Skip to main content

Reduced order modelling of linear time-invariant system using modified cuckoo search algorithm

  • Methodologies and Application
  • Published:
Soft Computing Aims and scope Submit manuscript

Abstract

In this paper modified cuckoo search (MCS) algorithm is considered to develop reduced order model (ROM) of higher-order linear time-invariant systems. Firstly, the MCS algorithm has been employed to minimize the integral square error (ISE) between original and proposed ROM to obtain its unknown coefficients. Five systems of different order are considered to obtain their reduced order model. Finally, various performance indices, such as ISE, integral of absolute and integral of time multiplied by absolute error, have been estimated to reveal the efficacy of the proposed model. Also, time and frequency response characteristics of original higher-order model are compared with the proposed MCS-based and some of other existing techniques-based ROM available in the literature. Furthermore, the results are compared in terms of time response specifications such as rise time (\(t_\mathrm{r} \)) in second, settling time (\( t_\mathrm{s}\)) in second and maximum peak overshoot (\( M_\mathrm{p}\)) in percentage. It is revealed that the response of the proposed MCS-based ROM is much closer to the response of the original higher-order system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  • Abu-Al-Nadi DI, Alsmadi OMK, Abo-Hammour ZS (2011) Reduced order modeling of linear MIMO systems using particle swarm optimization. In: 7th international conference on autonomic and autonomous systems, Venice, Italy, pp 62–66

  • Alsmadi OMK, Abo-Hammour ZS, Al-Smadi AM, Abu-Al-Nadi DI (2011) Genetic algorithm approach with frequency selectivity for model order reduction of MIMO systems. Math Comput Model Dyn Syst 17(2):163–181. doi:10.1080/13873954.2010.540806

    Article  MathSciNet  MATH  Google Scholar 

  • Biradar S, Hote YV, Saxena S (2016) Reduced-order modelling of linear time invariant systems using big bang big crunch optimization and time moment matching method. Appl Math Model 40(15–16):7225–7244

    Article  MathSciNet  Google Scholar 

  • Brown CT, Liebovitch LS, Glendon R (2007) Lévy flights in Dobe Ju/hoansi foraging patterns. Hum Ecol 35(1):129–138

    Article  Google Scholar 

  • Desai SR, Prasad R (2013a) A novel order diminution of LTI systems using big bang big crunch optimization and routh approximation. Appl Math Model 37(16–17):8016–8028. doi:10.1016/j.apm.2013.02.052

  • Desai SR, Prasad R (2013b) A new approach to order reduction using stability equation and big bang big crunch optimization. Syst Sci Control Eng Open Access J 1:20–27

    Article  Google Scholar 

  • Edgar TF (1975) Least squares model reduction using step response. Int J Control 22:261–270

    Article  MATH  Google Scholar 

  • Eitelberg E (1981) Model reduction by minimizing the weighted equation error. Int J Control 34(6):1113–1123

    Article  MathSciNet  MATH  Google Scholar 

  • El-Attar RA, Vidyasagar M (1978) Order reduction by \({L_1}\) and \({L_\infty }\) norm minimization. IEEE Trans Autom Control 23(4):731–734

    Article  MATH  Google Scholar 

  • Erol OK, Eksin I (2006) A new optimization method: big bang-big crunch. Adv Eng Softw 37:106–111. doi:10.1016/j.advengsoft.2005.04.005

    Article  Google Scholar 

  • Ghosh S, Senroy N (2013) Balanced truncation approach to power system model order reduction. Electr Power Compon Syst 41:747–764. doi:10.1080/15325008.2013.769031

    Article  Google Scholar 

  • Goldberg DE (1989) Genetic algorithms in search, optimization, and machine learning. Addison-Wesley, Boston 10.1007/s10589-009-9261-6

    MATH  Google Scholar 

  • Humphries NE, Weimerskirch H, Queiroz N, Southall EJ, Sims DW (2012) Foraging success of biological Lévy flights recorded in situ. Proc Natl Acad Sci 109(19):7169–7174

    Article  Google Scholar 

  • Hutton MF, Friedland B (1975) Routh approximations for reducing order of linear, time-invariant systems. IEEE Trans Autom Control 20:329–337. doi:10.1109/TAC.1975.1100953

    Article  MathSciNet  MATH  Google Scholar 

  • Kennedy J, Eberhart R (1995) Particle swarm optimization. In: IEEE International Conference on Neural Networks, Perth, WA, vol 4, pp 1942–1948. doi:10.1109/ICNN.1995.488968

  • Lee KS, Geem ZW (2004) A new structural optimization method based on the Harmony search algorithm. J Comput Struct 82:781–798

    Article  Google Scholar 

  • Mukherjee S, Satakshi R, Mittal C (2005) Model order reduction using response-matching technique. J Frankl Inst 342:503–519

    Article  MathSciNet  MATH  Google Scholar 

  • Obinata G, Inooka H (1983) Authors reply to comments on model reduction by minimizing the equation error. IEEE Trans Autom Control 28:124–125

    Article  Google Scholar 

  • Panda S, Yadav JS, Padidar NP, Ardil C (2009) Evolutionary techniques for model order reduction of large scale linear systems. Int J Appl Sci Eng Technol 5:22–28

    Google Scholar 

  • Parmar G, Mukherjee S, Prasad R (2007a) Reduced order modeling of linear dynamic systems using particle swarm optimized eigen spectrum analysis. Int J Comput Math Sci 1(31):45–52

    Google Scholar 

  • Parmar G, Mukherjee S, Prasad R (2007b) System reduction using eigen spectrum analysis and pade approximation technique. Int J Comput Math 84(12):1871–1880

    Article  MathSciNet  MATH  Google Scholar 

  • Parmar G, Mukherjee S, Prasad R (2007c) System reduction using factor division algorithm and eigen spectrum analysis. Appl Math Model 31(11):2542–2552. doi:10.1016/j.apm.2006.10.004

    Article  MATH  Google Scholar 

  • Parmar G, Prasad R, Mukherjee S (2007d) Order reduction of linear dynamic systems using stability equation method and GA. Int J Comput Inf Eng 1(1):26–32

    Google Scholar 

  • Parmar G, Pandey MK, Kumar V (2009) System order reduction using GA for unit impulse input and a comparative study using ISE and IRE. In: International conference on advances in computing, communications and control, Mumbai, India, pp 23–24

  • Salim R, Bettayeb M (2011) \({H_2}\) and \({H_\infty }\) optimal model reduction using genetic algorithms. J Frankl Inst 348:1177–1191. doi:10.1016/j.jfranklin.2009.10.016

    Article  MathSciNet  MATH  Google Scholar 

  • Sambariya DK, Arvind G (2016) High order diminution of LTI system using stability equation method. Br J Math Comput Sci 13(5):1–15. doi:10.9734/BJMCS/2016/23243

    Google Scholar 

  • Sikander A, Prasad R (2015a) Soft computing approach for model order reduction of linear time invariant systems. Circuit Syst Signal Process. doi:10.1007/s00034-015-0018-4

    Google Scholar 

  • Sikander A, Prasad R (2015b) Time domain order reduction method using improved Hermite Normal Form. In: National conference on emerging trends in electrical and electronics engineering, JMI, New Delhi, India, pp 224–229

  • Sikander A, Prasad R (2015c) Linear time-invariant system reduction using a mixed methods approach. Appl Math Model 39(16):4848–4858

    Article  MathSciNet  Google Scholar 

  • Sikander A, Prasad R (2017) A new technique for reduced-order modelling of linear time-invariant system. IETE J Res 1–9. doi:10.1080/03772063.2016.1272436

  • Sikander A, Uniyal I, Thakur P (2016) Hybrid method of reduced order modelling for LTI system using evolutionary algorithm. In: IEEE international conference on next generation computing technologies, Dehradun, India

  • Viswanathan GM (2010) Fish in levy-flight foraging. Nature 465:1018–1019

    Article  Google Scholar 

  • Vishwakarma CB, Prasad R (2008) System reduction using modified pole clustering and pade approximation. In: XXXII national systems conference, NSC 2008, pp 592–596

  • Vishwakarma CB, Prasad R (2009) MIMO system reduction using modified pole clustering and genetic algorithm. Model Simul Eng 2009:1–5

    Article  Google Scholar 

  • Walton S, Hassan O, Morgan K, Brown MR (2011) Modified cuckoo search: a new gradient free optimisation algorithm. Chaos Solitons Fractals 44:710–718. doi:10.1016/j.chaos.2011.06.004

    Article  Google Scholar 

  • Wilson DA (1970) Optimal solution of model reduction problem. Proc Inst Electr Eng 117(06):1161–1165

  • Yang XS, Deb S (2008) Nature-inspired metaheuristic algorithms. Luniver Press, London

    Google Scholar 

  • Yang XS, Deb S (2010) Engineering optimisation by cuckoo search. Int J Math Model Numer Optim 1:330–343

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Afzal Sikander.

Ethics declarations

Conflict of interest

All authors declare that they have no conflicts of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Communicated by V. Loia.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sikander, A., Thakur, P. Reduced order modelling of linear time-invariant system using modified cuckoo search algorithm. Soft Comput 22, 3449–3459 (2018). https://doi.org/10.1007/s00500-017-2589-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00500-017-2589-4

Keywords