNSC.2010.5461496

  • Yang XS (2010) Firefly algorithm, stochastic test functions and design optimisation. Int J Bio-Inspired Comput 2:78–84. doi:10.1504/IJBIC.2010.032124

    Article  Google Scholar 

  • Zhang Y, Gong DW, Zhang JH (2013) Robot path planning in uncertain environment using multi-objective particle swarm optimization. Neurocomputing 103:172–185. doi:10.1016/j.neucom.2012.09.019

    Article  Google Scholar 

  • Zitzler, E., Thiele, L.: Multiobjective optimization using evolutionary algorithms - a comparative case study. In: Eiben, A., Back, T., Schoenauer, M., Schwefel H.P. (eds.) Parallel Problem Solving from Nature PPSN V, Lecture Notes in Computer Science, vol. 1498, pp. 292–301. Springer, Berlin Heidelberg (1998). doi:10.1007/BFb0056872

  • Zitzler E, Deb K, Thiele L (2000) Comparison of multiobjective evolutionary algorithms: empirical results. Evol Comput 8(2):173–195. doi:10.1162/106365600568202

  • Zitzler E, Thiele L, Laumanns M, Fonseca C, da Fonseca V (2003) Performance assessment of multiobjective optimizers: an analysis and review. Evol Comput IEEE Trans 7(2):117–132. doi:10.1109/TEVC.2003.810758

    Article  Google Scholar 

  • Zitzler E, Thiele L (1999) Multiobjective evolutionary algorithms: a comparative case study and the strength Pareto approach. Evol Comput IEEE Trans 3(4):257–271. doi:10.1109/4235.797969

    Article  Google Scholar 

Download references

Acknowledgments

This work was partially funded by the Projects of Excellence from the Junta de Andalucía (Spain) ROMOCOG I and ROMOCOG II (P09-TEP-4479 and P10-TEP-6412). The work was also partially funded by the Spanish Ministry of Economy and Competitiveness and the ERDF (European Regional Development Fund), under the contract TIN2012-30685 (BIO project).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alejandro Hidalgo-Paniagua.

Additional information

Communicated by V. Loia.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hidalgo-Paniagua, A., Vega-Rodríguez, M.A., Ferruz, J. et al. Solving the multi-objective path planning problem in mobile robotics with a firefly-based approach. Soft Comput 21, 949–964 (2017). https://doi.org/10.1007/s00500-015-1825-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00500-015-1825-z

Keywords

Navigation