Abstract
The high-dimensional nature of resting state functional MRI (fMRI) data implies the need of suitable feature selection techniques. Traditional univariate techniques are fast and straightforward to interpret, but are unable to unveil relationships among multiple features. The aim of this work is to evaluate the applicability of clustering based techniques to the problem of feature extraction in resting state fMRI data analysis. More specifically, we devise a methodology based on consensus clustering, a particular approach to the clustering problem that consists in combining different partitions of the same data set in a final solution. Our approach was validated on a real-word data set, deriving from multiple clinical studies on Parkinson’s disease and amyotrophic lateral sclerosis. Our results show that the adoption of consensus-based techniques can indeed lead to an improvement of the results, not only in terms of feature discriminability, but also from the point of view of interpretability.
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.Notes
Volumetric pixel.
References
Agosta F, Canu E, Valsasina P, Riva N, Prelle A, Comi G, Filippi M (2013) Divergent brain network connectivity in amyotrophic lateral sclerosis. Neurobiol Aging 34(2):419–27. doi:10.1016/j.neurobiolaging.2012.04.015
Amboni M, Tessitore A, Esposito F, Santangelo G, Picillo M, Vitale C, Giordano A, Erro R, de Micco R, Corbo D et al (2015) Resting-state functional connectivity associated with mild cognitive impairment in parkinsons disease. J Neurol 262(2):425–434
Bertoni A, Valentini G (2006) Ensembles based on random projections to improve the accuracy of clustering algorithms. In: Apolloni B, Marinaro M, Nicosia G, Tagliaferri R (eds) Neural Nets, Lecture Notes in Computer Science, vol 3931. Springer, Berlin, pp 31–37
Esposito F, Pignataro G, Di Renzo G, Spinali A, Paccone A, Tedeschi G, Annunziato L (2010) Alcohol increases spontaneous bold signal fluctuations in the visual network. Neuroimage 53(2):534–543
Esposito F, Tessitore A, Giordano A, De Micco R, Paccone A, Conforti R, Pignataro G, Annunziato L, Tedeschi G (2013) Rhythm-specific modulation of the sensorimotor network in drug-naive patients with Parkinsons disease by levodopa. Brain 136(3):710–725
Ester M, Kriegel HP, Sander J, Xu X et al (1996) A density-based algorithm for discovering clusters in large spatial databases with noise. Kdd 96:226–231
Etzel JA, Zacks JM, Braver TS (2013) Searchlight analysis: promise, pitfalls, and potential. Neuroimage 78:261–269
Fern XZ, Brodley CE (2003) Random projection for high dimensional data clustering: a cluster ensemble approach. ICML 3:186–193
Formisano E, Esposito F, Kriegeskorte N, Tedeschi G, Di Salle F, Goebel R (2002) Spatial independent component analysis of functional magnetic resonance imaging time-series: characterization of the cortical components. Neurocomputing 49(1):241–254
Formisano E, Valente G, Esposito F, de Martino F, Goebel R (2010) Using ICA for the analysis of fMRI data. In: Ullsperger M, Debener S (eds) Simultaneous EEG and fMRI: recording, analysis, and application. Oxford University Press, Oxford
Ghaemi R, Sulaiman MN, Ibrahim H, Mustapha N et al (2009) A survey: clustering ensembles techniques. World Acad Sci Eng Technol 50:636–645
Gorges M, Müller HP, Lulé D, Ludolph AC, Pinkhardt EH, Kassubek J (2013) Functional connectivity within the default mode network is associated with saccadic accuracy in Parkinson’s disease: a resting-state FMRI and videooculographic study. Brain Connect 3(3):265–272. doi:10.1089/brain.2013.0146
Hornik K (2005) Cluster ensembles. In: Weihs C, Gaul W (eds) Classification—the Ubiquitous Challenge. Studies in classification, data analysis, and knowledge organization. Springer, Berlin
Hyvärinen A, Karhunen J, Oja E (2001) Independent component analysis. Wiley, London
Kriegeskorte N, Goebel R, Bandettini P (2006) Information-based functional brain mapping. Proc Natl Acad Sci USA 103(10):3863–3868
Kuncheva LI, Hadjitodorov ST, Todorova LP (2006) Experimental comparison of cluster ensemble methods. In: 2006 9th International conference on information fusion. IEEE, pp 1–7
Mohammadi B, Kollewe K, Samii A, Krampfl K, Dengler R, Münte TF (2009) Changes of resting state brain networks in amyotrophic lateral sclerosis. Exp Neurol 217(1):147–153. doi:10.1016/j.expneurol.2009.01.025
Monti S, Tamayo P, Mesirov J, Golub T (2003) Consensus clustering: a resampling-based method for class discovery and visualization of gene expression microarray data. Mach Learn 52(1–2):91–118. doi:10.1023/A:1023949509487
Nguyen N, Caruana R (2007) Consensus clusterings. In: Proceedings—IEEE international conference on data mining, ICDM, pp 607–612
Ogawa S, Lee TM, Kay AR, Tank DW (1990) Brain magnetic resonance imaging with contrast dependent on blood oxygenation. Proc Natl Acad Sci 87(24):9868–9872
Strehl A, Ghosh J (2003) Cluster ensembles a knowledge reuse framework for combining multiple partitions. J Mach Learn Res 3:583–617. doi:10.1162/153244303321897735
Tedeschi G, Esposito F (2012) Neuronal networks observed with resting state functional magnetic resonance imaging in clinical populations. In: Bright P (ed) Neuroimaging-cognitive and clinical neuroscience, INTECH. doi:10.5772/23290
Tedeschi G, Trojsi F, Tessitore A, Corbo D, Sagnelli A, Paccone A, D’Ambrosio A, Piccirillo G, Cirillo M, Cirillo S, Monsurrò MR, Esposito F (2012) Interaction between aging and neurodegeneration in amyotrophic lateral sclerosis. Neurobiol Aging 33(5):886–898. doi:10.1016/j.neurobiolaging.2010.07.011
Tessitore A, Amboni M, Esposito F, Russo A, Picillo M, Marcuccio L, Pellecchia MT, Vitale C, Cirillo M, Tedeschi G et al (2012a) Resting-state brain connectivity in patients with Parkinson’s disease and freezing of gait. Parkinsonism Relat Disord 18(6):781–787
Tessitore A, Esposito F, Vitale C, Santangelo G, Amboni M, Russo A, Corbo D, Cirillo G, Barone P, Tedeschi G (2012b) Default-mode network connectivity in cognitively unimpaired patients with Parkinson disease. Neurology 79(23):2226–2232. doi:10.1212/WNL.0b013e31827689d6
Topchy A, Jain AK, Punch W (2005) Clustering ensembles: models of consensus and weak partitions. IEEE Trans Pattern Anal Mach Intell 27(12):1866–1881. doi:10.1109/TPAMI.2005.237
Trojsi F, Esposito F, de Stefano M, Buonanno D, Conforti FL, Corbo D, Piccirillo G, Cirillo M, Monsurrò MR, Montella P et al (2015) Functional overlap and divergence between ALS and bvFTD. Neurobiol Aging 36(1):413–423
van Eimeren T, Monchi O, Ballanger B, Strafella AP (2009) Dysfunction of the default mode network in Parkinson disease: a functional magnetic resonance imaging study. Arch Neurol 66(7):877–883. doi:10.1001/archneurol.2009.97
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Conflict of interest
The authors declare that they have no conflict of interest.
Ethical standard
All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards. Informed consent was obtained from all individual participants included in the study.
Additional information
Communicated by V. Loia.
Rights and permissions
About this article
Cite this article
Galdi, P., Fratello, M., Trojsi, F. et al. Consensus-based feature extraction in rs-fMRI data analysis. Soft Comput 22, 3785–3795 (2018). https://doi.org/10.1007/s00500-017-2596-5
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00500-017-2596-5