Skip to main content
Log in

An efficient algorithm for large-scale causal discovery

  • Methodologies and Application
  • Published:
Soft Computing Aims and scope Submit manuscript

Abstract

Causal discovery is a fundamental problem in scientific research. Although many researchers are committed to finding causal relationships from observational data, large-scale causal discovery remains a tremendous challenge. In this paper, a new approach for large-scale causal discovery is proposed, based on a split-and-merge strategy. The method first splits a given dataset into small subdatasets using a graph-partitioning method and then develops a effective algorithm to infer the causality of each subdataset. The entire causal structure with respect to the given dataset is achieved by combining all the causalities of each subdataset. The experimental results show that the proposed approach is effective and scalable for large-scale causal discovery problems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Notes

  1. http://www.cs.huji.ac.il/site/labs/compbio/Repository/.

  2. http://www.cs.huji.ac.il/site/labs/compbio/Repository/ http://www.norsys.com/networklibrary.html.

References

  • Cai R, Zhang Z, Hao Z (2013) Sada: a general framework to support robust causation discovery. In: Proceedings of the 30th international conference on machine learning, pp 208–216

  • Chickering DM (2003) Optimal structure identification with greedy search. J Mach Learn Res 3:507–554

    MATH  MathSciNet  Google Scholar 

  • Daniusis P, Janzing D, Mooij J, Zscheischler J, Steudel B, Zhang K, Schölkopf B (2012) Inferring deterministic causal relations. arXiv preprint arXiv:1203.3475

  • Fortier N, Sheppard J, Strasser S (2014) Abductive inference in Bayesian networks using distributed overlapping swarm intelligence. Soft Comput 19(4):981–1001

    Article  Google Scholar 

  • Geiger D, Heckerman D (1994) Learning gaussian networks. In: Proceedings of the tenth international conference on uncertainty in artificial intelligence. Morgan Kaufmann Publishers Inc, pp 235–243

  • Gullberg M, Noreus K, Brattsand G, Friedrich B, Shingler V (1990) Purification and characterization of a 19-kilodalton intracellular protein. An activation-regulated putative protein kinase c substrate of t lymphocytes. J Biol Chem 265(29):17499–17505

    Google Scholar 

  • Gu B, Sheng VS (2016) A robust regularization path algorithm for v-support vector classification. IEEE Trans Neural Netw Learn Syst. doi:10.1109/TNNLS.2016.2527796

  • Gu B, Sun X, Sheng VS (2016) Structural minimax probability machine. IEEE Trans Neural Netw Learn Syst. doi:10.1109/TNNLS.2016.2544779

  • Hadley SW, Pelizzari C, Chen GTY (1996) Registration of localization images by maximization of mutual information. In: Proceedings of annual meeting of the American association of physicists in medicine

  • Hao Z, Zhang H, Cai R, Wen W, Li Z (2015) Causal discovery on high dimensional data. Appl Intell 42(3):594–607

    Article  Google Scholar 

  • Heckerman D, Meek C, Cooper G (1999) A bayesian approach to causal discovery. Comput Causation Discov 19:141–166

    MathSciNet  Google Scholar 

  • Herskovits E (1991) Computer-based probabilistic-network construction. Ph.D thesis, Stanford University, USA

  • Hoyer PO, Janzing D, Mooij JM, Peters J, Schölkopf B (2009) Nonlinear causal discovery with additive noise models. In: Advances in neural information processing systems. MIT press, Massachusetts, pp 689–696

  • Janzing D, Mooij J, Zhang K, Lemeire J, Zscheischler J, Daniušis P, Steudel B, Schölkopf B (2012) Information-geometric approach to inferring causal directions. Artif Intell 182:1–31

    Article  MATH  MathSciNet  Google Scholar 

  • Kelly L, Clark J, Gilliland G (2002) Comprehensive genotypic analysis of leukemia: clinical and therapeutic implications. Curr Opin Oncol 14(1):10–18

  • Kim K-J, Cho S-B (2015) Ensemble bayesian networks evolved with speciation for high-performance prediction in data mining. Soft Comput. doi:10.1007/s00500-015-1841-z

  • Kraskov A, Stögbauer H, Grassberger P (2004) Estimating mutual information. Phys Rev E 69(6):066138

    Article  MathSciNet  Google Scholar 

  • Kwak N, Choi C-H (2002) Input feature selection by mutual information based on parzen window. Pattern Anal Mach Intell IEEE Trans 24(12):1667–1671

    Article  Google Scholar 

  • Liu Z, Yan H, Li Z (2015a) Server-aided anonymous attribute-based authentication in cloud computing. Future Gener Comput Syst 24:61–66

    Article  Google Scholar 

  • Liu Z, Yan H, Lin Z, Xu L (2015b) An improved cloud data sharing scheme with hierarchical attribute structure. J Univers Comput Sci 21(3):454–472

    Google Scholar 

  • Ma S, Li J, Liu L, Le TD (2016) Mining combined causes in large data sets. Knowl Based Syst 92:104–111

    Article  Google Scholar 

  • Meek C (1997) Graphical models: selecting causal and statistical models. Ph.D thesis, Carnegie Mellon University

  • Pearl J (2009) Causality. Cambridge University Press, Cambridge

    Book  MATH  Google Scholar 

  • Peters J, Janzing D, Schölkopf B (2010) Identifying cause and effect on discrete data using additive noise models. In: International conference on artificial intelligence and statistics, pp 597–604

  • Peters J, Janzing D, Schölkopf B (2011) Causal inference on discrete data using additive noise models. Pattern Anal Mach Intell IEEE Trans 33(12):2436–2450

    Article  Google Scholar 

  • Peters J, Mooij JM, Janzing D, Schölkopf B (2014) Causal discovery with continuous additive noise models. J Mach Learn Res 15(1):2009–2053

    MATH  MathSciNet  Google Scholar 

  • Rasmussen CE, Williams C (2006) Gaussian processes for machine learning. MIT Press, Cambridge

    MATH  Google Scholar 

  • Schwarz G et al (1978) Estimating the dimension of a model. Ann Stat 6(2):461–464

    Article  MATH  MathSciNet  Google Scholar 

  • Shimizu S, Hoyer PO, Hyvärinen A, Kerminen A (2006) A linear non-gaussian acyclic model for causal discovery. J Mach Learn Res 7:2003–2030

    MATH  MathSciNet  Google Scholar 

  • Spirtes P, Glymour CN, Richard S (2000) Causation, prediction and search, vol 81. MIT press, Cambridge

    MATH  Google Scholar 

  • Tang L-J, Jiang J-H, Wu H-L, Shen G-L, Yu R-Q (2009) Variable selection using probability density function similarity for support vector machine classification of high-dimensional microarray data. Talanta 79(2):260–267

    Article  Google Scholar 

  • Wang X, Gotoh O (2009) Accurate molecular classification of cancer using simple rules. BMC Med Genom 2(1):64

    Article  Google Scholar 

  • Wen X, Shao L, Xue Y, Fang W (2015) A rapid learning algorithm for vehicle classification. Inf Sci 295:395–406

    Article  Google Scholar 

  • Zhang K, Hyvärinen A (2008) Distinguishing causes from effects using nonlinear acyclic causal models. In: Journal of machine learning research, workshop and conference proceedings (NIPS 2008 causality workshop), vol 6, pp 157–164

  • Zhang K, Peters J, Janzing D, Schölkopf B (2012) Kernel-based conditional independence test and application in causal discovery. arXiv preprint arXiv:1202.3775

Download references

Acknowledgments

This paper has been supported by Science and Technology Planning Project of Guangdong Province, China (2015A030401101), (2015B090922014), and by National Natural Science Foundation of China(61572144).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yinghan Hong.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Communicated by V. Loia.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hong, Y., Liu, Z. & Mai, G. An efficient algorithm for large-scale causal discovery. Soft Comput 21, 7381–7391 (2017). https://doi.org/10.1007/s00500-016-2281-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00500-016-2281-0

Keywords

Navigation