Skip to main content
Log in

Conceptual and numerical comparisons of swarm intelligence optimization algorithms

  • Methodologies and Application
  • Published:
Soft Computing Aims and scope Submit manuscript

Abstract

Swarm intelligence (SI) optimization algorithms are fast and robust global optimization methods, and have attracted significant attention due to their ability to solve complex optimization problems. The underlying idea behind all SI algorithms is similar, and various SI algorithms differ only in their details. In this paper we discuss the algorithmic equivalence of particle swarm optimization (PSO) and various other newer SI algorithms, including the shuffled frog leaping algorithm (SFLA), the group search optimizer (GSO), the firefly algorithm (FA), artificial bee colony algorithm (ABC) and the gravitational search algorithm (GSA). We find that the original versions of SFLA, GSO, FA, ABC, and GSA, are all algorithmically identical to PSO under certain conditions. We discuss their diverse biological motivations and algorithmic details as typically implemented, and show how their differences enhance the diversity of SI research and application. Then we numerically compare SFLA, GSO, FA, ABC, and GSA, with basic and advanced versions on some continuous benchmark functions and combinatorial knapsack problems. Empirical results show that an advanced version of ABC performs best on the continuous benchmark functions, and advanced versions of SFLA and GSA perform best on the combinatorial knapsack problems. We conclude that although these SI algorithms are conceptually equivalent, their implementation details result in notably different performance levels.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abulkalamazad M, Rocha A, Fernandes E (2014) Improved binary artificial fish swarm algorithm for the 0–1 multidimensional knapsack problems. Swarm Evolut Comput 14:66–75

    Article  Google Scholar 

  • Bahriye A, Dervis K (2012) A modified artificial bee colony algorithm for real-parameter optimization. Inf Sci 192:120–142

    Article  MATH  Google Scholar 

  • Bhattacharjee K, Sarmah SP (2014) Shuffled frog leaping algorithm and its application to 0/1 knapsack problem. Appl Soft Comput 19:252–263

    Article  Google Scholar 

  • Chen D, Wang J, Zou F, Hou W, Zhao C (2012) An improved group search optimizer with operation of quantum-behaved swarm and its application. Appl Soft Comput 12:712–725

    Article  Google Scholar 

  • Civicioglu P, Besdok E (2013) A conceptual comparison of the Cuckoo-search, particle swarm optimization, differential evolution and artificial bee colony algorithms. Artif Intell Rev 39:315–345

    Article  Google Scholar 

  • Clerc M, Kennedy J (2002) The particle swarm-explosion, stability and convergence in a multidimensional complex space. IEEE Trans Evolut Comput 6(3):58–73

    Article  Google Scholar 

  • Cobos C, Muñoz-Collazos H, Urbano-Muñoz R, Mendoza M, León E, Herrera-Viedma E (2014) Clustering of web search results based on the cuckoo search algorithm and balanced Bayesian information criterion. Inf Sci 281:248–264

    Article  Google Scholar 

  • Davarynejad M, Berg J, Rezaei J (2014) Evaluating center-seeking and initialization bias: the case of particle swarm and gravitational search algorithms. Inf Sci 278:802–821

    Article  MathSciNet  Google Scholar 

  • Derrac J, Garcia S, Molina D, Herrera F (2011) A practical tutorial on the use of nonparametric statistical tests as a methodology for comparing evolutionary and swarm intelligence algorithms. Swarm Evolut Comput 1:3–18

    Article  Google Scholar 

  • Dervis K, Bahriye B (2007) A powerful and efficient algorithm for numerical function optimization: artificial bee colony (ABC) algorithm. J Glob Optim 39:459–471

    Article  MathSciNet  MATH  Google Scholar 

  • Dervis K, Beyza G, Celal O, Nurhan K (2014) A comprehensive survey: artificial bee colony (ABC) algorithm and applications. Artif Intell Rev 42:21–57

    Article  Google Scholar 

  • Dorigo M, Gambardella LM (1997) Ant colony system: a cooperative learning approach to the traveling salesman problem. IEEE Trans Evolut Comput 1(3):53–66

    Article  Google Scholar 

  • Dowlatshahi MB, Nezamabadi-pour H, Mashinchi M (2014) A discrete gravitational search algorithm for solving combinatorial optimization problems. Inf Sci 258:94–107

    Article  MathSciNet  MATH  Google Scholar 

  • Elbeltagi E, Hegazy T, Grierson D (2005) Comparison among five evolutionary-based optimization algorithms. Adv Eng Inform 19:43–53

    Article  Google Scholar 

  • Emad E, Tarek H, Donald G (2007) A modifed shuffled frog-leaping optimization algorithm: applications to project management. Struct Infrastruct Eng 3(1):53–60

    Article  Google Scholar 

  • Eusuff M, Lansey KE (2003) Optimization of water distribution network design using the shuffled frog leaping algorithm. J Water Res Pl-ASCE 129:210–225

    Article  Google Scholar 

  • Fister I, Jr Fister, Yang X, Brest J (2013) A comprehensive review of firefly algorithms. Swarm Evolut Comput 13:34–46

    Article  Google Scholar 

  • Freville A (2004) The multidimensional 0–1 knapsack problem: an overview. Eur J Oper Res 155:1–20

    Article  MathSciNet  MATH  Google Scholar 

  • Gao S, Vairappan C, Wang Y, Cao Q, Tang Z (2014) Gravitational search algorithm combined with chaos for unconstrained numerical optimization. Appl Math Comput 231:48–62

    Article  MathSciNet  Google Scholar 

  • Hasançebi O, Carbas S (2014) Bat inspired algorithm for discrete size optimization of steel frames. Adv Eng Softw 67:173–185

    Article  Google Scholar 

  • He S, Wu Q, Saunders J (2006) A novel group search optimizer inspired by animal behavioral ecology. In: Proceedings of the IEEE international conference on evolutionary computation, pp 1272–1278

  • Jiang S, Wang Y, Ji Z (2014) Convergence analysis and performance of an improved gravitational search algorithm. Appl Soft Comput 24:363–384

    Article  Google Scholar 

  • Karaboga D (2005) An idea based on honey bee swarm for numerical optimization. Technical report, Computer Engineering Department, Erciyes University

  • Karaboga D, Basturk B (2007) A powerful and efficient algorithm for numerical function optimization: artificial bee colony (ABC) algorithm. J Glob Optim 39:459–471

    Article  MathSciNet  MATH  Google Scholar 

  • Kennedy J, Eberhart R (1995) Particle swarm optimization. In: Proceedings of the IEEE international conference on neural networks, pp 1942–1948

  • Koza JR (1992) Genetic programming: on the programming of computers by means of natural selection. MIT Press, Cambridge

    MATH  Google Scholar 

  • Krishnanand KN, Ghose D (2009) Glowworm swarm optimization for simultaneous capture of multiple local optima of multimodal functions. Swarm Intell 3:87–124

    Article  Google Scholar 

  • Liao T, Stuetzle T (2013) Benchmark results for a simple hybrid algorithm on the CEC 2013 benchmark set for real parameter optimization. In: Proceedings of IEEE congress on evolutionary computation, pp 1938–1944

  • Ma H, Simon D, Fei M (2015) On the statistical mechanics approximation of biogeography-based optimization. Evolut Comput. doi:10.1162/EVCO_a_00160

  • Mirjalili S, Lewis A (2014) Grey wolf optimizer. Adv Eng Softw 69:46–61

    Article  Google Scholar 

  • Nix A, Vose M (1992) Modeling genetic algorithms with Markov chains. Ann Math Intell 5:79–88

    Article  MathSciNet  MATH  Google Scholar 

  • Parpinelli R, Lopes H (2011) New inspirations in swarm intelligence: a survey. Int J Bio-Inspired Comput 3:1–16

    Article  Google Scholar 

  • Parpinelli R, Teodoro F, Lopes H (2012) A comparison of swarm intelligence algorithms for structural engineering optimization. Int J Numer Methods Eng 19:666–684

    Article  MATH  Google Scholar 

  • Rahimi-Vahed A, Mirzaei A (2008) Solving a bi-criteria permutation flow-shop problem using shuffled frog-leaping algorithm. Soft Comput 12:435–452

    Article  MATH  Google Scholar 

  • Rao RV, Savsani VJ, Vakharia DP (2011) Teaching-learning-based optimization: a novel method for constrained mechanical design optimization problems. Comput-Aided Des 43:303–315

    Article  Google Scholar 

  • Rashedi E, Nezamabadi-pour H, Saryazdi S (2009) GSA: a gravitational search algorithm. Inf Sci 179:2232–2248

    Article  MATH  Google Scholar 

  • Rashedi E, Nezamabadi-pour H, Saryazdi S (2011) Filter modeling using gravitational search algorithm. Eng Appl Artif Intell 24:117–122

    Article  MATH  Google Scholar 

  • Reeves C, Rowe J (2003) Genetic algorithms: principles and perspectives. Kluwer Academic Publishers, Boston

    Book  MATH  Google Scholar 

  • Sarkheyli A, Zain AM, Sharif S (2015) The role of basic, modified and hybrid shuffled frog leaping algorithm on optimization problems: a review. Soft Comput 19:2011–2038

    Article  Google Scholar 

  • Schwefel HP (1995) Evolution and optimum seeking. Wiley Press, New Jersey

  • Simon D (2011) A dynamic system model of biogeography-based optimization. Appl Soft Comput 11:5652–5661

    Article  Google Scholar 

  • Simon D (2013) Evolutionary optimization algorithms. Wiley, New Jersey

  • Shen H, Zhu Y, Niu B, Wu Q (2009) An improved group search optimizer for mechanical design optimization problems. Prog Nat Sci 19:91–97

    Article  Google Scholar 

  • Shi Y, Eberhart RC (1998) Parameter selection in particle swarm optimization. Lect Notes Comput Sci 1447:591–600

    Article  Google Scholar 

  • Suzuki J (1995) A Markov chain analysis on simple genetic algorithms. IEEE Trans Syst Man Cybern Part B 25:655–659

    Article  Google Scholar 

  • Tan Y, Zhu Y (2010) Fireworks algorithm for optimization. Lect Notes Comput Sci 6145:355–364

    Article  Google Scholar 

  • Wang L, Fang C (2011) An effective shuffled frog-leaping algorithm for multi-mode resource-constrained project scheduling problem. Inf Sci 181:4804–4822

    Article  MathSciNet  MATH  Google Scholar 

  • Wang L, Zhong X, Liu M (2012) A novel group search optimizer for multi-objective optimization. Expert Syst Appl 39:2939–2946

    Article  Google Scholar 

  • Wolpert DH, Macready WG (1997) No free lunch theorems for optimization. IEEE Trans Evolut Comput 1:67–82

    Article  Google Scholar 

  • Yang XS (2009) Firefly algorithms for multimodal optimization. Lect Notes Comput Sci 5792:169–178

    Article  MathSciNet  MATH  Google Scholar 

  • Yang X (2011) Review of meta-heuristics and generalized evolutionary walk algorithm. Int J Bio-Inspired Comput 3:77–84

    Article  Google Scholar 

  • Yao X, Liu Y, Lin G (1999) Evolutionary programming made faster. IEEE Trans Evolut Comput 3(1):82–102

    Google Scholar 

  • Yu S, Zhu S, Ma Y, Mao D (2015) A variable step size firefly algorithm for numerical optimization. Appl Math Comput 263:214–220

    Article  MathSciNet  Google Scholar 

  • Zang H, Zhang S, Hapeshi K (2010) A review of nature-inspired algorithms. J Bionic Eng 7(Supplement):S232–S237

    Article  Google Scholar 

  • Zare K, Haque M, Davoodi E (2012) Solving non-convex economic dispatch problem with valve point effects using modified group search optimizer method. Electr Power Syst Res 84:83–89

    Article  Google Scholar 

  • Zheng X, Lu D, Chen Z (2014) A self-adaptive group search optimizer with elitist strategy. In: Proceedings of 2014 IEEE congress on evolutionary computation, pp 2033–2039

Download references

Acknowledgments

This material is based upon work supported by the National Science Foundation under Grant No. 1344954, the National Natural Science Foundation of China under Grant Nos. 61305078, 61533010, 61179041.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Haiping Ma.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interests regarding the publication of this paper.

Additional information

Communicated by V. Loia.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ma, H., Ye, S., Simon, D. et al. Conceptual and numerical comparisons of swarm intelligence optimization algorithms. Soft Comput 21, 3081–3100 (2017). https://doi.org/10.1007/s00500-015-1993-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00500-015-1993-x

Keywords

Navigation