Skip to main content

Numerical investigation for handling fractional-order Rabinovich–Fabrikant model using the multistep approach

  • Methodologies and Application
  • Published:
Soft Computing Aims and scope Submit manuscript

Abstract

In this paper, we present a reliable multistep numerical approach, so-called Multistep Generalized Differential Transform (MsGDT), to obtain accurate approximate form solution for Rabinovich–Fabrikant model involving Caputo fractional derivative subjected to appropriate initial conditions. The solution methodology provides efficiently convergent approximate series solutions with easily computable coefficients without employing linearization or perturbation. The behavior of approximate solution for different values of fractional-order \(\alpha \) is shown graphically. Furthermore, the stability analysis of the suggested model is discussed quantitatively. Simulation of the MsGDT technique is also presented to show its efficiency and reliability. Numerical results indicate that the method is simple, powerful mathematical tool and fully compatible with the complexity of such problems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  • Agrawal SK, Srivastava M, Das S (2012) Synchronization between fractional-order Rabinovich–Fabrikant and Lotka–Volterra systems. Nonlinear Dyn 69:2277–2288

    Article  Google Scholar 

  • Al-Smadi M, Freihat A, Abu Arqub O, Shawagfeh N (2015) A novel multistep generalized differential transform method for solving fractional-order Lü chaotic and hyperchaotic systems. J Comput Anal Appl 19:713–724

    MathSciNet  MATH  Google Scholar 

  • Al-Smadi M, Abu Arqub O, Shawagfeh N, Momani S (2016) Numerical investigations for systems of secondorder periodic boundary value problems using reproducing kernel method. Appl Math Comput 291:137–148

    MathSciNet  Google Scholar 

  • Al-Smadi M, Freihat A, Khalil H, Momani S, Khan RA (2017) Numerical multistep approach for solving fractional partial differential equations. Int J Comput Methods 14(2):1–15. doi:10.1142/S0219876217500293

  • Caputo M (1967) Linear models of dissipation whose Q is almost frequency independent: Part II. Geophys J Int 13:529–539

    Article  MathSciNet  Google Scholar 

  • Deng W, Li C, Lü J (2007) Stability analysis of linear fractional differentional differential system with multiple time delays. Nonlinear Dyn 48:409–416

    Article  MATH  Google Scholar 

  • El-Ajou A, Abu Arqub O, Al-Smadi M (2015) A general form of the generalized Taylor’s formula with some applications. Appl Math Comput 256:851–859

    MathSciNet  MATH  Google Scholar 

  • Ertürk VS, Momani S (2010) Application to fractional integro-differential equations. Stud Nonlinear Sci 1:118–126

  • Ertürk VS, Momani S, Odibat Z (2008) Application of generalized differential transform method to multi-order fractional differential equations. Commun Nonlinear Sci Numer Simul 13:1642–1654

    Article  MathSciNet  MATH  Google Scholar 

  • Gafiychuk V, Datsko B (2010) Mathematical modeling of different types of instabilities in time fractional reaction–diffusion systems. Comput Math Appl 59:1101–1107

    Article  MathSciNet  MATH  Google Scholar 

  • Gafiychuk V, Datsko B, Meleshko V (2008) Mathematical modeling of time fractional reaction–diffusion systems. J Comput Appl Math 220:215–225

    Article  MathSciNet  MATH  Google Scholar 

  • Klafter J, Lim SC, Metzler R (2011) Fractional dynamics in physics: recent advances. World Scientific, Singapore

    Book  MATH  Google Scholar 

  • Klimek M (2001) Fractional sequential mechanics-models with symmetric fractional derivative. Czechoslov J Phys 51:1348–1354

    Article  MathSciNet  MATH  Google Scholar 

  • Kolebaje OT, Ojo OL, Akinyemi P, Adenodi RA (2013) On the application of the multistage laplace adomian decomposition method with pade approximation to the Rabinovich–Fabrikant system. Adv Appl Sci Res 4:232–243

    Google Scholar 

  • Laskin N (2000) Fractional quantum mechanics. Phys Rev E 62:3135–3145

    Article  MATH  Google Scholar 

  • Liu F, Burrage K (2011) Novel techniques in parameter estimation for fractional dynamical models arising from biological systems. Comput Math Appl 62:822–833

    Article  MathSciNet  MATH  Google Scholar 

  • Liu Y, Yang Q, Pang G (2010) A hyperchaotic system from the Rabinovich system. J Comput Appl Math 234:101–113

    Article  MathSciNet  MATH  Google Scholar 

  • Magin RL (2006) Fractional calculus in bioengineering. Begell House Publisher Inc, Connecticut

    Google Scholar 

  • Mainardi F (2010) Fractional calculus and waves in linear viscoelasticity. Imperial College Press, London

    Book  MATH  Google Scholar 

  • Matignon D (1996) Stability results for fractional differential equations with applications to control processing. In: IMACS, IEEE-SMC Proceedings of the Computational Engineering in Systems and Application Multiconference, vol 2. Lille, pp 963–968

  • Millar KS, Ross B (1993) An introduction to the fractional calculus and fractional differential equations. Wiley, New York

    Google Scholar 

  • Momani S, Odibat Z, Ertürk VS (2007) Generalized differential transform method for solving a space- and time-fractional diffusion-wave equation. Phys Lett A 370:379–387 V.S. Ertürk, S. Momani, On the Generalized Differential

    Article  MathSciNet  MATH  Google Scholar 

  • Momani S, Freihat A, AL-Smadi M (2014) Analytical study of fractional-order multiple chaotic FitzHugh–Nagumo neurons model using multi-step generalized differential transform method. Abstract Appl Anal 2014, Article ID 276279, 1-10

  • Odibat Z, Momani S (2008) A generalized differential transform method for linear partial differential equations of fractional order. Appl Math Lett 21:194–199

    Article  MathSciNet  MATH  Google Scholar 

  • Odibat Z, Shawagfeh N (2007) Generalized Taylor’s formula. Appl Math Comput 186:286–293

    MathSciNet  MATH  Google Scholar 

  • Odibat ZM, Bertelle C, Aziz-Alaoui MA, Duchamp GHE (2010) A multi-step differential transform method and application to non chaotic or chaotic systems. Comput Math Appl 59:1462–1472

    Article  MathSciNet  MATH  Google Scholar 

  • Ortigueira MD (2010) The fractional quantum derivative and its integral representations. Commun Nonlinear Sci Numer Simul 15:956–962

    Article  MathSciNet  MATH  Google Scholar 

  • Petras I (2010) A note on the fractional-order Volta’s system. Commun Nonlinear Sci Numer Simul 15:384–393

    Article  MathSciNet  MATH  Google Scholar 

  • Podlubny I (1999) Fractional differential equations. Academic Press, San Diego

    MATH  Google Scholar 

  • Rabinovich MI, Fabrikant AL (1979) Stochastic self-modulation of waves in nonequilibrium media. Sov Phys JETP 50:311–317

  • Srivastava M, Agrawal S, Vishal K, Das S (2014) Chaos control of fractional order Rabinovich–Fabrikant system and synchronization between chaotic and chaos controlled fractional order Rabinovich–Fabrikant system. Appl Math Model 38:3361–3372

  • Tarasov VE (2011) Fractional dynamics: applications of fractional calculus to dynamics of particles, fields and media. Springer, Berlin

    Google Scholar 

  • Tavazoei MS, Haeri M (2007) A necessary condition for double scroll attractor existence in fractional-order systems. Phys Lett A 367:102–113

    Article  MATH  Google Scholar 

  • Tavazoei MS, Haeri M (2008) Chaotic attractors in incommensurate fractional order systems. Physica D 237:2628–2637

    Article  MathSciNet  MATH  Google Scholar 

  • Zhen W, Xia H, Guodong S (2011) Analysis of nonlinear dynamics and chaos in a fractional order financial system with time delay. Comput Math Appl 62:1531–1539

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Khaled Moaddy.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interests regarding the publication of this paper.

Additional information

Communicated by V. Loia.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Moaddy, K., Freihat, A., Al-Smadi, M. et al. Numerical investigation for handling fractional-order Rabinovich–Fabrikant model using the multistep approach. Soft Comput 22, 773–782 (2018). https://doi.org/10.1007/s00500-016-2378-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00500-016-2378-5

Keywords