Skip to main content

Model NOx emission and thermal efficiency of CFBB based on an ameliorated extreme learning machine

  • Methodologies and Application
  • Published:
Soft Computing Aims and scope Submit manuscript

Abstract

Extreme learning machine (ELM) is a novel single hidden layer feed-forward network, which has become a research hotspot in various domains. Through in-depth analysis on ELM, there are four factors mainly affect its model performance, such as the input data, the input weights, the number of hidden layer nodes and the hidden layer activation function. In order to enhance the performance of ELM, an ameliorated extreme learning machine, namely AELM, is proposed based on the aforementioned four factors. The proposed method owns new way to generate input weights and bias of hidden layer and has a new-type hidden layer activation function. Simulations on many UCI benchmark regression problems have demonstrated that the AELM generally outperforms the original ELM as well as several variants of ELM. Simultaneously, the AELM is adopted to build thermal efficiency model and NOx emission model of a 330MW circulating fluidized bed boiler. The results demonstrate the AELM is a useful machine learning tool.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  • Akusok A, Bjork KM, Miche Y et al (2015) High-performance extreme learning machines: a complete toolbox for big data applications. Access IEEE 3:1011–1025

    Article  Google Scholar 

  • An L, Bhanu B. (2012) Image super-resolution by extreme learning machine. IEEE international conference on image processing. IEEE, pp 2209–2212

  • Bengio Y (2009) Learning deep architectures for AI. Found Trends Mach Learn 2(1):1–55

    Article  MATH  Google Scholar 

  • Buche D, Stoll P, Dornberger R et al (2002) Multiobjective evolutionary algorithm for the optimization of noisy combustion processes. IEEE Trans Sys Man Cybern Part C 32(4):460–473

    Article  Google Scholar 

  • Cai W, Chen S, Zhang D (2007) Robust fuzzy relational classifier incorporating the soft class labels. Pattern Recogn Lett 28(16):2250–2263

    Article  Google Scholar 

  • Cao J, Lin Z, Huang GB et al (2012) Voting based extreme learning machine. Inf Sci 185(1):66–77

    Article  MathSciNet  Google Scholar 

  • Cao F, Liu B, Park DS (2013) Image classification based on effective extreme learning machine. Neurocomputing 102:90–97

    Article  Google Scholar 

  • Cass R, Radl B (1996) Adaptive process optimization using functional-link networks and evolutionary optimization. Control Eng Pract 4(11):1579–1584

    Article  Google Scholar 

  • Chen FL, Ou TY (2011) Sales forecasting system based on Gray extreme learning machine with Taguchi method in retail industry. Expert Syst Appl 38(3):1336–1345

    Article  Google Scholar 

  • Choi K, Toh KA, Byun H (2012) Incremental face recognition for large-scale social network services. Pattern Recogn 45(8):2868–2883

    Article  Google Scholar 

  • Cybenko G (1989) Approximation by superpositions of a sigmoidal function. Math Control Signals Syst 2(4):303–314

    Article  MathSciNet  MATH  Google Scholar 

  • Demsǎr J (2006) Statistical comparisons of classifiers over multiple data sets. J Mach Learn Res 7:1–30

    MathSciNet  MATH  Google Scholar 

  • Fu H, Vong CM, Wong PK et al (2016) Fast detection of impact location using kernel extreme learning machine. Neural Comput Appl 27(1):121–130

    Article  Google Scholar 

  • Havlena V, Findejs J (2005) Application of model predictive control to advanced combustion control. Control Eng Pract 13(6):671–680

    Article  Google Scholar 

  • Horata P, Chiewchanwattana S, Sunat K (2013) Robust extreme learning machine. Neurocomputing 102:31–44

    Article  Google Scholar 

  • Hsu CW, Lin CJ (2002) A comparison of methods for multiclass support vector machines. IEEE Trans Neural Netw 13:415–425

    Article  Google Scholar 

  • Huang GB, Siew CK (2004) Extreme learning machine: RBF network case. In: Control, automation, robotics and vision conference, 2004. Icarcv 2004.,Vol 2, pp 1029–1036

  • Huang GB, Zhu QY, Siew CK (2006a) Extreme learning machine: theory and applications. Neurocomputing 70(1):489–501

    Article  Google Scholar 

  • Huang G-B, Chen L, Siew C-K (2006b) Universal approximation using incremental constructive feedforward networks with random hidden nodes. IEEE Trans Neural Netw 17:879–892

    Article  Google Scholar 

  • Huang GB, Zhou H, Ding X et al (2012) Extreme learning machine for regression and multiclass classification. IEEE Trans Syst Man Cybern Part B Cybern A Publ IEEE Syst Man Cybern Soc 42(42):513–529

    Article  Google Scholar 

  • Huang G-B, Chen L (2008) Enhanced random search based incremental extreme learning machine. Neurocomputing 71:3460–3468

    Article  Google Scholar 

  • Jaeger H (2004) Harnessing nonlinearity: predicting chaotic systems and saving energy in wireless telecommunication. Science 304:78–80

    Article  Google Scholar 

  • Kan EM, Meng HL, Ong YS et al (2013) Extreme learning machine terrain-based navigation for unmanned aerial vehicles. Neural Comput Appl 22(3):469–477

    Article  Google Scholar 

  • Krzywanski J, Blaszczuk A, Czakiert T, et al (2014) Artificial intelligence treatment of NOx emission from CFBC in air and oxy-fuel conditions. In: The 11-th international conferences on fluidized bed technology, Cfb

  • Kusiak A, Song Z (2006) Combustion efficiency optimization and virtual testing: a data-mining approach. IEEE Trans Industr Inf 2(3):176–184

    Article  Google Scholar 

  • Levenberg K (1944) A method for the solution of certain non-linear problems in least squares. Q Appl Math 2(4):436–438

    MathSciNet  MATH  Google Scholar 

  • Li MB, Huang GB, Saratchandran P et al (2005) Fully complex extreme learning machine. Neurocomputing 68(1):306–314

    Article  Google Scholar 

  • Li G, Niu P, Zhang W et al (2013) Model NOx emissions by least squares support vector machine with tuning based on ameliorated teaching-learning-based optimization. Chemom Intell Lab Syst 126(8):11–20

    Article  Google Scholar 

  • Li G, Niu P, Duan X et al (2014a) Fast learning network: a novel artificial neural network with a fast learning speed. Neural Comput Appl 24(7–8):1683–1695

    Article  Google Scholar 

  • Li G, Niu P, Ma Y et al (2014b) Tuning extreme learning machine by an improved artificial bee colony to model and optimize the boiler efficiency. Knowl-Based Syst 67:278–289

    Article  Google Scholar 

  • Li G, Niu P (2013) An enhanced extreme learning machine based on ridge regression for regression. Neural Comput Appl 22(3–4):803–810

    Article  Google Scholar 

  • Liu X, Wang L, Huang GB (2013) Multiple kernel extreme learning machine. Neurocomputing 149:253–264

    Article  Google Scholar 

  • Niu P, Ma Y, Li M et al (2016) A kind of parameters self-adjusting extreme learning machine. Neural Process Lett 44(3):813–830

    Article  Google Scholar 

  • Qi D (1998) On design of the BP neural network. Comput Eng Des 19(2):48–49

    Google Scholar 

  • Rao CR, Mitra SK (1971) Generalized inverse of matrices and its applications. Wiley, New York

    MATH  Google Scholar 

  • Rong HJ, Ong YS, Tan AH et al (2008) A fast pruned-extreme learning machine for classification problem. Neurocomputing 72(1):359–366

    Article  Google Scholar 

  • Shrivastava NA, Panigrahi BK (2014) A hybrid wavelet-ELM based short term price forecasting for electricity markets. Int J Electr Power Energy Syst 55:41–50

    Article  Google Scholar 

  • Soria-Olivas E, Gómez-Sanchis J, Martín JD et al (2011) BELM: Bayesian extreme learning machine. Neural Netw IEEE Trans 22(3):505–509

    Article  Google Scholar 

  • Suresh S, Babu RV, Kim HJ (2009) No-reference image quality assessment using modified extreme learning machine classifier. Appl Soft Comput 9(2):541–552

    Article  Google Scholar 

  • Tian HX, Mao ZZ (2010) An ensemble ELM based on modified AdaBoost.RT algorithm for predicting the temperature of molten steel in ladle furnace. Autom Sci Eng IEEE Trans 7(1):73–80

    Article  Google Scholar 

  • Vincent P, Larochelle H, Lajoie I et al (2010) Stacked denoising autoencoders: learning useful representations in a deep network with a local denoising criterion. J Mach Learn Res 11(12):3371–3408

    MathSciNet  MATH  Google Scholar 

  • Vincent P, Larochelle H, Bengio Y, et al (2008) Extracting and composing robust features with denoising autoencoders. In: International conference, pp 1096–1103

  • Xiang J, Westerlund M, Sovilj, D, et al (2014) Using extreme learning machine for intrusion detection in a big data environment. In: The workshop on artificial intelligent and security workshop, pp 73–82

  • Xin J, Wang Z, Qu L et al (2015) Elastic extreme learning machine for big data classification. Neurocomputing 149(PA):464–471

    Article  Google Scholar 

  • Yang ZR (2006) A novel radial basis function neural network for discriminant analysis. IEEE Trans Neural Networks 17(3):604–12

    Article  Google Scholar 

  • Zhang J, Haghighat F (2010) Development of artificial neural network based heat convection algorithm for thermal simulation of large rectangular cross-sectional area Earth-to-Air Heat Exchangers. Energy Build 42(4):435–440

    Article  Google Scholar 

  • Zhao J, Park DS, Lee J et al (2012) Generalized extreme learning machine acting on a metric space. Soft Comput 16(9):1503–1514

    Article  MATH  Google Scholar 

  • Zhu QY, Qin AK, Suganthan PN et al (2005) Evolutionary extreme learning machine. Pattern Recogn 38(10):1759–1763

    Article  MATH  Google Scholar 

Download references

Acknowledgements

Project Supported by the National Natural Science Foundation of China (Grant Nos. 61573306, 61403331).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yunpeng Ma.

Ethics declarations

Conflict of interest

Peifeng Niu declares that he has no conflict of interest. Yunpeng Ma declares that he has no conflict of interest. Guoqiang Li declares that he has no conflict of interest.

Human Participants

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Communicated by V. Loia.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Niu, P., Ma, Y. & Li, G. Model NOx emission and thermal efficiency of CFBB based on an ameliorated extreme learning machine. Soft Comput 22, 4685–4701 (2018). https://doi.org/10.1007/s00500-017-2653-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00500-017-2653-0

Keywords