Skip to main content
Log in

B-spline collocation and self-adapting differential evolution (jDE) algorithm for a singularly perturbed convection–diffusion problem

  • Methodologies and Application
  • Published:
Soft Computing Aims and scope Submit manuscript

Abstract

Many numerical methods applied on a Shishkin mesh are very popular in solving the singularly perturbed problems. However, few approaches are used to obtain the Shishkin mesh transition parameter. Thus, in this paper, we first use the cubic B-spline collocation method on a Shishkin mesh to solve the singularly perturbed convection–diffusion problem with two small parameters. Then, we transform the Shishkin mesh transition parameter selection problem into a nonlinear unconstrained optimization problem which is solved by using the self-adapting differential evolution (jDE) algorithm. To verify the performance of our presented method, a numerical example is employed. It is shown from the experiment results that our approach is efficient. Compared with other evolutionary algorithms, the jDE algorithm performs better and with more stability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Abbass HA (2002) The self-adaptive Pareto differential evolution algorithm. In: Proceedings of the congress evolutionary computation, Honolulu, HI, pp 831–836

  • Abderazek H, Ferhat D, Atanasovska I (2015) A differential evolution algorithm for tooth profile optimization with respect to balancing specific sliding coefficients of involute cylindrical spur and helical gears. Adv Mech Eng 7(9):1–11

    Article  Google Scholar 

  • Ali MM, Törn A (2004) Population set-based global optimization algorithms: some modifications and numerical studies. Comput Oper Res 31(10):1703–1725

    Article  MathSciNet  MATH  Google Scholar 

  • Ali M, Ahn CW, Pant M (2014) Multi-level image thresholding by synergetic differential evolution. App Soft Comput 17:1–11

    Article  Google Scholar 

  • Ali MZ, Awad NH, Suganthan PN, Duwairi RM, Reynolds RG (2016a) A novel hybrid Cultural Algorithms framework with trajectory-based search for global numerical optimization. Inf Sci 334–335(C):219–249

    Article  Google Scholar 

  • Ali MZ, Suganthan PN, Reynolds RG, Al-Badarneh AF (2016b) Leveraged neighborhood restructuring in cultural algorithms for solving real-world numerical optimization problems. IEEE Trans Evol Comput 20(2):218–231

    Article  Google Scholar 

  • Bigge J, Bohl E (1985) Deformations of the bifurcation diagram due to discretization. Math Comput 45(172):393–403

    Article  MathSciNet  MATH  Google Scholar 

  • Brest J, Greiner S, Boskovic B et al (2006) Self-adapting control parameters in differential evolution: a comparative study on numerical benchmark problems. IEEE Trans Evolut Comput 10(6):646–657

    Article  Google Scholar 

  • Das S, Konar A (2009) Automatic imageg pixel clustering with an improved differential evolution. Appl Soft Comput 9(1):226–236

    Article  Google Scholar 

  • Gämperle R, Müller SD, Koumoutsakos P (2002) A parameter study for differential evolution. In: Grmela A, Mastorakis NE (eds) Advances in intelligent systems, fuzzy systems, evolutionary computation. WSEAS Press, Interlaken, pp 293–298

    Google Scholar 

  • Gong W, Cai Z (1976) Parameter optimization of PEMFC model with improved multi-strategy adaptive differential evolution. Eng Appl Artif Intel 27(C):28–40

    Google Scholar 

  • Gong W, Cai Z, Ling CX (2011) DE/BBO: a hybrid differential evolution with biogeography-based optimization for global numerical optimization. Soft Comput 15(4):645–665

    Article  Google Scholar 

  • Gong W, Zhou A, Cai Z (2015) A multioperator search strategy based on cheap surrogate models for evolutionary optimization. IEEE Trans Evolut Comput 19(5):746–758

    Article  Google Scholar 

  • Gracica JL, O’Riordan E, Pickett ML (2006) A parameter robust second order numerical method for a singularly perturbed two-parameter problem. Appl Numer Math 56(7):962–980

    Article  MathSciNet  MATH  Google Scholar 

  • Hansen N, Muller SD, Koumoutsakos P (2003) Reducing the time complexity of the derandomized evolution strategy with covariance matrix adaptation (CMA-ES). Evol Comput 11(1):1–18

    Article  Google Scholar 

  • Herceg D (2011) Fourth-order finite-difference method for boundary value problems with two small parameters. Appl Math Comput 218(2):616–627

    MathSciNet  MATH  Google Scholar 

  • Kadalbajoo MK, Yadaw AS (2008) B-spline collocation mehod for a two-parameter singularly pertubed convection-diffusion boundary value problems. Appl Math Comput 201(1–2):504–513

    MathSciNet  MATH  Google Scholar 

  • Kennedy J, Eberhart RC (1995) Particle swarm optimization. In: Proceeding of the IEEE international conference on neural networks (Perth, Australia). IEEE Service Ceter, Piscataway, NJ, pp 1942–1948

  • Liang JJ, Qin AK, Suganthan PN, Baskar S (2006) Comprehensive learning particle swarm optimizer for global optimization of multimodal functions. IEEE Trans Evolut Comput 10(3):281–295

    Article  Google Scholar 

  • Linß T (2010) A posteriori error estimation for a singularly perturbed problem with two small parameters. Int J Numer Anal Model 7(3):491–506

    MathSciNet  MATH  Google Scholar 

  • Linß T, Roos HG (2004) Analysis of a finite-difference scheme for a singularly perturbed problem with two small parameters. J Math Anal Appl 289(2):355–366

    Article  MathSciNet  MATH  Google Scholar 

  • Liu W, Wang P, Qiao H (2012) Part-based adaptive detection of workpieces using differential evolution. Signal Process 92(2):301–307

    Article  Google Scholar 

  • Liu J, Lampinen J (2005) A fuzzy adaptive differential evolution algorithm. Soft Comput 9(6):448–462

    Article  MATH  Google Scholar 

  • Lynn N, Suganthan PN (2015) Heterogeneous comprehensive learning particle swarm optimization with enhanced exploration and exploitation. Swarm Evol Comput 24:11–24

    Article  Google Scholar 

  • Matthews S, O’Riordan E, Shishkin GI (2002) A numerical method for a system of singularly perturbed reaction–diffusion equations. J Comput Appl Math 145:151–166

    Article  MathSciNet  MATH  Google Scholar 

  • Miller JJH, O’Riordan E, Shishkin GI (1996) Fitted numerical methods for singular perturbation problems. Error estimates in the maximum norm for linear problems in one and two dimensions. World Scientific, Singapore

    Book  MATH  Google Scholar 

  • O’Malley RE Jr (1967) Two-parameter singular perturbation problems for second order equations. J Math Mech 16:1143–1164

    MathSciNet  MATH  Google Scholar 

  • Omran MGH, Salman A, Engelbrecht AP (2005) Self-adaptive differential evolution. In: Lecture notes in artificial intelligence. Springer, Berlin, pp 192–199

  • Ono I, Kobayashi S (1997) A real coded genetic algorithm for function optimization using unimodal normal distributed crossover. In: International conference on genetic algorithms, East Lansing, MI, USA, pp 246–253

  • Ouyang A, Yang Z (2016) An efficient hybrid algorithm based on harmony search and invasive weed optimization. In: 2016 12th international conference on natural computation, fuzzy systems and knowledge discovery (ICNC-FSKD), Changsha, pp 167–172. doi:10.1109/FSKD.2016.7603169

  • Ouyang A, Li K, Truong TK, Sallam A, Sha EHM (2014) Hybrid particle swarm optimization for parameter estimation of Muskingum model. Neural Comput Appl 25(7–8):1785–1799

    Article  Google Scholar 

  • Ouyang A, Tang Z, Zhou X, Xu Y, Pan G, Li K (2015) Parallel hybrid PSO with CUDA for lD heat conduction equation. Comput Fluids 110:198–210

    Article  MathSciNet  Google Scholar 

  • Ouyang A, Peng X, Liu Y, Fan L, Li K (2016a) An efficient hybrid algorithm based on HS and SFLA. Int J Pattern Recognit Artif Intell 30(5):1659012 (1–25)

  • Ouyang A, Peng X, Wang Q, Wang Y, Truong TK (2016b) A parallel improved iwo algorithm on gpu for solving large scale global optimization problems. J Intell Fuzzy Syst 31(2):1041–1051

  • Piotrowski AP (2014) Diiferential Evolution algorithms applied to neural network training suffer from stagnation. Appl Soft Comput 21:382–406

    Article  Google Scholar 

  • Qin AK, Suganthan PN (2005) Self-adaptive differential evolution algorithm for numerical optimization. In: Proceedings of the IEEE congress evolutionary computation, Edinburgh, Scotland, pp 1785–1791

  • Qin AK, Huang VL, Suganthan PN (2009) Differential evolution algorithm with strategy adaptation for global numerical optimization. IEEE Trans Evolut Comput 13(2):398–417

    Article  Google Scholar 

  • Qu BY, Suganthan PN, Das S (2013) A distance-based locally informed particle swarm model for multimodal optimization. IEEE Trans Evol Comput 17(3):387–402

    Article  Google Scholar 

  • Rahnamayan S, Tizhoosh HR, Salama MMA (2008) Oppositionbased differential evolution. IEEE Trans Evolut Comput 12(1):64–79

    Article  Google Scholar 

  • Rönkkönen J, Kukkonen S, Price KV (2005) Real-parameter optimization with differential evolution. In: Proceedings of the IEEE congress evolutionary computation, Edinburgh, Scotland, pp 506–513

  • Roos HG, Uzelac Z (2003) The SDFEM for a convection–diffusion problem with two small parameters. Comput Methods Appl Math 3(3):443–458

    Article  MathSciNet  MATH  Google Scholar 

  • Srorn R, Price K (1997) Differential evolution: a simple and efficient adaptive scheme for global optimization over continuous spaces. J Global Optim 11(4):341–359

    Article  MathSciNet  Google Scholar 

  • Suganthan PN (1999) Particle swarm optimiser with neighbourhood operator. In: Proceedings of the 1999 congress on evolutionary computation, 1999 (CEC 99), Washington, DC

  • Wu G, Mallipeddi R, Suganthan PN, Wang R, Chen H (2016) Differential evolution with multi-population based ensemble of mutation strategies. Inf Sci 329:329–345

    Article  Google Scholar 

  • Xu Y, Li K, Hu J, Li K (2014) A genetic algorithm for task scheduling on heterogeneous computing systems using multiple priority queues. Inf Sci 270:255–287

    Article  MathSciNet  MATH  Google Scholar 

  • Xu Y, Li K, He L, Zhang L (2015) A hybrid chemical reaction optimization scheme for task scheduling on heterogeneous computing systems. IEEE Trans Parallel Distrib Syst 26(12):3208–3222

    Article  Google Scholar 

  • Zaharie D (2003) Control of population diversity and adaptation in differential evolution algorithms. In: Matousek R, Osmera P (eds) Proceeding of the mendel 9th international conference soft computing, Brno, Czech Republic, pp 41–46

  • Zaharie D, Petcu D (2003) Adaptive pareto differential evolution and its parallelization. In: Proceedings of the 5th international conference on parallel process applied mathematics, Czestochowa, Poland, pp 261–268

  • Zhang J, Sanderson AC (2009) Jade: adaptive differential evolution with optional external archive. IEEE Trans Evolut Comput 13(5):945–958

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (11301044, 11401054, 61662090, 11461011), the general Project of Hunan provincial education department (14C0047), the Natural Science Foundation of Guizhou Provincial Education Department (No. KY[2016]018), the Scientific Research Fund of Hunan Provincial Education Department (No. 13C333), the Doctoral Foundation of Zunyi Normal College (No. BS[2015]13), the open fund of Key Laboratory of Guangxi High Schools for Complex System and Computational Intelligence (No. 15CI03D), Natural Science Foundation of Guangxi Education Department (No. ZD2014080).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Li-Bin Liu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Communicated by V. Loia.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Luo, XQ., Liu, LB., Ouyang, A. et al. B-spline collocation and self-adapting differential evolution (jDE) algorithm for a singularly perturbed convection–diffusion problem. Soft Comput 22, 2683–2693 (2018). https://doi.org/10.1007/s00500-017-2523-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00500-017-2523-9

Keywords

Navigation