Abstract
In this paper, a strategy for multi-objective optimization based upon the behavior of a particle swarm with rotational and linear motion is presented. The strategy for multi-objective optimization is based upon the emulation of the linear and circular movements of a swarm (flock). Thus emerges the physical basis for the cognitive model, which in conjunction with exploration–exploitation results in the proposal of a cognitive algorithm, which is tested through several multi-objective optimization functions. The algorithm proposed is compared with standard particle swarm optimization multi-objective via statistical analysis.
Access this article
Rent this article via DeepDyve
![](http://media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs00500-015-1972-2/MediaObjects/500_2015_1972_Fig1_HTML.gif)
![](http://media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs00500-015-1972-2/MediaObjects/500_2015_1972_Fig2_HTML.gif)
![](http://media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs00500-015-1972-2/MediaObjects/500_2015_1972_Fig3_HTML.gif)
![](http://media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs00500-015-1972-2/MediaObjects/500_2015_1972_Fig4_HTML.gif)
![](http://media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs00500-015-1972-2/MediaObjects/500_2015_1972_Fig5_HTML.gif)
![](http://media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs00500-015-1972-2/MediaObjects/500_2015_1972_Fig6_HTML.gif)
![](http://media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs00500-015-1972-2/MediaObjects/500_2015_1972_Fig7_HTML.gif)
![](http://media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs00500-015-1972-2/MediaObjects/500_2015_1972_Fig8_HTML.gif)
![](http://media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs00500-015-1972-2/MediaObjects/500_2015_1972_Fig9_HTML.gif)
![](http://media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs00500-015-1972-2/MediaObjects/500_2015_1972_Fig10_HTML.gif)
![](http://media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs00500-015-1972-2/MediaObjects/500_2015_1972_Fig11_HTML.gif)
![](http://media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs00500-015-1972-2/MediaObjects/500_2015_1972_Fig12_HTML.gif)
![](http://media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs00500-015-1972-2/MediaObjects/500_2015_1972_Fig13_HTML.gif)
![](http://media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs00500-015-1972-2/MediaObjects/500_2015_1972_Fig14_HTML.gif)
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
Abido M (2008) Multiobjective particle swarm optimization for optimal power flow problem. In: MEPCON 12th international middle-east power system conference, pp 392–396
Arriaza A, Fernández M, López A, Muñoz M, Pérez S, Sánchez A (2008) Estadística básica con R y R-Commander. Servicio de Publicaciones de la Universidad de Cádiz
Bhagavatula S, Sanjeevi S, Kumar D, Yadav C (2014) Multi-objective indicator based evolutionary algorithm for portfolio optimization. In: IEEE Int Adv Comput Conf (IACC), pp 1206–1210
Cabrerizo F, Herrera E, Pedrycz W (2013) A method based on PSO and granular computing of linguistic information to solve group decision making problems defined in heterogeneous contexts. Eur J Oper Res 230:624–633
Cagnina L (2010) Optimización mono y multiobjetivo a través de una heurística de inteligencia colectiva. Tesis de Doctorado, Doctorado en Ciencias de la Computación, Universidad Nacional de San Luis, Argentina
Cagnina L, Esquivel S, Coello C (2005) A particle swarm optimizer for multi-objective optimization. J Comput Sci Technol 5(4):204–210
Coello C, Van D, Lamont G (2007) Evolutionary algorithms for solving multi-objective problems, 2nd edn. Springer, Berlin
Demsar J (2006) Statistical comparisons of classifiers over multiple data sets. J Mach Learn Res 7:1–3
D’Orsogna M, Chuang Y, Bertozzi A, Chayes L (2006) Self-propelled agents with soft-core interactions: patterns, stability, and collapse. Phys Rev Lett 96:104302
Ebeling W (2002) Nonequilibrium statistical mechanics of swarms of driven particles. Physica A Stat Mech Appl 314(1–4):92–96
Espitia H, Sofrony J (2013) Proposal for parameter selection of the vortex particle swarm optimization during the dispersion stage. In: International conference on mechatronics, electronics and automotive engineering (ICMEAE), pp 65–71
Espitia H, Sofrony J (2013) Vortex particle swarm optimization. In: IEEE congress on evolutionary computation (CEC), pp 1992-1998
García S, Molina D, Lozano M, Herrera F (2009) A study on the use of non-parametric tests for analyzing the evolutionary algorithms’ behaviour: a case study on the CEC’2005 Special Session on Real Parameter Optimization. J Heurist 15(6):617–644
Gehlhaar D, Fogel D (1996) Tuning evolutionary programming for conformationally flexible molecular docking. In: Proceedings of evolutionary programming. MIT Press, Cambridge, pp 419–429
Heo J, Lee K, Garduno R (2006) Multiobjective control of power plants using particle swarm optimization techniques. IEEE Trans Energy Conv 21(2):552–561
Hirano H, Yoshikawa T (2012) A study on two-step search using global-best in PSO for multi-objective optimization problems. In: 6th international conference on soft computing and intelligent systems (SCIS) and 13th international symposium on advanced intelligent systems (ISIS), pp 1894–1897
Hochberg Y, Tamhane C (1987) Multiple comparison procedures. Wiley, New York
Idoumghar L, Chérin N, Siarry P, Roche R, Miraoui A (2013) Hybrid ICA-PSO algorithm for continuous optimization. Appl Math Comput 219(24):11149–11170
Jiang S, Ong Y, Zhang J, Feng L (2014) Consistencies and contradictions of performance metrics in multiobjective optimization. IEEE Trans Cybern 44(12):2391–2404
Levine H, Rappel W, Cohen I (2000) Self-organization in systems of self-propelled particles. Phys Rev E 63:017101
Man-Fai L, Sin-Chun N, Chi-Chung C, Lui A (2014) A new strategy for finding good local guides in MOPSO. In: IEEE congress on evolutionary computation (CEC), pp 1990–1997
Montgomery D (2003) Diseñanálisis de experimentos. Limusa. Wiley, New York
Moreno L (2005) Texto y software en diseños experimentales no-paramétricos más importantes. Tesis profesional. Universidad de las Américas Puebla, México
Nebro A, Durillo J, Coello C (2013) Analysis of leader selection strategies in a multi-objective particle swarm optimizer. In: IEEE congress on evolutionary computation (CEC), pp 3153–3160
Okabe T, Jin Y, Sendhoff B (2003) A critical survey of performance indices for multi-objective optimisation. In: Congress on evolutionary computation CEC ’03, vol 2, pp 878-885
Parsopoulos K, Vrahatis M (2008) Multi-objective particles swarm optimization approaches. In: IGI global, multi-objective optimization in computational intelligence: theory and practice, pp 20–42
Passino K (2002) Biomimicry of bacterial foraging for distributed optimization and control. IEEE Control Syst 22(3):52–67
Reyes M, Coello C (2006) Multi-objective particle swarm optimizers: a survey of the state-of-the-art. Int J Comput Intell Res 2(3):287–308
Rubio Á, Zhang Q, Vega M (2015) Multiobjective evolutionary algorithm based on decomposition for 3-objective optimization problems with objectives in different scales. Soft Comput 19(1):157–166
Russell E, James K (1995) Particle swarm optimization. IEEE Proc Neural Netw 4:1942–1948
Shang R, Jiao L, Ren Y, Li L, Wang L (2014) Quantum immune clonal coevolutionary algorithm for dynamic multiobjective optimization. Soft Comput 18(4):743–756
Sumpter D (2006) The principles of collective animal behaviour. Philos Trans R Soc B 361, 1465
Uchitane T, Hatanaka T (2012) Experimental study for multi-objective PSO with single objective guide selection. In: IEEE congress on evolutionary computation (CEC), pp 1–6
Wang H, Yen G (2015) Adaptive multiobjective particle swarm optimization based on parallel cell coordinate system. IEEE Trans Evol Comput 19(1):1–18
Wu Y, Jin Y, Liu X (2015) A directed search strategy for evolutionary dynamic multiobjective optimization. Soft Comput 19(11):3221–3235
Yan J, Li C, Wang Z, Deng L, Sun D (2007) Diversity metrics in multi-objective optimization: review and perspectives. In: Proceedings of the IEEE international conference on integration technology, pp 553–557
Yen G, Wen F (2009) Dynamic multiple swarms in multiobjective particle swarm optimization. IEEE Trans Syst Man Cybern Part A Syst Humans 39(4):890–911
Ying G, Lingxi P, Fufang L, Miao L (2014) Multi-objective cloud estimation of distribution particle swarm optimizer using maximum ranking. In: 10th international conference on natural computation (ICNC), pp 321–325
Zhang Y, Wu L (2008) Weights optimization of neural network via improved bacterial chemotaxis optimization (BCO) approach. Progr Electromagnet Res PIER 83:185–198
Zhi-Hui Z, Jingjing L, Jiannong C, Jun Z (2013) Multiple populations for multiple objectives: a coevolutionary technique for solving multiobjective optimization problems. IEEE Trans Cybernet 43(2):445–463
Zitzler E, Thiele L, Laumanns M, Fonseca C, Grunert da Fonseca V (2003) Performance assessment of multiobjective optimizers: an analysis and review. IEEE Trans Evol Comput 7(2):117–132
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Conflict of interest
The authors declare there is no conflict of interest.
Additional information
Communicated by A. Di Nola.
Rights and permissions
About this article
Cite this article
Meza, J., Espitia, H., Montenegro, C. et al. Statistical analysis of a multi-objective optimization algorithm based on a model of particles with vorticity behavior. Soft Comput 20, 3521–3536 (2016). https://doi.org/10.1007/s00500-015-1972-2
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00500-015-1972-2