Skip to main content

Advertisement

Log in

Multi-stage evolution of single- and multi-objective MCLP

Successive placement of charging stations

  • Focus
  • Published:
Soft Computing Aims and scope Submit manuscript

Abstract

Maximal covering location problems have efficiently been solved using evolutionary computation. The multi-stage placement of charging stations for electric cars is an instance of this problem which is addressed in this study. It is particularly challenging, because a final solution is constructed in multiple steps, stations cannot be relocated easily and intermediate solutions should be optimal with respect to certain objectives. This paper is an extended version of work published in Spieker et al. (Innovations in intelligent systems and applications (INISTA), 2015 international symposium on. IEEE, pp 1–7, 2015). In this work, it was shown that through problem decomposition, an incremental genetic algorithm benefits from having multiple intermediate stages. On the other hand, a decremental strategy does not profit from reduced computational complexity. We extend our previous work by including multi-objective optimization of multi-stage charging station placement, allowing us to not only optimize toward (weighted) demand location coverage, but also to include a second objective, taking into account traffic density. It is shown that the reachable part of the full Pareto front at each stage is bound by the solution that was chosen from the respective previous front. By careful choice of the selection strategy, a particular focus can be set. This can be exploited to comply with concrete implementation goals and to adjust the evolved strategy to both static and dynamic changes in requirements.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Albareda-Sambola M, Fernández E, Hinojosa Y, Puerto J (2009) The multi-period incremental service facility location problem. Comput Oper Res 36(5):1356–1375

    Article  MATH  Google Scholar 

  • Attea BA, Khalil EA, Cosar A (2014) Multi-objective evolutionary routing protocol for efficient coverage in mobile sensor networks. Soft Comput. doi:10.1007/s00500-014-1462-y

    Google Scholar 

  • Badri MA, Mortagy AK, Alsayed CA (1998) A multi-objective model for locating fire stations. Eur J Oper Res 110(2):243–260. doi:10.1016/S0377-2217(97)00247-6

    Article  MATH  Google Scholar 

  • Berman O, Krass D (2002) The generalized maximal covering location problem. Comput Oper Res 29(6):563–581

    Article  MathSciNet  MATH  Google Scholar 

  • Berman O, Drezner Z, Krass D (2010) Generalized coverage: new developments in covering location models. Comput Oper Res 37(10):1675–1687

    Article  MathSciNet  MATH  Google Scholar 

  • BMVI (2011) Szenarien zum Infrastrukturaufbau für Elektromobilität, Technical report. Bundesministerium für Verkehr und digitale Infrastruktur

  • BMVI (2014) Öffentliche Ladeinfrastruktur für Städte. Kommunen und Versorger, Technical report. Bundesministerium für Verkehr und digitale Infrastruktur

  • Canel C, Khumawala BM, Law J, Loh A (2001) An algorithm for the capacitated, multi-commodity multi-period facility location problem. Comput Oper Res 28(5):411–427

    Article  MathSciNet  MATH  Google Scholar 

  • Chung SH (2012) Multi-period planning for electric-car charging station locations: a case of Korean expressways. Eur J Oper Res 242(2):1–31

    Google Scholar 

  • Church R, ReVelle C (1974) The maximal covering location problem. Pap Reg Sci Assoc 32(1):101–118

    Article  Google Scholar 

  • Church RL, Stoms DM, Davis FW (1996) Reserve selection as a maximal covering location problem. Biol Conserv 76(2):105–112

    Article  Google Scholar 

  • Deb K, Wiley J (2006) Multi-objective optimization using evolutionary algorithms. In: 25th international congress of the aeronautical sciences. doi:10.5897/AJB11.410

  • Deb K, Pratap A, Agarwal S, Meyarivan T (2002) A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Trans Evol Comput 6(2):182–197. doi:10.1109/4235.996017

    Article  Google Scholar 

  • Elektromobilität NP (2012) Ladeinfrastruktur bedarfsgerecht aufbauen, Technical report. Nationale Plattform Elektromobilität

  • Farahani RZ, Asgari N, Heidari N, Hosseininia M, Goh M (2012) Covering problems in facility location: a review. Comput Ind Eng 62(1):368–407

    Article  Google Scholar 

  • Hess A, Malandrino F, Reinhardt MB, Casetti C, Hummel KA, Barceló-Ordinas JM (2012) Optimal deployment of charging stations for electric vehicular networks. In: Proceedings of the first workshop on Urban networking—UrbaNe ’12, p 1

  • Holland JH (1975) Adaptation in natural and artificial systems. MIT Press, Ann Arbor

    Google Scholar 

  • Infas Institut für angewandte Sozialwissenschaft Gmbh (2009) Alltagsverkehr in Bonn und dem Rhein-Sieg-Kreis

  • Jin M, Shi R, Zhang N, Li Y (2013) Study on multi-level layout planning of electric vehicle charging stations based on an improved genetic algorithm. Int J Smart Grid Clean Energy 2(2):277–282

    Article  Google Scholar 

  • Kraftfahrt-Bundesamt (2015) Bestand. www.kba.de/DE/Statistik/Fahrzeuge/Bestand/bestand_node.html

  • Lim S, Kuby M (2010) Heuristic algorithms for siting alternative-fuel stations using the flow-refueling location model. Eur J Oper Res 204(1):51–61

    Article  MATH  Google Scholar 

  • MBWSV-NRW (2013) Mobilität in Nordrhein-Westfalen—Daten und Fakten, Technical report. Ministerium für Bauen, Wohnen, Stadtentwicklung und Verkehr des Landes Nordrhein-Westfalen

  • Reininger P, Iksal S, Caminada A, Korczak J (1999) Multi-stage optimization for mobile radio network planning. In: Vehicular technology conference, 1999 IEEE 49th, vol 3, pp 2034–2038

  • Spieker H, Hagg A, Asteroth A, Meilinger S, Jacobs V, Oslislo A (2015) Successive evolution of charging station placement. In: Innovations in intelligent systems and applications (INISTA), 2015 international symposium on. IEEE, pp 1–7

  • Zarandi MF, Davari S, Sisakht SH (2011) The large scale maximal covering location problem. Sci Iran 18(6):1564–1570

    Article  MATH  Google Scholar 

Download references

Acknowledgments

The authors would like to thank the ”Arbeitskreis Starthilfekonzepte Elektromobilität Bonn-Rhein-Sieg” for providing data and financing. Namely, we would like to thank the City of Bonn, the county Rhein-Sieg-Kreis and the regional energy infrastructure providers, Energie- und Wasserversorgung Bonn/Rhein-Sieg GmbH, RWE Deutschland AG, Rhein Energie AG, Rhenag—Rheinische Energie AG and Stadtwerke Troisdorf GmbH for sponsoring the underlying project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Helge Spieker.

Ethics declarations

Conflict of interest

All authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Communicated by C. Analide.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Spieker, H., Hagg, A., Gaier, A. et al. Multi-stage evolution of single- and multi-objective MCLP. Soft Comput 21, 4859–4872 (2017). https://doi.org/10.1007/s00500-016-2374-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00500-016-2374-9

Keywords

Navigation