Skip to main content

A novel chaos-integrated symbiotic organisms search algorithm for global optimization

  • Methodologies and Application
  • Published:
Soft Computing Aims and scope Submit manuscript

Abstract

Symbiotic organisms search (SOS) algorithm imitates the symbiotic relationship between different biological species. Simulation procedure of this algorithm is in three different phases, viz. mutualism, commensalism and parasitism. In this paper, the basic SOS algorithm is reduced and a chaotic local search is integrated into the reduced SOS to form chaotic SOS (CSOS) for improving the solution accuracy and convergence mobility of the basic SOS algorithm. The proposed CSOS algorithm is implemented and tested, successfully, on twenty-six unconstrained benchmark test functions. Experimental results presented in this paper are compared to those offered by the basic SOS. Additionally, the proposed algorithm is utilized to solve a real-world power system problem (siting and sizing problem of distributed generators in radial distribution system). The results presented in this paper show that the proposed CSOS algorithm yields superior solution over the other popular techniques in terms of convergence characteristics and global search ability for both benchmark function optimization and power engineering optimization task.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  • Abu-Mouti FS, El-Hawary ME (2011) Optimal distributed generation allocation and sizing in distribution systems via artificial bee colony algorithm. IEEE Trans Power Deliv 26(4):2090–2101

    Article  Google Scholar 

  • Alami J, Imrani AE (2008) Dielectric composite multimodal optimization using a multi population cultural algorithm. Intell Data Anal 12(4):359–378

    Google Scholar 

  • Alatas B (2010a) Chaotic harmony search algorithms. Appl Math Comput 216(9):2687–2699

    MATH  Google Scholar 

  • Alatas B (2010b) Chaotic bee colony algorithms for global numerical optimization. Exp Syst Appl 37:5682–5687

    Article  Google Scholar 

  • Alatas B, Akin E, Bedri Ozer A (2009) Chaos embedded particle swarm optimization algorithms. Chaos Solitons Fract 40(4):1715–1734

    Article  MathSciNet  MATH  Google Scholar 

  • Baran ME, Wu FF (1989) Network reconfiguration in distribution systems for loss reduction and load balancing. IEEE Trans Power Deliv 4(2):1401–1407

    Article  Google Scholar 

  • Chakravorty M, Das D (2001) Voltage stability analysis of radial distribution networks. Int J Electr Power Energy Syst 23:129–135

    Article  Google Scholar 

  • Cheng MY, Prayogo D (2014) Symbiotic organisms search: a new metaheuristic optimization algorithm. Comput Struct 139:98–112

    Article  Google Scholar 

  • Cheng MY, Prayogo D, Tran DH (2015) Optimizing multiple-resources leveling in multiple projects using discrete symbiotic organisms search. J Comput Civ Eng 30(3):1–9

    Google Scholar 

  • Das D (2008) Optimal placement of capacitors in radial distribution system using a fuzzy-GA method. Int J Electr Power Energy Syst 30:361–367

    Article  Google Scholar 

  • Dorigo M, Maniezzo V, Colorni A (1996) The ant system: optimization by a colony of cooperating agents. IEEE Trans Syst Man Cybern Part B Cybern 26(1):29–41

    Article  Google Scholar 

  • Duman S (2016) Symbiotic organisms search algorithm for optimal power flow problem based on valve-point effect and prohibited zones. Neural Comput Appl. doi:10.1007/s00521-016-2265-0

    Google Scholar 

  • Eskandar H, Sadollah A, Bahreininejad A et al (2012) Water cycle algorithm—a novel metaheuristic optimization method for solving constrained engineering optimization problems. Comput Struct 110–111:151–166

    Article  Google Scholar 

  • Gandomi AH, Alavi AH (2012) Krill herd: a new bio-inspired optimization algorithm. Commun Nonlinear Sci Numer Simul 17(12):4831–4845

    Article  MathSciNet  MATH  Google Scholar 

  • Gandomi AH, Yang XS (2014) Chaotic bat algorithm. J Comput Sci 5(2):224–232

    Article  MathSciNet  Google Scholar 

  • Gandomi AH, Yang XS, Talatahari S et al (2010) Firefly algorithm with chaos. Commun Nonlinear Sci Numer Simul 18(1):89–98

    Article  MathSciNet  MATH  Google Scholar 

  • Gandomi AH, Yun GJ, Yang XS et al (2013) Chaos-enhanced accelerated particle swarm optimization. Commun Nonlinear Sci Numer Simul 18(2):327–340

    Article  MathSciNet  MATH  Google Scholar 

  • Ganguly S, Sahoo NH, Das D (2013) Multi-objective particle swarm optimization based on fuzzy-pareto-dominance for possibilistic planning of electrical distribution systems incorporating distributed generation. Fuzzy Sets Syst 213:47–73

    Article  MathSciNet  Google Scholar 

  • Gong W, Wang S (2009) Chaos ant colony optimization and application. In: 4th international conference on internet computing for science and engineering, Harbin, pp 301–303

  • Holland JH (1975) Adaptation in natural and artificial systems. University of Michigan Press, Ann Arbor

    Google Scholar 

  • Jia D, Zheng G, Khan MK (2011) An effective memetic differential evolution algorithm based on chaotic local search. Inf Sci 181(15):3175–3187

    Article  Google Scholar 

  • Kamankesh H, Agelidis VG, Kavousi-Fard A (2016) Optimal scheduling of renewable micro-grids considering plug-in hybrid electric vehicle charging demand. Energy 100:285–297

    Article  Google Scholar 

  • Kang F, Li J, Ma Z (2011) Rosenbrock artificial bee colony algorithm for accurate global optimization of numerical functions. Inf Sci 181(16):3508–3531

    Article  MathSciNet  MATH  Google Scholar 

  • Karaboga D, Basturk B (2007) A powerful and efficient algorithm for numerical function optimization: artificial bee colony (ABC) algorithm. J Global Optim 39(3):459–471

    Article  MathSciNet  MATH  Google Scholar 

  • Karaboga D, Akay B (2009) A comparative study of artificial bee colony algorithm. Appl Math Comput 214(1):108–132

    MathSciNet  MATH  Google Scholar 

  • Kaveh A, Talatahari S (2010) A novel heuristic optimization method: charged system search. Acta Mech 213(3):267–289

    Article  MATH  Google Scholar 

  • Kennedy J, Eberhart R (1995) Particle swarm optimization. In: Proceedings of IEEE international conference on neural networks, Perth, pp 1942–1948

  • Li-Jiang Y, Tian-Lun C (2002) Application of chaos in genetic algorithms. Commun Theor Phys 38(2):168–172

    Article  Google Scholar 

  • Liu B, Wang L, Jin YH et al (2005) Improved particle swarm optimization combined with chaos. Chaos Solitons Fract 25:1261–1271

    Article  MATH  Google Scholar 

  • Lopez-Lezma JM, Contreras J, Feltrain AP (2012) Location and contract pricing of distributed generation using a genetic algorithm. Int J Electr Power Energy Syst 36(1):117–126

    Article  Google Scholar 

  • Mingjun J, Huanwen T (2004) Application of chaos in simulated annealing. Chaos Solitons Fract 21(4):933–941

    Article  MATH  Google Scholar 

  • Mirjalili S, Mirjalili SM, Lewis A (2014) Grey wolf optimizer. Adv Eng Soft 69:46–61

    Article  Google Scholar 

  • Moradi MH, Abedini M (2012) A combination of genetic algorithm and particle swarm optimization for optimal DG location and sizing in distribution systems. Int J Electr Power Energy Syst 34(1):66–74

    Article  Google Scholar 

  • Nayak MR, Dash SK, Rout PK (2012) Optimal placement and sizing of distributed generation in radial distribution system using differential evolution algorithm. Swarm Evol Memet Comput Lect Notes Comput Sci 7677:133–142

    Article  Google Scholar 

  • Panda A, Pani S (2016) A symbiotic organisms search algorithm with adaptive penalty function to solve multi-objective constrained optimization problems. Appl Soft Comput 46:344–360

    Article  Google Scholar 

  • Price K, Storn RM, Lampinen AJ (2005) Differential evolution—a practical approach to global optimization. Springer, Berlin

    MATH  Google Scholar 

  • Rao SS (1995) Engineering optimization—theory and practice. Wiley, West Lafayette

    Google Scholar 

  • Rashedi E, Nezamabadi-pour H, Saryazdi S (2009) GSA: a gravitational search algorithm. Inf Sci 179(13):2232–2248

    Article  MATH  Google Scholar 

  • Sadollah A, Bahreininejad A, Eskandar H et al (2012) Mine blast algorithm for optimization of truss structures with discrete variables. Comput Struct 102–103:49–63

    Article  Google Scholar 

  • Simon D (2008) Biogeography-based optimization. IEEE Trans Evol Comput 12(6):702–713

    Article  Google Scholar 

  • Sultana S, Roy PK (2014) Multi-objective quasi-oppositional teaching learning based optimization for optimal location of distributed generator in radial distribution systems. Int J Electr Power Energy Syst 63:534–545

    Article  Google Scholar 

  • Tavazoei MS, Haeri M (2007) Comparison of different one-dimensional maps as chaotic search pattern in chaos optimization algorithms. Appl Math Comput 187:1076–1085

    MathSciNet  MATH  Google Scholar 

  • Tejani GG, Savsani VJ, Patel VK (2016) Adaptive symbiotic organisms search (SOS) algorithm for structural design optimization. J Comput Design Eng 3(3):226–249

  • Tran DH, Cheng MY, Prayogo D (2016) A novel multiple objective symbiotic organisms search (MOSOS) for time-cost-labor utilization tradeoff problem. Knowl Based Syst 94:132–145

    Article  Google Scholar 

  • Verma S, Saha S, Mukherjee V (2017) A novel symbiotic organisms search algorithm for congestion management in deregulated environment. J Exp Theor Artif Intell 29(1):197–218

  • Vincent FY, Redi AANP, Yang CL et al (2016) Symbiotic organism search and two solution representations for solving the capacitated vehicle routing problem. Appl Soft Comput. doi:10.1016/j.asoc.2016.10.006

    Google Scholar 

  • Wang G, Guo L (2013) A novel hybrid bat algorithm with harmony search for global numerical optimization. J Appl Math. doi:10.1155/2013/696491

  • Wang L, Zheng DZ, Lin QS (2001) Survey on chaotic optimization methods. Comput Tech Auto 20:1–5

    Google Scholar 

  • Wang G, Guo L, Gandomi AH et al (2014) Chaotic krill herd algorithm. Inf Sci 274:17–34

    Article  MathSciNet  Google Scholar 

  • Wolpert DH, Macready WG (1997) No free lunch theorems for optimization. IEEE Trans Evol Comput 1(1):67–82

    Article  Google Scholar 

  • Wu B, Fan S (2011) Improved artificial bee colony algorithm with chaos. Comput Sci Environ Eng Eco Inf 158:51–56

    Google Scholar 

  • Xiang T, Liao X, Wong K (2007) An improved particle swarm optimization algorithm combined with piecewise linear chaotic map. Appl Math Comput 190:1637–1645

    MathSciNet  MATH  Google Scholar 

  • Yang XS (2009) Firefly algorithms for multimodal optimization. In: Proceedings of the 5th international conference on stochastic algorithms: foundations and applications, Sapporo, pp 169–178

  • Yang XS, Deb S (2010) Engineering optimisation by cuckoo search. Int J Math Model Numer Optim 1(4):330–343

    MATH  Google Scholar 

  • Yang D, Li G, Cheng G (2007) On the efficiency of chaos optimization algorithms for global optimization. Chaos Solitons Fract 34(4):1366–1375

    Article  MathSciNet  Google Scholar 

  • Zhang D, Fu Z, Zhang L (2007) An improved TS algorithm for loss-minimum reconfiguration in large-scale distribution systems. Electr Power Syst Res 77(5–6):685–694

    Article  Google Scholar 

  • Zhang H, Fang L, Cen Y (2011) Comparison among three kinds of hybrid particle swarm optimization algorithms. In: Chinese control and decision conference, Mianyang, pp 3422–3425

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. Mukherjee.

Ethics declarations

Conflict of interest

There is no conflict of interest in this paper.

Human and animal rights

This research does not involve any harmful impact to human participants and/or animals.

Additional information

Communicated by V. Loia.

Appendix

Appendix

The effect of varying eco-size on simulated results for the 33-bus, 69-bus and 118-bus test systems is depicted in Table 13.

Table 13 Effect of varying eco-size on the simulated results for 33-bus, 69-bus and 118-bus test RDS

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Saha, S., Mukherjee, V. A novel chaos-integrated symbiotic organisms search algorithm for global optimization. Soft Comput 22, 3797–3816 (2018). https://doi.org/10.1007/s00500-017-2597-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00500-017-2597-4

Keywords