Skip to main content

Advertisement

Log in

Decomposition-based multi-objective evolutionary algorithm for vehicle routing problem with stochastic demands

  • Focus
  • Published:
Soft Computing Aims and scope Submit manuscript

Abstract

Vehicle routing problem with stochastic demands (VRPSD) is a famous and challenging optimization problem which is similar to many real world problems. To resemble the real world scenario, total traveling distance, total driver remuneration, the number of vehicles used and the difference between driver remuneration are considered and formulated in the multi-objective optimization perspective. This paper aims to solve multi-objective VRPSD under the constraints of available time window and vehicle capacity using decomposition-based multi-objective evolutionary algorithm (MOEA/D) with diversity-loss-based selection method incorporates with local search and multi-mode mutation heuristics. We have also compared the optimization performance of the decomposition-based approach with the domination-based approach to study the difference between these two well-known evolutionary multi-objective algorithm frameworks. The simulation results have showed that the decomposition-based approach with diversity-loss-based selection method is able to maintain diverse output solutions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Rent this article via DeepDyve

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  • Ahmed F, Deb K (2013) Multi-objective optimal path planning using elitist non-dominated sorting genetic algorithms. Soft Comput 17(7):1283–1299

    Article  Google Scholar 

  • Asafuddoula M, Ray T, Sarker R (2015) A decomposition-based evolutionary algorithm for many objective optimization. Evol Comput IEEE Trans 19(3):445–460

    Article  Google Scholar 

  • Bertsimas DJ (1992) A vehicle routing problem with stochastic demand. Oper Res 40(3):574–585

    Article  MathSciNet  MATH  Google Scholar 

  • Biesinger B, Hu B, Raidl GR (2015) A variable neighborhood search for the generalized vehicle routing problem with stochastic demands. In: Evolutionary computation in combinatorial optimization. Springer, Berlin, pp 48–60

  • Cheong C, Tan KC, Liu D, Lin C (2010) Multi-objective and prioritized berth allocation in container ports. Ann Oper Res 180(1):63–103

    Article  MathSciNet  MATH  Google Scholar 

  • Deb K, Pratap A, Agrawal S, Meyarivan T (2002) A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Trans Evol Comput 6:182–197

    Article  Google Scholar 

  • Deb K, Mohan M, Mishra S (2005) Evaluating the \(\varepsilon \)-domination based multiobjective evolutionary algorithm for a quick computation of pareto-optimal solutions. Evol Comput J 13(4):501–525

    Article  Google Scholar 

  • Deb K, Jain H (2014) An evolutionary many-objective optimization algorithm using reference-point-based nondominated sorting approach, part i: solving problems with box constraints. Evol Comput IEEE Trans 18(4):577–601

    Article  Google Scholar 

  • Dror M, Trudeau P (1986) Stochastic vehicle routing with modified savings algorithm. Eur J Oper Res 23(2):228–235

    Article  MathSciNet  MATH  Google Scholar 

  • Durillo JJ, Nebro AJ (2011) Jmetal: a java framework for multi-objective optimization. Adv Eng Softw 42(10):760–771

    Article  Google Scholar 

  • Feng L, Ong Y, Lim M, Tsang I (2014) Memetic search with inter-domain learning: a realization between cvrp and carp. Evol Comput IEEE Trans 99:1–1

    Google Scholar 

  • Gee SB, Qiu X, Tan KC (2013) A novel diversity maintenance scheme for evolutionary multi-objective optimization. In: Intelligent data engineering and automated learning—IDEAL 2013. Springer, Berlin, pp 270–277

  • Gee SB, Tan KC (2014) Diversity preservation with hybrid recombination for evolutionary multiobjective optimization. In: Evolutionary computation (CEC), 2014 IEEE Congress on. IEEE, pp 1172–1178

  • Gee SB, Tan KC, Shim VA, Pal NR (2015) Online diversity assessment in evolutionary multiobjective optimization: a geometrical perspective. IEEE Trans Evol Comput 19(4):542–559. doi:10.1109/TEVC.2014.2353672

  • Goh CK, Tan KC (2009) Handling noise in evolutionary neural network design. In: Evolutionary multi-objective optimization in uncertain environments. Studies in Computational Intelligence, vol 186. Springer, Berlin, Heidelberg, pp 101–21. doi:10.1007/978-3-540-95976-2_4

  • Gupta A, Ong YS, Zhang A, Tan P (2015) A bi-level evolutionary algorithm for multi-objective vehicle routing problems with time window constraints. In: Handa H, Ishibuchi H, Ong YS, Tan KC (eds) Proceedings of the 18th Asia Pacific symposium on intelligent and evolutionary systems—Volume 2. Proceedings in adaptation, learning and optimization, vol 2. Springer International Publishing, Berlin, pp 27–38

  • Hastie T, Tibshirani R, Friedman J, Hastie T, Friedman J, Tibshirani R (2009) The elements of statistical learning, vol 2. Springer, Berlin

    Book  MATH  Google Scholar 

  • Heng CK, Zhang AN, Tan PS, Ong YS (2015) Multi-objective heterogeneous capacitated vehicle routing problem with time windows and simultaneous pickup and delivery for urban last mile logistics. In: Proceedings of the 18th Asia Pacific symposium on intelligent and evolutionary systems, vol 1. Springer, Berlin, pp 129–140

  • Hoff A, Andersson H, Christiansen M, Hasle G, Løkketangen A (2010) Industrial aspects and literature survey: fleet composition and routing. Comput Oper Res 37(12):2041–2061

    Article  MathSciNet  MATH  Google Scholar 

  • Jain H, Deb K (2014) An evolutionary many-objective optimization algorithm using reference-point based nondominated sorting approach, part ii: handling constraints and extending to an adaptive approach. Evol Comput IEEE Trans 18(4):602–622

    Article  Google Scholar 

  • Kallehauge B, Larsen J, Madsen O, Solomon M (2005) Vehicle routing problem with time windows. In: Desaulniers G, Desrosiers J, Solomon M (eds) Column generation. Springer, US, pp 67–98

    Chapter  Google Scholar 

  • Liu H, Gu F, Zhang Q (2014) Decomposition of a multiobjective optimization problem into a number of simple multiobjective subproblems. Evol Comput IEEE Trans 18(3):450–455

    Article  Google Scholar 

  • Li H, Zhang Q (2009) Multiobjective optimization problems with complicated pareto sets, MOEA/D and NSGA-II. IEEE Trans Evol Comput 13:284–301

    Article  Google Scholar 

  • Marinakis Y, Marinaki M (2014) Combinatorial neighborhood topology bumble bees mating optimization for the vehicle routing problem with stochastic demands. Soft Comput 19(2):353–373

    Article  Google Scholar 

  • Marinakis Y, Marinaki M, Spanou P (2015) A memetic differential evolution algorithm for the vehicle routing problem with stochastic demands. In: Fister I, Fister Jr I (eds) Adaptation and hybridization in computational intelligence, adaptation, learning, and optimization, vol 18. Springer International Publishing, Berlin, pp 185–204

  • Mei Y, Li X, Yao X (2014) Cooperative coevolution with route distance grouping for large-scale capacitated arc routing problems. Evol Comput IEEE Trans 18(3):435–449

    Article  Google Scholar 

  • Nguyen S, Zhang M, Johnston M, Tan KC (2014) Automatic design of scheduling policies for dynamic multi-objective job shop scheduling via cooperative coevolution genetic programming. Evol Comput IEEE Trans 18(2):193–208

    Article  Google Scholar 

  • Perez D, Togelius J, Samothrakis S, Rohlfshagen P, Lucas SM (2014) Automated map generation for the physical traveling salesman problem. Evol Comput IEEE Trans 18(5):708–720

    Article  Google Scholar 

  • Russo L, Francisco AP (2014) Quick hypervolume. Evol Comput IEEE Trans 18(4):481–502

    Article  Google Scholar 

  • Sabar NR, Ayob M, Kendall G, Qu R (2013) Grammatical evolution hyper-heuristic for combinatorial optimization problems. Evol Comput IEEE Trans 17(6):840–861

    Article  Google Scholar 

  • Sabar N, Ayob M, Kendall G, Qu R (2015) Automatic design of a hyper-heuristic framework with gene expression programming for combinatorial optimization problems. Evol Comput IEEE Trans 19(3):309–325

    Article  Google Scholar 

  • Tan KC, Lee TH, Chew YH, Lee LH (2003) A multiobjective evolutionary algorithm for solving vehicle routing problem with time windows. In: Systems, man and cybernetics, 2003. IEEE international conference on, vol 1. IEEE, pp 361–366

  • Tan KC, Tang H, Yi Z (2004) Global exponential stability of discrete-time neural networks for constrained quadratic optimization. Neurocomputing 56:399–406

    Article  Google Scholar 

  • Tan KC, Tang H, Ge S (2005) On parameter settings of hopfield networks applied to traveling salesman problems. Circuits Syst I Regul Pap IEEE Trans 52(5):994–1002

    Article  MathSciNet  Google Scholar 

  • Tan KC, Chew Y, Lee LH (2006a) A hybrid multi-objective evolutionary algorithm for solving truck and trailer vehicle routing problems. Eur J Oper Res 172(3):855–885

    Article  MathSciNet  MATH  Google Scholar 

  • Tan KC, Yu Q, Ang JH (2006b) A coevolutionary algorithm for rules discovery in data mining. Int J Syst Sci 37(12):835–864

    Article  MathSciNet  MATH  Google Scholar 

  • Tan KC, Cheong CY, Goh CK (2007) Solving multiobjective vehicle routing problem with stochastic demand via evolutionary computation. Eur J Oper Res 177(2):813–839

    Article  MATH  Google Scholar 

  • Tan KC, Teoh EJ, Yu Q, Goh KC (2009) A hybrid evolutionary algorithm for attribute selection in data mining. Expert Syst Appl 36(4):8616–8630

    Article  Google Scholar 

  • Tang H, Tan KC, Yi Z (2004) A columnar competitive model for solving combinatorial optimization problems. Neural Netw IEEE Trans 15(6):1568–1574

    Article  Google Scholar 

  • Tan KC, Li Y (2002) Grey-box model identification via evolutionary computing. Control Eng Pract 10(7):673–684

    Article  Google Scholar 

  • Van Veldhuizen DA, Lamont GB (1999) Multiobjective evolutionary algorithm test suites. In: Proceedings of the 1999 ACM symposium on applied computing. ACM, pp 351–357

  • Wang R, Purshouse RC, Fleming PJ (2013) Preference-inspired coevolutionary algorithms for many-objective optimization. Evol Comput IEEE Trans 17(4):474–494

    Article  Google Scholar 

  • Wang J, Tang K, Lozano J, Yao X (2015) Estimation of distribution algorithm with stochastic local search for uncertain capacitated arc routing problems. Evolutionary Computation, IEEE Transactions on PP(99):1–1

  • Woodruff M, Herman J (2013) pareto.py: A \(\varepsilon \)-nondomination sorting routine. https://github.com/matthewjwoodruff/pareto.py

  • Yang S, Li M, Liu X, Zheng J (2013) A grid-based evolutionary algorithm for many-objective optimization. Evol Comput IEEE Trans 17(5):721–736

    Article  Google Scholar 

  • Zhang Q, Li H (2007) MOEA/D: a multiobjective evolutionary algorithm based on decomposition. IEEE Trans Evol Comput 11:712–731

    Article  Google Scholar 

  • Zhou A, Jin Y, Zhang Q, Sendhoff B, Tsang E, (2006) Combining model-based and genetics-based offspring generation for multi-objective optimization using a convergence criterion. In: Evolutionary computation (2006) CEC 2006. IEEE Congress on. IEEE, pp 892–899

  • Zitzler E, Thiele L (1998) Multiobjective optimization using evolutionary algorithms—A comparative case study. In: Parallel problem solving from nature—PPSN V. Springer, Berlin, pp 292–301

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sen Bong Gee.

Additional information

Communicated by S. Deb, T. Hanne and S. Fong.

This work was supported by the Singapore Ministry of Education Academic Research Fund Tier 1 under the project R-263-000-A12-112.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gee, S.B., Arokiasami, W.A., Jiang, J. et al. Decomposition-based multi-objective evolutionary algorithm for vehicle routing problem with stochastic demands. Soft Comput 20, 3443–3453 (2016). https://doi.org/10.1007/s00500-015-1830-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00500-015-1830-2

Keywords

Navigation