Abstract
This paper presents a study on the conceptual modeling of memetic algorithm with evolvable local search in the form of linear programs, self-assembled by linear genetic programming based evolution. In particular, the linear program structure for local search and the associated local search self-assembling process in the lifetime learning process of memetic algorithm are proposed. Results showed that the memetic algorithm with evolvable local search provides a means of creating highly robust, self-configuring and scalable algorithms, thus generating improved or competitive results when benchmarking against several existing adaptive or human-designed state-of-the-art memetic algorithms and meta-heuristics, on a plethora of capacitated vehicle routing problem sets considered.
Access this article
Rent this article via DeepDyve
![](http://media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs00500-015-1971-3/MediaObjects/500_2015_1971_Fig1_HTML.gif)
![](http://media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs00500-015-1971-3/MediaObjects/500_2015_1971_Fig2_HTML.gif)
![](http://media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs00500-015-1971-3/MediaObjects/500_2015_1971_Fig3_HTML.gif)
![](http://media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs00500-015-1971-3/MediaObjects/500_2015_1971_Fig4_HTML.gif)
![](http://media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs00500-015-1971-3/MediaObjects/500_2015_1971_Fig5_HTML.gif)
![](http://media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs00500-015-1971-3/MediaObjects/500_2015_1971_Fig6_HTML.gif)
![](http://media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs00500-015-1971-3/MediaObjects/500_2015_1971_Fig7_HTML.gif)
![](http://media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs00500-015-1971-3/MediaObjects/500_2015_1971_Fig8_HTML.gif)
![](http://media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs00500-015-1971-3/MediaObjects/500_2015_1971_Fig9_HTML.gif)
![](http://media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs00500-015-1971-3/MediaObjects/500_2015_1971_Fig10_HTML.gif)
![](http://media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs00500-015-1971-3/MediaObjects/500_2015_1971_Fig11_HTML.gif)
![](http://media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs00500-015-1971-3/MediaObjects/500_2015_1971_Fig12_HTML.gif)
![](http://media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs00500-015-1971-3/MediaObjects/500_2015_1971_Fig13_HTML.gif)
![](http://media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs00500-015-1971-3/MediaObjects/500_2015_1971_Fig14_HTML.gif)
![](http://media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs00500-015-1971-3/MediaObjects/500_2015_1971_Fig15_HTML.gif)
![](http://media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs00500-015-1971-3/MediaObjects/500_2015_1971_Fig16_HTML.gif)
![](http://media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs00500-015-1971-3/MediaObjects/500_2015_1971_Fig17_HTML.gif)
![](http://media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs00500-015-1971-3/MediaObjects/500_2015_1971_Fig18_HTML.gif)
![](http://media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs00500-015-1971-3/MediaObjects/500_2015_1971_Fig19_HTML.gif)
![](http://media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs00500-015-1971-3/MediaObjects/500_2015_1971_Fig20_HTML.gif)
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
Alfa AS, Heragu SS, Chen M (1991) A 3-opt based simulated annealing algorithm for vehicle routing problem. Comput Oper Res 21:635–639
Aranha C, Iba H (2009) The memetic tree-based genetic algorithm and its application to portfolio optimization. Memet Comput 1(2):139–151
Areibi S, Yang Z (2004) Effective memetic algorithms for VLSI design automation \(=\) genetic algorithms \(+\) local search \(+\) multi-level clustering. Evolut Comput 12(3):327–353
Augerat P, Belenguer JM, Benavent E, Corber A, Naddef D, Rinaldi G (1995) Computational results with a branch and cut code for the capacitated vehicle routing problem. In: Research report 949-M, Universite Joseph Fourier, Grenoble
Bard JF, Huang L (1998) A branch and cut algorithm for the VRP with satellite facilities. IIE Trans 30(9):821–834
Berger J, Barkaoui M (2003) A hybrid genetic algorithm for the capacitated vehicle routing problem. In: Genetic and evolutionary computation conference, vol 2723. Springer, Berlin, pp 646–656
Brameier M, Banzhaf W (2001) A comparison of linear genetic programming and neural networks in medical data mining. IEEE Trans Evolut Comput 5(1):17–26
Caponio A, Neri F, Cascella GL, Salvatore N (2008) Application of memetic differential evolution frameworks to pmsm drive design. In: IEEE congress on evolutionary computation, pp 2113–2120
Chen X, Ong YS, Lim MH (2011) Cooperating memes for vehicle routing problems. Int J Innov Comput Inf Control 7(11):1–10
Chiam SC, Tan KC, Al. Mamun A (2009) A memetic model of evolutionary PSO for computational finance applications. Expert Syst Appl 36(2):3695–3711
Christofides N, Eilon S (1969) An algorithm for the vehicle dispatching problem. Oper Res Q 20:309–318
Christofides N, Mingozzi A, Toth P (1979) The vehicle routing problem. In: Christofides N, Mingozzi A, Toth P, Sandi C (eds) Combinatorial optimization. Wiley, New York, NY, pp 315–338
Cordeau JF, Gendreau M, Laporte G (1994) A tabu search heuristic for the periodic and multi-depot vehicle routing problems. Networks 30:105–119
Cormen TH, Leiserson CE, Rivest RL (1990) Introduction to algorithms. MIT Press, Cambridge
Diaz BD (2009) Vrp benchmarks. World Wide Web electronic publication
Feng L, Ong YS, Lim M-H, Tsang IW (2015a) Memetic search with inter-domain learning: a realization between CVRP and CARP. IEEE Trans Evolut Comput 19(5):644–658
Feng L, Ong YS, Tan AH, Tsang AW (2015b) Memes as building blocks: a case study on evolutionary optimization \(+\) transfer learning for routing problems. Memet Comput 7(3):159–180
Gendreau M, Hertz A, Laporte G (1994) A tabu search heuristic for the vehicle routing problem. Manag Sci 40(10):1276–1290
Gendreau M, Laporte G, Potvin JY (1997) Local search in combinatorial optimization. Princeton University Press, Princeton (c2003, reprint, originally published in Wiley, New York, 1997)
Goh CK, Tan KC (2007) Evolving the tradeoffs between pareto-optimality and robustness in multi-objective evolutionary algorithms. In: Evolutionary computation in dynamic and uncertain environments, pp 457–478
Goh CK, Ong YS, Tan KC (2009) Multi-objective memetic algorithms. Springer, New York
Golden BL, Wasil EA, Kelly JP, Chao IM (1998) The impact of metaheuristics on solving the vehicle routing problem: algorithms, problem sets, and computational results. In: Fleet management and logistics, pp 33–56
Gupta A, Ong YS, Feng (2015) Multifactorial evolution: towards evolutionary multitasking. IEEE Trans Evolut Comput. doi:10.1109/TEVC.2015.2458037
Hasan SMK, Sarker R, Essam D, Cornforth D (2009) Memetic algorithms for solving job-shop scheduling problems. Memet Comput 1(1):69–83
Ishibuchi H, Yoshida T, Murata T (2002) Balance between genetic search and local search in memetic algorithms for multiobjective permutation flowshop scheduling. IEEE Trans Evolut Comput 7:204–223
Jakob W (2006) Towards an adaptive multimeme algorithm for parameter optimisation suiting the engineers’ needs. In: Parallel problem solving from nature, pp 132–141
Jakob W (2007) A cost-benefit-based adaptation scheme for multimeme algorithms. In: Parallel processing and applied mathematics, pp 509–519
Jin Y, Tang K, Yu X, Senhoff B, Yao X (2013) A framework for finding robust optimal solutions over time. Memet Comput 5(1):3–18
Koza JR (1992) Genetic programming: on the programming of computers by means of natural selection. MIT Press, Cambridge
Kramer O (2010) Iterated local search with Powell’ method: a memetic algorithm for continuous global optimization. Memet Comput 2:69–83
Krasnogor N (2004) Self-generating metaheuristics in bioinformatics: the protein structure comparison case. In: Genetic programming and evolvable machines. Kluwer, New York, pp 181–201
Krasnogor N (2004) Self generating metaheuristics in bioinformatics: the proteins structure comparison case. Genetic Program Evol Mach 5(2):181–201
Krasnogor N, Blackburne BP, Burke EK, Hirst JD (2002) Multimeme algorithms for protein structure prediction. In: Proceedings of the parallel problem solving from nature VII. Lecture notes in computer science. Springer, New York, pp 769–778
Kubiak M (2004) Systematic construction of recombination operators for the vehicle routing problem. Found Comput Decis Sci 29:205–226
Lienig J, Thulasiraman K (1993) A genetic algorithm for channel routing in VLSI circuits. Evolut Comput 1:293–311
Lim MH, Yuan Y, Omatu S (2002) Extensive testing of a hybrid genetic algorithm for solving quadratic assignment problems. Comput Optim Appl 23(1):47–64
Lim MH, Cao O, Li JH, Ng WL (2004) Evolvable hardware using context switchable fuzzy inference processor. Comput Digit Tech 151:301–311
Lim D, Ong YS, Lee B-S (2005) Inverse multi-objective robust evolutionary design optimization in the presence of uncertainty. In: Genetic and evolutionary computation conference. ACM, New York, pp 55–62
Lim KK, Ong YS, Lim MH, Chen X, Agarwal A (2008) Hybrid ant colony algorithms for path planning in sparse graphs. Soft Comput 12(10):981–994
Louis SJ, Yin X, Yuan ZY (1999) Multiple vehicle routing with time windows using genetic algorithms. In: IEEE congress on evolutionary computation, pp 1804–1808
Munoz E, Acampora G, Cadenas JM, Ong YS (2014) Memetic music composition. IEEE Trans Evolut Comput. doi:10.1109/TEVC.2014.2366871
Neri F, Tirronen V, Karkkainen T, Rossi T (2008) Fitness diversity based adaptation in multimeme algorithms: a comparative study. In: IEEE congress on evolutionary computation, pp 2374–2381
Nguyen QH, Ong YS, Lim MH (2008) Non-genetic transmission of memes by diffusion. In: Genetic and evolutionary computation conference. ACM, New York, pp 1017–1024
Nguyen QH, Ong YS, Lim MH, Krasnogor N (2009) Adaptive cellular memetic algorithms. Evolut Comput 17(2):231–256
Nguyen QH, Ong YS, Lim MH (2009) A probabilistic memetic framework. IEEE Trans Evolut Comput 13(3):604–623
Ong YS, Keane AJ (2004) Meta-Lamarckian learning in memetic algorithms. IEEE Trans Evolut Comput 8(2):99–110
Ong YS, Lim MH, Zhu N, Wong KW (2006) Classification of adaptive memetic algorithms: a comparative study. IEEE Trans Syst Man Cybern Part B Cybern 36(1):141–152
Osman IH (1993) Metastrategy simulated annealing and tabu search algorithms for the vehicle routing problem. Ann Oper Res 41(4):421–451
Pereira FB, Tavares J, Machado P, Costa E (2002) GVR: a new genetic representation for the vehicle routing problem. In: Irish conference on artificial intelligence and cognitive science. Springer, New York, pp 95–102
Potvin JY, Dube D, Robillard C (1996) Hybrid approach to vehicle routing using neural networks and genetic algorithms. Appl Intell 6:241–252
Prins C (2004) A simple and effective evolutionary algorithm for the vehicle routing problem. Comput Oper Res 31(12):1985–2002
Rego C, Rouchairol C (1996) Metaheuristics: theory and applications, chapter A parallel tabu search algorithm using ejection chains for the vehicle routing problem. Kluwer, Boston, pp 661–675
Sutcliffe AG, Wang D (2014) Memetic evolution in the development of proto-language. Memet Comput 6(1):3–18
Tan KC, Khor EF, Lee TH (2005) Multiobjective evolutionary algorithms and applications (advanced information and knowledge processing). Springer, Secaucus
Tang J, Lim MH, Ong YS (2007) Diversity-adaptive parallel memetic algorithm for solving large scale combinatorial optimization problems. Soft Comput 11(9):873–888
Tarantilis CD, Kiranoudis CT (2002) Boneroute: an adaptive memory-based method for effective fleet management. Ann Oper Res 115(1–4):227–2341
Thangiah SR (1993) Vehicle routing with time windows using genetic algorithms. In: Technical report, Slippery Rock University, Slipper Rock
Tirronen V, Neri F, Kärkkäinen T, Majava K, Rossi T (2008) An enhanced memetic differential evolution in filter design for defect detection in paper production. Evolut Comput 16(4):529–555
Toth P, Vigo D (1998) Fleet management and logistic, chapter Exact solution of the vehicle routing problem. Kluwer, New York, pp 1–31
Toth P, Vigo D (1998) The granular tabu search and its application to the VRP. INFORMS J Comput 13(4):333–346
Valenzuela C (1995) Evolutionary divide and conquer: a novel genetic approach to the TSP. Ph. D. thesis, University of London
Wark P, Holt J (1994) A repeated matching heuristic for the vehicle routing problem. J Oper Res Soc 45:1156–1167
Wolpert DH, Macready WG (1997) No free lunch theorems for optimization. IEEE Trans Evolut Comput 1(1):67–82
Xu J, Kelly J (1996) A network flow-based tabu search for the vehicle routing problem. Transp Sci 30:379–393
Zhu K (2000) A new genetic algorithm for VRPTW. In: International conference on artificial intelligence, Las Vegas
Acknowledgments
This work is partially supported under the A\(^*\)Star-TSRP funding, Singapore Institute of Manufacturing Technology-Nanyang Technological University (SIMTech-NTU) Joint Laboratory and Collaborative research Programme on Complex Systems, the Computational Intelligence Research Laboratory at NTU.
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Conflict of interest
The authors declare that they have no conflict of interest.
Additional information
Communicated by V. Loia.
Rights and permissions
About this article
Cite this article
Feng, L., Ong, YS., Chen, C. et al. Conceptual modeling of evolvable local searches in memetic algorithms using linear genetic programming: a case study on capacitated vehicle routing problem. Soft Comput 20, 3745–3769 (2016). https://doi.org/10.1007/s00500-015-1971-3
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00500-015-1971-3