Skip to main content
Log in

ANFIS and MPC controllers for a reconfigurable lower limb exoskeleton

  • Focus
  • Published:
Soft Computing Aims and scope Submit manuscript

Abstract

The exoskeletons are robotic active orthoses intended to enhance power or in medical applications as rehabilitation and assistive walking. In the context of designing a controller for the reconfigurable exoskeleton for lower limb, it is critical to define the hardware as well as the control. The scope of this work was to define the controller for reconfigurable exoskeleton using three types of controllers: PD, ANFIS, and MPC. The PD controllers are the typical approach for torque/tracking control while artificial intelligence controller, as ANFIS, and optimal controller, as MPC, are recently entering to this field. The ANFIS and MPC controllers may bring more precision and capability to distribute the processing operations. Afterward, this work contrasts the performance evaluation using objective indices to evaluate the error, ISE, IAE, ITSE, ITAE, ISTSE, and ISTAE. The results suggest that ANFIS and MPC controllers have the potential to drive the torque/traction reducing the error while having the capability to learn from the disturbances from the surroundings.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  • Al Mashhadany YI (2012) Design and simulation of anfis controller for virtual-reality-built manipulator. In: Iqbal SD (ed) Fuzzy controllers: recent advances in theory and applications. InTech Open Access Publisher, Crotia, pp 315–334. doi:10.5772/48383

    Google Scholar 

  • Anam K, Al-Jumaily AA (2012) Active exoskeleton control systems: state of the art. Proc Eng 41(Iris):988–994. doi:10.1016/j.proeng.2012.07.273

    Article  Google Scholar 

  • Boscariol P, Gasparetto A, Zanotto V (2010) Model predictive control of a flexible links mechanism. J Intell Robot Syst 58(2):125–147. doi:10.1007/s10846-009-9347-5

    Article  MATH  Google Scholar 

  • Campo AB (2012) PID control design. In: Katsikis VN (ed) MATLAB: a fundamental tool for scientific computing and engineering applications, vol 1. doi:10.5772/48497

  • Cardenas S, Castillo O, Aguilar LT, Rodriguez A (2009) Genetic design of biped walking fuzzy logic controller. In: 2009 IEEE workshop on hybrid intelligent models and applications, HIMA 2009—Proceedings vol 1, pp 7–12. doi:10.1109/HIMA.2009.4937818

  • Cardenas-Maciel SL, Castillo O, Aguilar LT, Castro JR (2010) A T–S fuzzy logic controller for biped robot walking based on adaptive network fuzzy inference system. In: The 2010 international joint conference on neural networks, pp 1–8. doi:10.1109/IJCNN.2010.5596653

  • Cardenas-Maciel SL, Castillo O, Aguilar LT (2011) Generation of walking periodic motions for a biped robot via genetic algorithms. Appl Soft Comput J 11(8):5306–5314. doi:10.1016/j.asoc.2011.05.030

    Article  Google Scholar 

  • Castano JA, Hernandez A, Li Z, Tsagarakis NG, Caldwell DG, De Keyser R (2015) Enhancing the robustness of the EPSAC predictive control using a Singular Value Decomposition approach. Robot Auton Syst 74:283–295. doi:10.1016/j.robot.2015.09.001

    Article  Google Scholar 

  • Castro SDJ, Lugo E, Cruz PP, Molina A (2013) Assistive robotic exoskeleton for helping limb girdle muscular dystrophy. In: 2013 international conference on mechatronics, electronics and automotive engineering, pp 27–32. doi:10.1109/ICMEAE.2013.9

  • Dahari M, Bhuiyan MSH, Choudhury IA (2015) Development of a control system for artificially rehabilitated limbs? A review. Biol Cybern 109(2):141–162. doi:10.1007/s00422-014-0635-1

    Article  Google Scholar 

  • Duarte-Mermoud MA, Prieto RA (2004) Performance index for quality response of dynamical systems. ISA Trans 43(1):133–151. doi:10.1016/s0019-0578(07)60026-3

    Article  Google Scholar 

  • Grizzle JW, Chevallereau C, Sinnet RW, Ames AD (2014) Models, feedback control, and open problems of 3D bipedal robotic walking. Automatica 50(8):1955–1988. doi:10.1016/j.automatica.2014.04.021

    Article  MathSciNet  MATH  Google Scholar 

  • Jiménez-Fabián R, Verlinden O (2012) Review of control algorithms for robotic ankle systems in lower-limb orthoses, prostheses, and exoskeletons. Med Eng Phys 34(4):397–408. doi:10.1016/j.medengphy.2011.11.018

    Article  Google Scholar 

  • John CT, Anderson FC, Higginson JS, Delp SL (2012) Stabilisation of walking by intrinsic muscle properties revealed in a three-dimensional muscle-driven simulation. Comput Methods Biomech Biomed Eng. doi:10.1080/10255842.2011.627560

    Google Scholar 

  • Koceska N, Koceski S, Durante F, Beomonte P, Raparelli T (2013) Control architecture of a 10 DOF lower limbs exoskeleton for gait rehabilitation. Int J Adv Robot Syst. doi:10.5772/55032

    Google Scholar 

  • Kusagur A, Kodad S, Sankar Ram B (2010) Modeling, design simulation of an adaptive neuro-fuzzy inference system (ANFIS) for speed control of induction motor. Int J Comput Appl (0975–8887) 6(12):29–44

    Google Scholar 

  • Pan D, Gao F, Miao Y, Cao R (2015) Co-simulation research of a novel exoskeleton–human robot system on humanoid gaits with fuzzy-PID/PID algorithms. Adv Eng Softw 79:36–46. doi:10.1016/j.advengsoft.2014.09.005

    Article  Google Scholar 

  • Premkumar K, Manikandan BV (2015) Fuzzy PID supervised online ANFIS based speed controller for brushless dc motor. Neurocomputing 157:76–90. doi:10.1016/j.neucom.2015.01.032

    Article  Google Scholar 

  • Rodriguez CA, Lugo E, Ponce P, Molina A (2015) Towards a reconfigurable inferior limbs exoskeleton for assistive, rehabilitation, and empowering application. In: 15th IFAC symposium on information control problems in manufacturing, vol 15, pp 1541–1546

  • Sinnet RW, Ames AD (2012) Bio-inspired feedback control of three-dimensional humanlike bipedal robots. J Robot Mechatron 24(4):595–601

    Article  Google Scholar 

  • Tucker MR, Olivier J, Pagel A, Bleuler H, Bouri M, Lambercy O, Gassert R (2015) Control strategies for active lower extremity prosthetics and orthotics: a review. J Neuroeng Rehabil 12:1. doi:10.1186/1743-0003-12-1

    Article  Google Scholar 

  • Wang M, Luo J, Walter U (2015) A non-linear model predictive controller with obstacle avoidance for a space robot. Adv Space Res 57(8):1737–1746. doi:10.1016/j.asr.2015.06.012

    Article  Google Scholar 

  • Wang X, Li X, Wang J, Fang X, Zhu X (2016) Data-driven model-free adaptive sliding mode control for the multi degree-of-freedom robotic exoskeleton. Inf Sci 327:246–257. doi:10.1016/j.ins.2015.08.025

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgments

The authors want to acknowledge Tecnologico de Monterrey for all the support during this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carlos A. Rodriguez.

Ethics declarations

Conflict of interest

Carlos Alfonso Rodriguez Sierra, Pedro Ponce, and Arturo Molina declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Communicated by H. Ponce.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rodriguez, C.A., Ponce, P. & Molina, A. ANFIS and MPC controllers for a reconfigurable lower limb exoskeleton. Soft Comput 21, 571–584 (2017). https://doi.org/10.1007/s00500-016-2321-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00500-016-2321-9

Keywords

Navigation