Abstract
Cooperative particle swarm optimization (short in CPSO) is an effective evolutionary algorithm for optimization and has attracted a lot of research attention. As real-world optimization problems become complex and large scale, population-based optimization algorithms may take a long time to complete a task. Responding to this trend, CPSO, as a serial evolutionary algorithm, also needs to be updated and accelerated. On the other hand, MapReduce is a programming model for parallel computation and accelerates many tasks successfully. In this paper, we present MapReduce cooperative particle swarm optimization (short in MRCPSO) which implements CPSO-S, a version of CPSO, using MapReduce model. MRCPSO is compared with the original CPSO-S and two algorithms in CEC 2013 special session and competition on real-parameter single-objective optimization. The result on benchmarks shows that MRCPSO outperforms the original CPSO-S significantly on both time and the quality of solution. And in the comparisons with the other two algorithms, MRCPSO has better performance on several problems, while the advantage on time is significant.


Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
Alba E, Dorronsoro B (2005) The exploration/exploitation tradeoff in dynamic cellular genetic algorithms. IEEE Trans Evol Comput 9(2):126–142
Bergh F, Engelbrecht A (2004) A cooperative approach to particle swarm optimization. IEEE Trans Evol Comput 8(3):225–239
Bouvry P, Arbab F, Seredynski F (2000) Distributed evolutionary optimization, in manifold: Rosenbrock’s function case study. Inf Sci 122(2):141–159
Chang-tian, Y, Jiong Y (2012) Energy-aware genetic algorithms for task scheduling in cloud computing. In: Proceedings of seventh ChinaGrid annual conference, pp 43–48
Dean J, Ghemawat S (2008) MapReduce: simplified data processing on large clus-ters. Commun ACM 51(1):107–113
Decraene J, Cheng YY, Low MYH, Zhou S, Cai W, Choo CS (2010) Evolving agent-based simulations in the clouds. In: Third international workshop on advanced computational intelligence, pp 244–249
Dubreuil M, Gagné C, Parizeau M (2006) Analysis of a master–slave architecture for distributed evolutionary computations. IEEE Trans Syst Man Cybern B Cybern 36(1):229–235
Ewald G, Kurek W, Brdys MA (2008) Grid implementation of a parallel multiobjective genetic algorithm for optimized allocation of chlorination stations in drinking water distribution systems: Chojnice case study. IEEE Trans Syst Man Cybern C Appl Rev 38(4):497–509
Folino G, Pizzuti C, Spezzano G (2008) Training distributed GP ensemble with a selective algorithm based on clustering and pruning for pattern classification. IEEE Trans Evol Comput 12(4):458–468
Fu Z, Ren K, Shu J, Sun X, Huang F (2015) Enabling personalized search over encrypted outsourced data with efficiency improvement. IEEE Trans Parallel Distrib Syst. doi:10.1109/TPDS.2015.2506573
Fu Z, Wu X, Guan C, Sun X, Ren K (2016) Towards efficient multi-keyword fuzzy search over encrypted outsourced data with accuracy improvement. IEEE Trans Inf Forensics Secur. doi:10.1109/TIFS.2016.2596138
Garcia-Arenas M, Merelo JJ, Castillo P, Laredo JLJ, Romero G, Mora AM (2011) Using free cloud storage services for distributed evolutionary algorithms. In: Proceedings of the 13th annual conference on genetic and evolutionary computation (GECCO), pp 1603–1610
Garcia-Arenas M, Merelo J-J, Mora AM, Castillo P, Romero G, Laredo JLJ (2011) Assessing speed-ups in commodity cloud storage services for distributed evolutionary algorithms. In: IEEE congress on evolutionary computation (CEC), pp 304–311
Giacobini M, Tomassini M, Tettamanzi AG, Alba E (2005) Selection intensity in cellular evolutionary algorithms for regular lattices. IEEE Trans Evol Comput 9(5):489–505
Gong Y, Chen W, Zhan Z, Zhang J, Li Y, Zhang Q, Li J (2015) Distributed evolutionary algorithms and their models: a survey of the state-of-the-art. Appl Soft Comput 34:286–300
Herrera F, Lozano M (2000) Gradual distributed real-coded genetic algorithms. IEEE Trans Evol Comput 4(1):43–63
Jiao L, Li Y, Gong M, Zhang X (2008) Quantum-inspired immune clonal algorithm for global optimization. IEEE Trans Syst Man Cybern Part B 38(5):1234–1253
Jindarak K, Uthayopas P (2011) Performance improvement of cloud storage using a genetic algorithm based placement. In: Proceedings of eighth international joint conference on computer science and software engineering, pp 54–57
Jin C, Vecchiola C, Buyya R (2008) MRPGA: an extension of mapreduce for parallelizing genetic algorithms. In: IEEE fourth international conference on escience, pp 214–221
Kaur S, Verma A (2012) An efficient approach to genetic algorithm for task scheduling in cloud computing environment. Int J Inf Technol Comput Sci 4(10):74–79
Kennedy J, Eberhart RC (1995) Particle swarm optimization. In: Proceedings of IEEE International Conference on Neural Network, pp 1942–1948
Kessaci Y, Melab N, Talbi E (2011) A Pareto-based GA for scheduling HPC applications on distributed cloud infrastructures. In: Proceedings of international conference on high performance computing and simulation, pp 456 – 462
Li Y, Xiang R, Jiao L, Liu R (2012) An improved cooperative quantum-behaved particle swarm optimization. Soft Comput 16(6):1061–1069
Liang JJ, Qu BY, Suganthan PN, Hernández-Díaz Alfredo G (January 2013) Problem definitions and evaluation criteria for the CEC 2013 special session on real-parameter optimization. Technical Report 201212, Computational Intelligence Laboratory, Zhengzhou University, Zhengzhou China And Technical Report, Nanyang Technological University, Singapore
Liang C, Chung C, Wong K, Duan X (2007) Parallel optimal reactive power flow based on cooperative co-evolutionary differential evolution and power sys-tem decomposition. IEEE Trans Power Syst 22(1):249–257
Llora X, Verma A, Campbell RH, Goldberg DE (2010) When huge is routine: scaling genetic algorithms and estimation of distribution algorithms via data-intensive computing. In: Fernández de Vega F, Cantú-Paz E (ed) Parallel and distributed computational intelligence. Springer, Berlin, pp 11–41
Loshchilov I (2013) CMA-ES with restarts for solving CEC 2013 benchmark problems. In: IEEE congress on evolutionary computation, pp 369–376
Mocanu EM, Florea M, Andreica MI, Ţăpuş N (2012) Cloud computing-task scheduling based on genetic algorithms. In: Proceedings of IEEE international systems conference, pp 1–6
McNabb AW, Monson CK, Seppi KD (2007) Parallel PSO using mapreduce. In: IEEE congress on evolutionary computation (CEC), pp 7–14
Pierreval H, Paris J-L (2000) Distributed evolutionary algorithms for simulation optimization. IEEE Trans Syst Man Cybern A Syst Hum 30(1):15–24
Potter AM, De Jong KA (1994) A Cooperative co-evolutionary approach to function optimization. In: Proceedings of the third international conference on parallel problem solving from nature. Springer, pp 249–257
Ren Y, Shen J, Wang J, Han J, Lee S (2015) Mutual verifiable provable data auditing in public cloud storage. J Internet Technol 16(2):317–323
Roy G, Lee H, Welch JL, Zhao Y, Pandey V, Thurston D (2009) A distributed pool architecture for genetic algorithms. In: IEEE congress on evolutionary computation (CEC), pp 1177–1184
Rueda JL, Erlich I (2013) Hybrid mean-variance mapping optimization for solving the IEEE-CEC 2013 competition problems. In: IEEE congress on evolutionary computation, pp 1664–1671
Shang R, Jisao L, Ren Y, Li L, Wang L (2014) Quantum immune clonal coevolutionary algorithm for dynamic multiobjective optimization. Soft Comput 18:743–756
Shi Y, Eberhart R (1998) A modified particle swarm optimizer. In: IEEE international conference on evolutionary computation, Anchorage, Alaska, May 4–9, pp 1945–1950
Subbu R, Sanderson AC (2004a) Modeling and convergence analysis of distributed coevolutionary algorithms. IEEE Trans Syst Man Cybern B Cybern 34(2):806–822
Subbu R, Sanderson AC (2004b) Network-based distributed planning using coevolutionary agents: architecture and evaluation. IEEE Trans Syst Man Cybern A Syst Hum 34(2):257–269
Tagawa K, Ishimizu T (2010) Concurrent differential evolution based on MapReduce. Int J Comput 4(4):161–168
Umbarkar A, Joshi M (2013) Review of parallel genetic algorithm based on computing paradigm and diversity in search space. ICTACT J Soft Comput 3:615–622
Valle Yd, Venayagamoorthy GK, Mohagheghi S, Hernandez J, Harley RG (2008) Particle swarm optimization: basic concepts, variants and applications in power systems. IEEE Trans Evol. Comput 12(2):171–195
Verma A, Llora X, Goldberg DE, Campbell RH (2009) Scaling genetic algorithms using mapreduce. In: Ninth international conference on intelligent systems design and applications, pp 13–18
Wickramasinghe W, van Steen M, Eiben A (2007) Peer-to-peer evolutionary algorithms with adaptive autonomous selection. In: Proceedings of the 9th annual conference on genetic and evolutionary computation (GECCO), pp 1460–1467
Wu B, Wu G, Yang M (2012) A mapreduce based ant colony optimization approach to combinatorial optimization problems. In: International conference on natural computation (ICNC), pp 728–732
Xia Z, Wang X, Sun X, Wang Q (2015) A secure and dynamic multi-keyword ranked search scheme over encrypted cloud data. IEEE Trans Parallel Distrib Syst 27(2):340–352
Xiong Z, Zhang Z, Kong H, Zou D (2011) Genetic algorithm-based power management in cloud platform. In: Proceedings of international conference on internet technology and applications, pp 1–4
Yusoh M, Izzah Z, Maolin T (2012) Clustering composite SaaS components in cloud computing using a grouping genetic algorithm. In: IEEE congress on evolutionary computation, pp 1–8
Zhangjie F, Xingming S, Qi L, Lu Z, Jiangang S (2015) Achieving efficient cloud search services: multi-keyword ranked search over encrypted cloud data supporting parallel computing. IEICE Trans Commun E98–B(1):190–200
Zhao JF, Zeng WH, Li GM, Liu M (2011) Simple parallel genetic algorithm using cloud computing. Appl. Mech. Mater. 121–126:4151–4155
Zhao J, Wang W, Pedrycz W, Tian X (2012) Online parameter optimization-based prediction for converter gas system by parallel strategies. IEEE Trans Control Syst Technol 20(3):835–845
Zheng Z, Wang R, Zhong H, Zhang X (2011) An approach for cloud resource scheduling based on parallel genetic algorithm. In: Proceedings of 3rd international conference on computer research and development, vol. 2, pp 444–447
Zhou C (2010) Fast parallelization of differential evolution algorithm using MapReduce. In: Proceedings of the 12th annual conference on genetic and evolutionary computation (GECCO), pp 1113–1114
Acknowledgments
This work was supported by the National Natural Science Foundation of China (Nos. 61272279, 61272282, 61371201 and 61203303), the National Basic Research Program (973 Program) of China (No. 2013CB329402), the Program for Cheung Kong Scholars and Innovative Research Team in University (No. IRT_15R53) and the Fund for Foreign Scholars in University Research and Teaching Programs (the 111 Project) (No. B07048).
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Conflict of interest
Yangyang Li, Zhenghan Chen, Yang Wang and Licheng Jiao declare that they no conflict of interest.
Ethical approval
This article does not contain any studies with human participants or animals performed by any of the authors.
Informed consent
Informed consent was obtained from all individual participants included in the study.
Additional information
Communicated by A. Di Nola.
Rights and permissions
About this article
Cite this article
Wang, Y., Li, Y., Chen, Z. et al. Cooperative particle swarm optimization using MapReduce. Soft Comput 21, 6593–6603 (2017). https://doi.org/10.1007/s00500-016-2390-9
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00500-016-2390-9