Abstract
MOEA/D is one of the promising evolutionary algorithms for multi- and many-objective optimization. To improve the search performance of MOEA/D, this work focuses on the solution update method in the conventional MOEA/D and proposes its alternative, the chain-reaction solution update. The proposed method is designed to maintain and improve the variable (genetic) diversity in the population by avoiding duplication of solutions in the population. In addition, the proposed method determines the order of existing solutions to be updated depending on the location of each offspring in the objective space. Furthermore, when an existing solution in the population is replaced by a new offspring, the proposed method tries to reutilize the existing solution for other search directions by recursively performing the proposed chain-reaction update procedure. This work uses discrete knapsack and continuous WFG4 problems with 2–8 objectives. Experimental results using knapsack problems show the proposed chain-reaction update contributes to improving the search performance of MOEA/D by enhancing the diversity of solutions in the objective space. In addition, experimental results using WFG4 problems show that the search performance of MOEA/D can be further improved using the proposed method.
Access this article
Rent this article via DeepDyve
![](http://media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs00500-016-2092-3/MediaObjects/500_2016_2092_Fig1_HTML.gif)
![](http://media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs00500-016-2092-3/MediaObjects/500_2016_2092_Fig2_HTML.gif)
![](http://media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs00500-016-2092-3/MediaObjects/500_2016_2092_Fig3_HTML.gif)
![](http://media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs00500-016-2092-3/MediaObjects/500_2016_2092_Fig4_HTML.gif)
![](http://media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs00500-016-2092-3/MediaObjects/500_2016_2092_Fig5_HTML.gif)
![](http://media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs00500-016-2092-3/MediaObjects/500_2016_2092_Fig6_HTML.gif)
![](http://media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs00500-016-2092-3/MediaObjects/500_2016_2092_Fig7_HTML.gif)
![](http://media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs00500-016-2092-3/MediaObjects/500_2016_2092_Fig8_HTML.gif)
![](http://media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs00500-016-2092-3/MediaObjects/500_2016_2092_Fig9_HTML.gif)
![](http://media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs00500-016-2092-3/MediaObjects/500_2016_2092_Fig10_HTML.gif)
![](http://media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs00500-016-2092-3/MediaObjects/500_2016_2092_Fig11_HTML.gif)
![](http://media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs00500-016-2092-3/MediaObjects/500_2016_2092_Fig12_HTML.gif)
![](http://media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs00500-016-2092-3/MediaObjects/500_2016_2092_Fig13_HTML.gif)
![](http://media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs00500-016-2092-3/MediaObjects/500_2016_2092_Fig14_HTML.gif)
![](http://media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs00500-016-2092-3/MediaObjects/500_2016_2092_Fig15_HTML.gif)
![](http://media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs00500-016-2092-3/MediaObjects/500_2016_2092_Fig16_HTML.gif)
![](http://media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs00500-016-2092-3/MediaObjects/500_2016_2092_Fig17_HTML.gif)
![](http://media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs00500-016-2092-3/MediaObjects/500_2016_2092_Fig18_HTML.gif)
![](http://media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs00500-016-2092-3/MediaObjects/500_2016_2092_Fig19_HTML.gif)
![](http://media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs00500-016-2092-3/MediaObjects/500_2016_2092_Fig20_HTML.gif)
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.Notes
N is the population size, T is the neighborhood size, and \(T\le N\).
References
Bader J, Zitzler E (2011) HypE: an algorithm for fast hypervolume-based many-objective optimization. Evol Comput 19(1):45–76 (MIT Press)
Beume N, Naujoks B, Emmerich M (2007) SMS-EMOA: multiobjective selection based on dominated hypervolume. Eur J Oper Res 181(3):1653–1669
Bowman VJ Jr (1976) On the relationship of the Tchebycheff norm and the efficient frontier of multiple-criteria objectives. Lect Notes Econ Math Syst 130:76–86
Coello CAC, Lamont GB, Veldhuizen DAV (2007) Evolutionary algorithms for solving multi-objective problems, 2nd edn. Springer, New York
Deb K (2001) Multi-objective optimization using evolutionary algorithms. Wiley, New York
Deb K, Pratap A, Agarwal S, Meyarivan T (2002) A fast elitist multi-objective genetic algorithm: NSGA-II. IEEE Trans Evol Comput 6(2):182–197
Deb K, Jain H (2014) An evolutionary many-objective optimization algorithm using reference-point based non-dominated sorting approach, Part I: Solving problems with box constraints. IEEE Trans Evol Comput 18(4):577–601
Gass S, Saaty T (1955) The computational algorithm for the parametric objective function. Nav Res Logist 2(1–2):39–45
Huband S, Hingston P, Barone L, While L (2006) A review of multi-objective test problems and a scalable test problem toolkit. IEEE Trans Evol Comput 10(5):477–506
Hughes EJ (2005) Evolutionary many-objective optimisation: Many once or one many? Proc. of 2005 IEEE congress on evolutionary computation (CEC2005), pp 222–227
Ishibuchi H, Tsukamoto N, Nojima Y (2008) Evolutionary many-objective optimization: a short review. Proc. of 2008 IEEE congress on evolutionary computation (CEC2008), pp 2424–2431
Jiang S, Cai Z, Zhang J, Ong YS (2011) Multiobjective optimization by decomposition with Pareto-adaptive weight vectors. In: Proc. of 2011 seventh international conference on natural computation (ICNC), pp 1260–1264
Ke L, Zhang Q, Battiti R (2013) MOEA/D-ACO: a multiobjective evolutionary algorithm using decomposition and antcolony. IEEE Trans Cybern 43(6):1845–1859
Li K, Zhang Q, Kwong S, Li M, Wang R (2014) Stable matching based selection in evolutionary multiobjective optimization. IEEE Trans Evol Comput 18(6):1–15
Li H, Landa-Silva D (2011) An adaptive evolutionary multi-objective approach based on simulated annealing. Evol Comput 19(4):561–595 (MIT press)
Liu HL, Gu F, Zhang Q (2014) Decomposition of a multiobjective optimization problem into a number of simple multiobjective subproblems. IEEE Trans Evol Comput 18(3):450–455
Liu B, Fernández FV, Zhang Q, Pak M, Sipahi S, Gielen G (2010) An enhanced MOEA/D-DE and its application to multiobjective analog cell sizing. In: Proc. of 2010 IEEE congress on evolutionary computation (CEC’2010), pp 960–966
Li H, Zhang Q (2009) Multiobjective optimization problems with complicated Pareto sets, MOEA/D and NSGA-II. IEEE Trans Evol Comput 13(2):284–302
Martinez SZ, Coello CAC (2011) A multi-objective particle swarm optimizer based on decomposition. In: Proc. of 2011 genetic and evolutionary computation conference (GECCO’2011), pp 69–76
Martinez SZ, Derbel B, Liefooghe A, Brockhoff D, Aguirre H, Tanaka K (2015) Injecting CMA-ES into MOEA/D. In: Proc. of 2015 genetic and evolutionary computation conference (GECCO’2015), pp 783–790
Miettinen K (1999) Nonlinear multiobjective optimization. Kluwer, Norwell
Moubayed NAl, Petrovski A, McCall J (2010) A novel smart multi-objective particle swarm optimisation using decomposition. In: Proc. of the 11th parallel problem solving from nature (PPSN XI), LNCS, Springer, pp 1–10
Murata T, Ishibuchi H, Gen M (2001) Specification of genetic search directions in cellular multi-objective genetic algorithm. In: Proc. of Int’l Conf. on evolutionary multi-criterion optimization 2001, LNCS, vol 1993, pp 82–95
Sato H (2014a) adaptive update range of solutions in MOEA/D for multi and many-objective optimization. In: Proc. of the tenth international conference on simulated evolution and learning (SEAL 2014), LNCS 8886, pp 274–286
Sato H (2014b) Inverted PBI in MOEA/D and its impact on the search performance on multi and many-objective optimization. In: Proc. of 2014 genetic and evolutionary computation conference (GECCO 2014), pp 645–652
Sato H, Aguirre H, Tanaka K (2004) Local dominance using polar coordinates to enhance multi-objective evolutionary algorithms. In: Proc. of 2004 IEEE congress on evolutionary computation (CEC2004), pp 188–195
Sato M, Aguirre H, Tanaka K (2006) Effects of \(\delta \)-similar elimination and controlled elitism in the NSGA-II multiobjective evolutionary algorithm. In: Proc. of 2006 IEEE congress on evolutionary computation (CEC2006), pp 1164–1171
Zhang Q, Li H (2007) MOEA/D: a multi-objective evolutionary algorithm based on decomposition. IEEE Trans Evol Comput 11(6):712–731
Zhang Q, Liu W, Li H (2009) The performance of a new version of MOEA/D on CEC09 unconstrained MOP test instances. In: Proc. of 2009 IEEE congress on evolutionary computation (CEC’2009), pp 203–208
Zhao SZ, Suganthan PN, Zhang Q (2012) Decomposition-based multiobjective evolutionary algorithm with an ensemble of neighborhood sizes. IEEE Trans Evol Comput 16(3):442–446
Zitzler E (1999) Evolutionary algorithms for multiobjective optimization: methods and applications. PhD thesis, Swiss Federal Institute of Technology, Zurich
Zitzler E, Kunzili S (2004) Indicator-based selection in multiobjective search. In: Proc. of the 8th Intl. Conf. on parallel problem solving from nature (PPSN-VIII), LNCS, vol 3242. Springer, pp 832–842
Zitzler E, Thiele L (1999) Multiobjective evolutionary algorithms: a comparative case study and the strength Pareto approach. IEEE Trans Evol Comput 3(4):257–271
Acknowledgments
This work was supported by JSPS KAKENHI Grant Number 26730129.
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Conflict of interest
The author declares no conflict of interest associated with this manuscript.
Additional information
Communicated by B. Xue and A. G. Chen.
Rights and permissions
About this article
Cite this article
Sato, H. Chain-reaction solution update in MOEA/D and its effects on multi- and many-objective optimization. Soft Comput 20, 3803–3820 (2016). https://doi.org/10.1007/s00500-016-2092-3
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00500-016-2092-3