Skip to main content
Log in

Hybrid rule-based motion planner for mobile robot in cluttered workspace

A combination of RRT and cell decomposition approaches

  • Methodologies and Application
  • Published:
Soft Computing Aims and scope Submit manuscript

Abstract

Motion planning problem is an active field in robotics. It is concerned with converting high-level task specifications into low-level descriptions of how to move and provides a feasible sequence of movements that avoid obstacles while respecting kinematic and dynamic equations. In this work, new planners are designed with the aim of developing an efficient motion planner in a heterogeneous, cluttered, and dynamic workspace. The planners are composed of two layers, and they use a rule-based system as a guidance. The first layer uses exact cell decomposition method, which divides the workspace into manageable regions and finds the adjacency information for them. The second layer utilizes rapidly exploring random tree algorithm RRT that finds a solution in a cluttered workspace. The adjacency information of the free cells and the exploration information that is provided by RRT are combined and utilized to help the planners classifying the free regions and guiding the growth of RRT trees efficiently toward the most important areas. Two types of the planners are proposed, the first one uses adviser that pulls the trees’ growth toward the boundary areas between explored and unexplored regions, while the adviser of the second planner uses the collision information and fuzzy rules to guide the trees’ growth toward areas that have low collision rate around the boundaries of explored regions. The planners are tested in stationary as well as in changed workspace. The proposed methods have been compared to other approaches and the simulation results show that they yield better results in terms of completeness and efficiency.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22

Similar content being viewed by others

References

  • Abbadi A, Matousek R (2012) RRTs review and statistical analysis. Int J Math Comput Simul 6(1):1–8

    Google Scholar 

  • Abbadi A, Matousek R, Minar P, Soustek P (2011) RRTs review and options. Comput Eng Syst Appl II:194–199

  • Abbadi A, Matousek R, Jancik S, Roupec J (2012) Rapidly-exploring random trees: 3D planning. 18th international conference on soft computing, MENDEL 2012. Brno University of Technology, Brno, pp 594–599

    Google Scholar 

  • Abbadi A, Matousek R, Osmera P, Knispel L (2014) Spatial guidance to Rrt planner using cell-decomposition algorithm. In: 20th international conference on soft computing, MENDEL 2014

  • Amato NM, Bayazit OB, Dale LK, Jones C, Vallejo D (1998) OBPRM: an obstacle-based PRM for 3D workspaces. In: Proceedings of the third workshop on the algorithmic foundations of robotics on robotics: the algorithmic perspective, pp 155–168

  • Arambula Cosío F, Padilla Castañeda M (2004) Autonomous robot navigation using adaptive potential fields. Math Comput Model 40(910):1141–1156. https://doi.org/10.1016/j.mcm.2004.05.001

  • Atramentov A, LaValle S (2002) Efficient nearest neighbor searching for motion planning. In: Proceedings 2002 IEEE international conference on robotics and automation (cat no. 02CH37292), vol 1, pp 632–637. https://doi.org/10.1109/ROBOT.2002.1013429

  • Aurenhammer F (1991) Voronoi diagrams—a survey of a fundamental geometric data structure. https://doi.org/10.1145/116873:116880

  • Aurenhammer F, Klein R (2000) Voronoi diagrams. Handb Comput Geom 5:201–290

    Article  MathSciNet  MATH  Google Scholar 

  • Baginski B (1996) The \(Z^{3}\)-method for fast path planning in dynamic environments. In: IASTED conference applications of control and robotics, pp 47–52

  • Barraquand J, Latombe JC (1990) A Monte-Carlo algorithm for path planning with many degrees of freedom. In: Proceedings of the IEEE international conference on robotics and automation, vol 3, pp 1712–1717. https://doi.org/10.1109/ROBOT.1990.126256

  • Barraquand J, Latombe JC (1991) Robot motion planning: a distributed representation approach. Int J Robot Res 10(6):628–649. https://doi.org/10.1177/027836499101000604

    Article  Google Scholar 

  • Boor V, Overmars M, Stappena VD (1999) The Gaussian sampling strategy for probabilistic roadmap planners. In: Proceedings of the 1999 IEEE international conference on robotics and automation (cat. no. 99CH36288C), vol 2, pp 1018–1023. https://doi.org/10.1109/ROBOT.1999.772447

  • Borenstein J, Koren Y (1991) The vector field histogram—fast obstacle avoidance for mobile robots. IEEE Trans Robot Autom 7(3):278–288. https://doi.org/10.1109/70.88137

    Article  Google Scholar 

  • Brooks R, Lozano-Perez T (1985) A subdivision algorithm in configuration space for findpath with rotation. https://doi.org/10.1109/TSMC.1985.6313352

  • Bruce J, Veloso M (2002) Real-time randomized path planning for robot navigation. In: IEEE/RSJ international conference on intelligent robots and systems, vol 3, pp 2383–2388. https://doi.org/10.1109/IRDS.2002.1041624

  • Chazelle B (1987) Approximation and decomposition of shapes. In: Schwartz JT, Yap CK (eds) Advances in robotics 1: algorithmic and geometric aspects of robotics. L. Erlbaum Associates Inc., Hillsdale, p 320

    Google Scholar 

  • Cheng P (2004) Reducing RRT metric sensitivity for motion planning. PhD thesis, Iowa State University

  • Cheng PCP, LaValle S (2001) Reducing metric sensitivity in randomized trajectory design. In: Proceedings 2001 IEEE/RSJ international conference on intelligent robots and systems. Expanding the societal role of robotics in the the next millennium (cat. no. 01CH37180), vol 1, pp 43–48. https://doi.org/10.1109/IROS.2001.973334

  • Cheng PCP, LaValle S (2002) Resolution complete rapidly-exploring random trees. In: Proceedings 2002 IEEE international conference on robotics and automation (cat. no. 02CH37292), vol 1, pp 267–272. https://doi.org/10.1109/ROBOT.2002.1013372

  • Choi J, Choi M, Nam SY, Chung WK (2011) Autonomous topological modeling of a home environment and topological localization using a sonar grid map. Auton Robots 30(4):351–368. https://doi.org/10.1007/s10514-011-9223-6

    Article  Google Scholar 

  • Choset H (2000) Sensor-based exploration: incremental construction of the hierarchical generalized Voronoi graph. Int J Robot Res 19(2):126–148. https://doi.org/10.1177/02783640022066789

    Article  MATH  Google Scholar 

  • Choset H, Lynch KM, Hutchinson S, Kantor GA, Burgard W, Kavraki LE, Thrun S (2005) Principles of robot motion. In: Technical report, Theory, algorithm and implementation

  • Cowlagi R, Tsiotras P (2012) Multiresolution motion planning for autonomous agents via wavelet-based cell decompositions 42(5):1455–1469. https://doi.org/10.1109/TSMCB.2012.2192268

  • Denny J, Amato NM (2011) Toggle PRM: simultaneous mapping of C-free and C-obstacle—a study in 2D. In: IEEE international conference on intelligent robots and systems, pp 2632–2639. https://doi.org/10.1109/IROS.2011.6048865

  • de Berg M, Cheong O, van Kreveld M, Overmars M (2008) Computational geometry, 3rd edn. Springer, Berlin

    Book  MATH  Google Scholar 

  • Esposito JM (2013) Conditional density growth (CDG) model: a simplified model of RRT coverage for kinematic systems. Robotica 31:733–746. https://doi.org/10.1017/S0263574712000690

    Article  Google Scholar 

  • Fabbri R, Estrozi LF, Costa LDF (2002) On Voronoi diagrams and medial axes. J Math Imaging Vis 17:27–40. https://doi.org/10.1023/A:1020722624682

    Article  MathSciNet  MATH  Google Scholar 

  • Garrido S, Moreno L, Abderrahim M, Martin F (2011) Path planning for mobile robot navigation using Voronoi diagram and fast marching. Int J Robot Autom 2(1):42–64

    Google Scholar 

  • Glavina B (1990) Solving findpath by combination of goal-directed and randomized search. In: Proceedings of the IEEE international conference on robotics and automation, vol 3, pp 1718–1723. https://doi.org/10.1109/ROBOT.1990.126257

  • Hsu D, Jiang TJT, Reif J, Sun ZSZ (2003) The bridge test for sampling narrow passages with probabilistic roadmap planners. In: 2003 IEEE international conference on robotics and automation (cat. no. 03CH37422), vol 3, pp 4420–4426. https://doi.org/10.1109/ROBOT.2003.1242285

  • Hwang YK, Ahuja N (1992) A potential field approach to path planning. IEEE Trans Robot Autom 8(1):23–32. https://doi.org/10.1109/70.127236

    Article  Google Scholar 

  • Jaillet L, Hoffman J, Van Den Berg J, Abbeel P, Porta JM, Goldberg K (2011) EG-RRT: environment-guided random trees for kinodynamic motion planning with uncertainty and obstacles. In: IEEE international conference on intelligent robots and systems, pp 2646–2652. https://doi.org/10.1109/IROS.2011.6048409

  • Jaradat M, Garibeh M, Feilat E (2012) Fuzzy potential field. Dynamic motion planning. Mobile robot. Soft Comput. https://doi.org/10.1007/s00500-011-0742-z

  • Kalisiak M, Van De Panne M (2006) RRT-blossom: RRT with a local flood-fill behavior. Proc IEEE Int Conf Robot Autom 2006:1237–1242. https://doi.org/10.1109/ROBOT.2006.1641878

    Google Scholar 

  • Kamon I, Rimon E, Rivlin E (1998) TangentBug: a range-sensor-based navigation algorithm. Int J Robot Res 17(9):934–953. https://doi.org/10.1177/027836499801700903

    Article  Google Scholar 

  • Karaman S (2012) Sampling-based algorithms for optimal path planning problems. PhD thesis

  • Karaman S, Frazzoli E (2011) Sampling-based algorithms for optimal motion planning. Int J Robot Res 30(7):846–894. https://doi.org/10.1177/0278364911406761. arXiv:1105.1186v1

  • Katevas NI, Tzafestas SG, Pnevmatikatos CG (1998) The approximate cell decomposition with local node refinement global path planning method: path nodes refinement and curve parametric interpolation. J Intell Robot Syst 22(3–4):289–314. https://doi.org/10.1023/A:1008034314006

  • Kavraki LE, Švestka P, Latombe JC, Overmars MH (1996) Probabilistic roadmaps for path planning in high-dimensional configuration spaces. IEEE Trans Robot Autom 12(4):566–580. https://doi.org/10.1109/70.508439

    Article  Google Scholar 

  • Kavraki LE, Kolountzakis MN, Latombe JC (1998) Analysis of probabilistic roadmaps for path planning. IEEE Trans Robot Autom 14(1):166–171. https://doi.org/10.1109/70.660866

    Article  Google Scholar 

  • Khatib O (1985) Real-time obstacle avoidance for manipulators and mobile robots. In: Proceedings of the 1985 IEEE international conference on robotics and automation, vol 2, pp 500–505. https://doi.org/10.1109/ROBOT.1985.1087247

  • Kim JO, Khosla P (1991) Real-time obstacle avoidance using harmonic potential functions. In: Proceedings of the 1991 IEEE international conference on robotics and automation, vol 1, pp 790–796. https://doi.org/10.1109/ROBOT.1991.131683

  • Kuffner JJ, LaValle S (2000) RRT-connect: an efficient approach to single-query path planning. In: Proceedings 2000 ICRA millennium conference IEEE international conference on robotics and automation symposia proceedings (cat no. 00CH37065), vol 2, pp 995–1001. https://doi.org/10.1109/ROBOT.2000.844730

  • Kuffner JJ, LaValle SM (2011) Space-filling trees: a new perspective on incremental search for motion planning. In: IEEE international conference on intelligent robots and systems, pp 2199–2206. https://doi.org/10.1109/IROS.2011.6048346

  • Latombe JC (1991) Robot motion planning. https://doi.org/10.1016/1049-9660(91)90042-N

  • LaValle SM (1998) Rapidly-exploring random trees: a new tool for path planning. In: Technical report, Computer Science Department, Iowa State University

  • LaValle SM (2006) Planning algorithms, vol 2006. Cambridge University Press, Cambridge

    Book  MATH  Google Scholar 

  • LaValle SM, Branicky MS (2004) On the relationship between classical grid search and probabilistic roadmaps. In: Springer tracts in advanced robotics 7 STAR(7–8), pp 59–75, https://doi.org/10.1007/978-3-540-45058-0_5

  • LaValle SM, Kuffner JJ (2000) Rapidly-exploring random trees: progress and prospects. In: 4th workshop on algorithmic and computational robotics: new directions, pp 293–308

  • Le D, Plaku E (2014) Guiding sampling-based tree search for motion planning with dynamics via probabilistic roadmap abstractions. In: 2014 IEEE/RSJ international conference on intelligent robots and systems, pp 212–217. https://doi.org/10.1109/IROS.2014.6942563

  • Li D, Li Q, Cheng N, Song J (2012) Extended RRT-based path planning for flying robots in complex 3D environments with narrow passages. In: IEEE international conference on automation science and engineering, pp 1173–1178. https://doi.org/10.1109/CoASE.2012.6386513

  • Li J, Liu S, Zhang B, Zhao X, (2014) RRT-A* motion planning algorithm for non-holonomic mobile robot. In: 2014 proceedings of the SICE annual conference (SICE), pp 1833–1838. https://doi.org/10.1109/SICE.2014.6935304

  • Lin YT (2006) The Gaussian PRM sampling for dynamic configuration spaces. In: 9th international conference on control, automation, robotics and vision, 2006, ICARCV ’06, pp 1–5. https://doi.org/10.1109/ICARCV.2006.345422

  • Lindemann S, LaValle S (2004) Incrementally reducing dispersion by increasing Voronoi bias in RRTs. In: Proceedings of the IEEE international conference on robotics and automation, 2004, ICRA ’04, vol 4, pp 3251–3257. https://doi.org/10.1109/ROBOT.2004.1308755

  • Lulu L, Elnagar A (2005) A comparative study between visibility-based roadmap path planning algorithms. In: 2005 IEEE/RSJ international conference on intelligent robots and systems, IROS, pp 3700–3705. https://doi.org/10.1109/IROS.2005.1545545

  • Lumelsky V, Stepanov A (1986) Dynamic path planning for a mobile automaton with limited information on the environment. IEEE Trans Autom Control 31(11):1058–1063. https://doi.org/10.1109/TAC.1986.1104175

    Article  MATH  Google Scholar 

  • Masehian E, Naseri A (2010) Mobile robot online motion planning using generalized Voronoi graphs. J Ind Eng 5:1–15

    Google Scholar 

  • Masoud A (2013) A harmonic potential field approach for joint planning and control of a rigid, separable nonholonomic, mobile robot. Robot Auton Syst 61(6):593–615. https://doi.org/10.1016/j.robot.2013.02.007

    Article  Google Scholar 

  • Mazer E, Ahuactzin JM, Bessière P (1998) The Ariadne’s clew algorithm. J Artif Intell Res 9(1):295–316. https://doi.org/10.1613/jair.468. arXiv:1105.5440

    MATH  Google Scholar 

  • Mbede JB, Huang X, Wang M (2000) Fuzzy motion planning among dynamic obstacles using artificial potential fields for robot manipulators. Robot Auton Syst 32(1):61–72. https://doi.org/10.1016/S0921-8890(00)00073-7

    Article  Google Scholar 

  • McFetridge L, Yousef Ibrahim M (1998) New technique of mobile robot navigation using a hybrid adaptive fuzzy potential field approach. Comput Ind Eng 35(34):471–474. https://doi.org/10.1016/S0360-8352(98)00136-3

    Article  Google Scholar 

  • Militão F, Naden K, Toninho B (2010) Improving RRT with context sensitivity. In: Technical report, School of Computer Science, Carnegie Mellon University

  • Nasir J, Islam F, Malik U, Ayaz Y, Hasan O, Khan M, Muhammad MS (2013) RRT*-SMART: a rapid convergence implementation of RRT*. Int J Adv Robot Syst 10:299. https://doi.org/10.5772/56718

  • Perez A, Platt R, Konidaris G, Kaelbling L, Lozano-Perez T (2012) LQR-RRT*: optimal sampling-based motion planning with automatically derived extension heuristics. In: Proceedings of the IEEE international conference on robotics and automation, pp 2537–2542. https://doi.org/10.1109/ICRA.2012.6225177

  • Pêtrès C, Ma Romero-Ramirez, Plumet F (2012) A potential field approach for reactive navigation of autonomous sailboats. Robot Auton Syst 60(12):1520–1527. https://doi.org/10.1016/j.robot.2012.08.004

    Article  Google Scholar 

  • Rodríguez S, Tang X, Lien JM, Amato NM (2006) An obstacle-based rapidly-exploring random tree. Proc IEEE Int Conf Robot Autom 2006:895–900. https://doi.org/10.1109/ROBOT.2006.1641823

    Google Scholar 

  • Rosell J, Iniguez P (2005) Path planning using harmonic functions and probabilistic cell decomposition. In: Proceedings of the 2005 IEEE international conference on robotics and automation, pp 1803–1808. https://doi.org/10.1109/ROBOT.2005.1570375

  • Saffiotti A (1997) The uses of fuzzy logic in autonomous robot navigation. Soft Comput. https://doi.org/10.1007/s005000050020

  • Saha M, Latombe JC (2005) Finding narrow passages with probabilistic roadmaps: the small step retraction method. In: 2005 IEEE/RSJ international conference on intelligent robots and systems, IROS, pp 4080–4085. https://doi.org/10.1109/IROS.2005.1545606

  • Sakahara H, Masutani Y, Miyazaki F (2008) Real-time motion planning in unknown environment: a Voronoi-based StRRT (spatiotemporal RRT). In: Proceedings of the SICE annual conference, pp 2326–2331. https://doi.org/10.1109/SICE.2008.4655053

  • Schwartz JT, Sharir M (1983) On the piano movers problem. General techniques for computing topological properties of real algebraic manifolds, II. https://doi.org/10.1016/0196-8858(83)90014-3

  • Sfeir J, Saad M, Saliah-Hassane H (2011) An improved artificial potential field approach to real-time mobile robot path planning in an unknown environment. In: IEEE international symposium on robotic and sensors environments (ROSE), pp 208–213. https://doi.org/10.1109/ROSE.2011.6058518

  • Shkolnik AC, Tedrake R (2009) Path planning in 1000+ dimensions using a task-space Voronoi bias. In: Proceedings of the IEEE international conference on robotics and automation (ICRA)

  • Sleumer NH, Tschichold-Gürman N (1999) Exact cell decomposition of arrangements used for path planning in robotics. In: Technical report, Department of Computer Science, ETH Zürich. https://doi.org/10.3929/ethz-a-006653440

  • Strandberg M (2004) Augmenting RRT-planners with local trees. In: Proceedings of the IEEE international conference on robotics and automation, 2004, ICRA ’04, vol 4, pp 3258–3262. https://doi.org/10.1109/ROBOT.2004.1308756

  • Sun Z, Hsu D, Jiang T, Kurniawati H, Reif JH (2005) Narrow passage sampling for probabilistic roadmap planning. IEEE Trans Robot 21(6):1105–1115. https://doi.org/10.1109/TRO.2005.853485

    Article  Google Scholar 

  • Šeda M (2007) Roadmap methods vs. cell decomposition in robot motion planning. In: Proceedings of the 6th WSEAS international conference on signal processing, robotics and automation (WSEAS), pp 127–132

  • Tanaka T, Ohwi J, Litvintseva LV, Yamafuji K, Ulyanov SV (1997) Soft computing algorithms for intelligent control of a mobile robot for service use. Soft Comput. https://doi.org/10.1007/s005000050011

  • Urmson C, Simmons R (2003) Approaches for heuristically biasing RRT growth. In: Proceedings of the 2003 IEEE/RSJ international conference on intelligent robots and systems (IROS 2003) (cat no. 03CH37453), vol 2, pp 1178–1183. https://doi.org/10.1109/IROS.2003.1248805

  • Vahrenkamp N, Kaiser P, Asfour T, Dillmann R (2011) RDT+: a parameter-free algorithm for exact motion planning. In: Proceedings of the IEEE international conference on robotics and automation, pp 715–722. https://doi.org/10.1109/ICRA.2011.5979777

  • van den Berg JP, Overmars MH (2005) Using workspace information as a guide to non-uniform sampling in probabilistic roadmap planners. Int J Robot Res 24(12):1055–1071. https://doi.org/10.1177/0278364905060132

    Article  Google Scholar 

  • Vendrell E, Mellado M, Crespo A (2001) Robot planning and re-planning using decomposition, abstraction, deduction, and prediction. Eng Appl Artif Intell 14(4):505–518. https://doi.org/10.1016/S0952-1976(01)00027-6

    Article  Google Scholar 

  • Vonasek V, Faigl J, Krajnik T, Preucil L (2011) A sampling schema for rapidly exploring random trees using a guiding path. In: 5th European conference on mobile robots, pp 201–206

  • Wang W, Li Y, Xu X, Yang SX (2010) An adaptive roadmap guided multi-RRTs strategy for single query path planning. In: Proceedings of the IEEE international conference on robotics and automation, pp 2871–2876. https://doi.org/10.1109/ROBOT.2010.5509529

  • Yershova A, LaValle SM (2007) Improving motion-planning algorithms by efficient nearest-neighbor searching. IEEE Trans Robot 23(1):151–157. https://doi.org/10.1109/TRO.2006.886840

    Article  Google Scholar 

  • Zhang Q, Chen D, Chen T (2012) An obstacle avoidance method of Soccer Robot based on evolutionary artificial potential field. https://doi.org/10.1016/j.egypro.2012.01.276

  • Zhong J, Su J (2011) Narrow passages identification for probabilistic roadmap method. In: Proceedings of the 30th Chinese control conference, pp 3908–3912

Download references

Acknowledgements

This work was partially supported by BUT IGA No. FSI-S-14-2533: “Applied Computer Science and Control”. This work was partially supported by the Czech Science Foundation under the project 16-08549S. This work was partially realized in CEITEC with research infrastructure supported by the project CZ.1.05/1.1.00/02.0068 financed from European Regional Development Fund.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ahmad Abbadi.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Communicated by V. Loia.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abbadi, A., Matousek, R. Hybrid rule-based motion planner for mobile robot in cluttered workspace. Soft Comput 22, 1815–1831 (2018). https://doi.org/10.1007/s00500-016-2103-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00500-016-2103-4

Keywords

Navigation