Abstract
In this paper, it is shown that the Hadamard integral inequality for r-convex functions is not satisfied in the fuzzy context. Using the classical Hadamard integral inequality, we give an upper bound for the Sugeno integral of r-convex functions. In addition, we generalize the results related to the Hadamard integral inequality for Sugeno integral from 1-convex functions (ordinary convex functions) to r-convex functions. We present a geometric interpretation and some examples in the framework of the Lebesgue measure to illustrate the results.
Access this article
Rent this article via DeepDyve
![](http://media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs00500-015-1934-8/MediaObjects/500_2015_1934_Fig1_HTML.gif)
![](http://media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs00500-015-1934-8/MediaObjects/500_2015_1934_Fig2_HTML.gif)
![](http://media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs00500-015-1934-8/MediaObjects/500_2015_1934_Fig3_HTML.gif)
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
Agahi H, Mesiar R, Ouyang Y (2010a) Chebyshev type inequalities for pseudo-integrals. Nonlinear Anal 72:2737–2743
Agahi H, Mesiar R, Ouyang Y (2010b) General Minkowski type inequalities for Sugeno integrals. Fuzzy Sets Syst 161:708–715
Agahi H, Román-Flores H, Flores-Franulič A (2011) General Barnes–Godunova–Levin type inequalities for Sugeno integral. Inf Sci 181:1072–1079
Agahi H, Mesiar R, Ouyang Y, Pap E, Strboja M (2012a) General Chebyshev type inequalities for universal integral. Inf Sci 187:171–178
Agahi H, Mohammadpour A, Vaezpour SM (2012b) A generalization of the Chebyshev type inequalities for Sugeno integrals. Soft Comput 16:659–666
Agahi H, Eslami E (2011) A general inequality of Chebyshev type for semi(co)normed fuzzy integrals. Soft Comput 15:771–780
Caballero J, Sadarangani K (2009) Hermite–Hadamard inequality for fuzzy integrals. Appl Math Comput 215:2134–2138
Caballero J, Sadarangani K (2010c) Fritz Carlson’s inequality for fuzzy integrals. Comput Math Appl 59:2763–2767
Caballero J, Sadarangani K (2010a) A Cauchy–Schwarz type inequality for fuzzy integrals. Nonlinear Anal 73:3329–3335
Caballero J, Sadarangani K (2010b) Chebyshev inequality for Sugeno integrals. Fuzzy Sets Syst 161:1480–1487
Caballero J, Sadarangani K (2011) Sandor’s inequality for Sugeno integrals. Appl Math Comput 218:1617–1622
Chen S, Hu Y, Mahadevan S, Deng Y (2014) A visibility graph averaging aggregation operator. Physica A: Stat Mech Appl 403:1–12
Durante F, Sempi C (2005) Semicopulæ. Kybernetika 41:315–328
Flores-Franulič A, Román-Flores H (2007) A Chebyshev type inequality for fuzzy integrals. Appl Math Comput 190:1178–1184
García FS, Álvarez PG (1986) Two families of fuzzy integrals. Fuzzy Sets Syst 18:67–81
Gill PM, Pearce CEM, Pečarić J (1997) Hadamard’s inequality for \(r\)-convex functions. J Math Anal Appl 215:461–470
Grabisch M, Marichal JL, Mesiar R, Pap E (2009) Aggregation functions. Cambridge Univ. Press, Cambridge
Kaluszka M, Okolewski A, Boczek M (2014) On Chebyshev type inequalities for generalized Sugeno integrals. Fuzzy Sets Syst 244:51–62
Klement EP, Mesiar R, Pap E (2000) Triangular norms. Trends in logic, Studia Logica Library, vol 8. Kluwer Academic Publishers, Dordrecht
Klement EP, Mesiar R, Pap E (2004) Triangular norms. Position paper I: basic analytical and algebraic properties. Fuzzy Sets Syst 143:5–26
Klement EP, Mesiar R, Pap E (2010) A universal integral as common frame for Choquet and Sugeno integral. Fuzzy Syst IEEE Trans 18:178–187
Klir GJ, Folger TA (1988) Prentice-Hall, Englewood Cliffs, New Jersey
Pap E (1995) Null-additive set functions. Kluwer, Dordrecht
Ralescu D, Adams G (1980) The fuzzy integral. J Math Anal Appl 75:562–570
Román-Flores H, Flores-Franulič A, Chalco-Cano Y (2007a) A Jensen type inequality for fuzzy integrals. Inf Sci 177:3192–3201
Román-Flores H, Flores-Franulič A, Chalco-Cano Y (2007b) The fuzzy integral for monotone functions. Appl Math Comput 185:492–498
Román-Flores H, Chalco-Cano Y (2006) \(H\)-continuity of fuzzy measures and set defuzzifincation. Fuzzy Sets Syst 157:230–242
Román-Flores H, Chalco-Cano Y (2007) Sugeno integral and geometric inequalities. Int J Uncertain Fuzz Knowl-Based Syst 15:1–11
Sugeno M (1974) Theory of fuzzy integrals and its applications. Ph.d. dissertation, Tokyo Institute of Technology
Wang Z, Klir G (1992) Fuzzy measure theory. Plenum Press, New York
Wierzchon ST (1982) On fuzzy measure and fuzzy integral. Fuzzy information and decision processes. North-Holland, New York, pp 79–86
Wu L, Sun J, Ye X, Zhu L (2010) Hölder type inequality for Sugeno integral. Fuzzy Sets Syst 161:2337–2347
Zhao R (1981) Fuzzy integral. J Math Res Expo 2:55–72
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Conflict of interest
The authors declare that they have no conflict of interest.
Additional information
Communicated by A. Di Nola.
Rights and permissions
About this article
Cite this article
Abbaszadeh, S., Eshaghi, M. A Hadamard-type inequality for fuzzy integrals based on r-convex functions. Soft Comput 20, 3117–3124 (2016). https://doi.org/10.1007/s00500-015-1934-8
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00500-015-1934-8