Skip to main content

Robust control of large-scale nonlinear systems by a hybrid adaptive fuzzy observer design with input saturation

  • Methodologies and Application
  • Published:
Soft Computing Aims and scope Submit manuscript

Abstract

In this paper a robust hybrid observer-based hybrid adaptive fuzzy controller for large-scale multiple-input multiple-output (MIMO) systems with affine and nonaffine form in the presence of input saturation is presented. Based on an arbitrary control gain matrix, a hybrid control scheme is designed to avoid the possible singularity problem. The proposed control method is very simple, effective and robust. The states of the system and the mathematical model of the system under control do not need to be well known. An observer-based adaptive fuzzy system based on strictly positive real (SPR) theory is applied to approximate the system states, but it does not require SPR conditions to be known identified. A robust control term is utilized to compensate the both uncertainties and observer errors and attenuate the residual error to the desired level. Finally, to display the applicability and efficiency of the proposed control method, a MIMO affine system and a MIMO nonaffine system with input saturation are applied in simulations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  • Aghababa MP (2016) Optimal design of fractional-order PID controller for five bar linkage robot using a new particle swarm optimization algorithm. Soft Comput 20:4055–4067

    Article  Google Scholar 

  • Arefi MM, Jahed Motlagh MR (2013) Observer based adaptive neural control of uncertain MIMO nonlinear systems with unknown control direction. Int J Adapt Control Signal Process 27:741–754

    Article  MATH  Google Scholar 

  • Arefi MM, Zarei J, Karimi HR (2014) Adaptive output feedback neural network control of uncertain non-affine systems with unknown control direction. J Frankl Inst 351:4302–4316. doi:10.1016/j.jfranklin.2014.05.006

    Article  MathSciNet  MATH  Google Scholar 

  • Boulkroune A, Tadjine M, M’Saad M, Farza M (2008) How to design a fuzzy adaptive controller based on observers for uncertain affine nonlinear systems. Fuzzy Sets Syst 159:926–948

    Article  MathSciNet  MATH  Google Scholar 

  • Chang Y-C (2000) Robust tracking control for nonlinear MIMO systems via fuzzy approaches. Automatica 36:1535–1545

    Article  MathSciNet  MATH  Google Scholar 

  • Chen M, Ge SS (2013) Direct adaptive neural control for a class of uncertain nonaffine nonlinear systems based on disturbance observer. IEEE Trans Cyber 43:1213–1225

    Article  Google Scholar 

  • de Moura Oliveira PB, Freire H, Pires EJS (2016) Grey wolf optimization for PID controller design with prescribed robustness margins. Soft Comput 20:4243–4255

    Article  Google Scholar 

  • Du H, Chen X (2009) NN-based output feedback adaptive variable structure control for a class of non-affine nonlinear systems: A nonseparation principle design. Neurocomputing 72:2009–2016. doi:10.1016/j.neucom.2008.12.015

    Article  Google Scholar 

  • Fan X, Yi Y, Ye Y (2017) DOB tracking control for systems with input saturation and exogenous disturbances via TS disturbance modelling. In: Chang D, Wei B (eds) Mechatronics and robotics engineering for advanced and intelligent manufacturing. Springer, Berlin, pp 445–455. doi:10.1007/978-3-319-33581-0_35

  • Feng Y, Yu X, Man Z (2002) Non-singular terminal sliding mode control of rigid manipulators. Automatica 38:2159–2167

    Article  MathSciNet  MATH  Google Scholar 

  • Fuh C-C (2009) Optimal control of chaotic systems with input saturation using an input-state linearization scheme. Commun Nonlinear Sci Numer Simul 14:3424–3431

    Article  Google Scholar 

  • Gao Y, Tong S (2015) Composite adaptive fuzzy output feedback dynamic surface control design for uncertain nonlinear stochastic systems with input quantization. Int J Fuzzy Syst 17:609–622

    Article  MathSciNet  Google Scholar 

  • Ghavidel HF, Kalat AA (2017a) Observer-based hybrid adaptive fuzzy control for affine and non-affine uncertain nonlinear systems. Neural Comput Appl. doi:10.1007/s00521-016-2732-7

  • Ghavidel HF, Kalat AA (2017b) Observer-based robust composite adaptive fuzzy control by uncertainty estimation for a class of nonlinear systems. Neurocomputing. doi:10.1016/j.neucom.2016.12.001

  • Ghavidel HF, Kalat AA (2017c) Robust composite adaptive fuzzy identification control of uncertain MIMO nonlinear systems in the presence of input saturation. Arab J Sci Eng. doi:10.1007/s13369-017-2552-9

  • Ghavidel HF, Kalat AA (2017d) Robust control for MIMO hybrid dynamical system of underwater vehicles by composite adaptive fuzzy estimation of uncertainties. Nonlinear Dyn. doi:10.1007/s11071-017-3590-2

  • Ghavidel HF, Kalat AA, Ghorbani V (2017e) Observer-based robust adaptive fuzzy approach for current control of robot manipulators by estimation of uncertainties. Modares Mech Eng 17:286–294

    Google Scholar 

  • Huang Y-S, Liu W-P, Wu M, Wang Z-W (2014) Robust decentralized hybrid adaptive output feedback fuzzy control for a class of large-scale MIMO nonlinear systems and its application to AHS. ISA Trans 53:1569–1581

    Article  Google Scholar 

  • Javidan R, Khuban H (2016) Optimal non-integer PID controller for a class of nonlinear systems: multi-objective modified black hole optimization algorithm. Neural Comput Appl. doi:10.1007/s00521-016-2691-z

  • Kumbasar T (2014) A simple design method for interval type-2 fuzzy PID controllers. Soft Comput 18:1293–1304

    Article  Google Scholar 

  • Labiod S, Boucherit MS, Guerra TM (2005) Adaptive fuzzy control of a class of MIMO nonlinear systems. Fuzzy sets Syst 151:59–77

    Article  MathSciNet  MATH  Google Scholar 

  • Li H-X, Tong S (2003) A hybrid adaptive fuzzy control for a class of nonlinear MIMO systems. IEEE Trans Fuzzy Syst 11:24–34

    Article  Google Scholar 

  • Li Y, Tong S, Li T (2014) Adaptive fuzzy output-feedback control for output constrained nonlinear systems in the presence of input saturation. Fuzzy Sets Syst 248:138–155

    Article  MathSciNet  MATH  Google Scholar 

  • Li Y, Tong S, Li T (2013) Direct adaptive fuzzy backstepping control of uncertain nonlinear systems in the presence of input saturation. Neural Comput Appl 23:1207–1216. doi:10.1007/s00521-012-0993-3

    Article  Google Scholar 

  • Li Y, Tong S, Li T (2015) Composite adaptive fuzzy output feedback control design for uncertain nonlinear strict-feedback systems with input saturation. IEEE Trans Cybern 45:2299–2308

    Article  Google Scholar 

  • Lin TC (2010) Observer-based robust adaptive interval type-2 fuzzy tracking control of multivariable nonlinear systems. Eng Appl Artif Intell 23:386–399. doi:10.1016/j.engappai.2009.11.007

    Article  Google Scholar 

  • Mohammad-Hoseini S, Farrokhi M, Koshkouei AJ (2008) Robust adaptive control of uncertain non-linear systems using neural networks. Int J Control 81:1319–1330. doi:10.1080/00207170701771885

    Article  MathSciNet  MATH  Google Scholar 

  • Nekoukar V, Erfanian A (2011) Adaptive fuzzy terminal sliding mode control for a class of MIMO uncertain nonlinear systems. Fuzzy Sets Syst 179:34–49

    Article  MathSciNet  MATH  Google Scholar 

  • Park JH, Park GT, Kim SH, Moon CJ (2005) Direct adaptive self-structuring fuzzy controller for nonaffine nonlinear system. Fuzzy Sets Syst 153:429–445. doi:10.1016/j.fss.2005.01.003

    Article  MathSciNet  MATH  Google Scholar 

  • R. Parks T (1991) Manual For Model 730 Magnetic Levitation System. Educ Control Prod 197

  • Shahnazi R (2014) Output feedback adaptive fuzzy control of uncertain MIMO nonlinear systems with unknown input nonlinearities. ISA Trans 54:39–51. doi:10.1016/j.isatra.2014.07.006

    Article  Google Scholar 

  • Shahnazi R (2016) Observer-based adaptive interval type-2 fuzzy control of uncertain MIMO nonlinear systems with unknown asymmetric saturation actuators. Neurocomputing 171:1053–1065

    Article  Google Scholar 

  • Shaocheng T, Bin C, Yongfu W (2005) Fuzzy adaptive output feedback control for MIMO nonlinear systems. Fuzzy Sets Syst 156:285–299

    Article  MathSciNet  MATH  Google Scholar 

  • Shaocheng T, Jiantao T, Tao W (2000) Fuzzy adaptive control of multivariable nonlinear systems1. Fuzzy Sets Syst 111:153–167

    Article  MATH  Google Scholar 

  • Shen Q, Zhang T (2012) Novel design of adaptive neural network controller for a class of non-affine nonlinear systems. Commun Nonlinear Sci Numer Simul 17:1107–1116

    Article  MathSciNet  MATH  Google Scholar 

  • Shi W (2014) Adaptive fuzzy control for MIMO nonlinear systems with nonsymmetric control gain matrix and unknown control direction. IEEE Trans Fuzzy Syst 22:1288–1300

    Article  Google Scholar 

  • Shi W (2015) Observer-based fuzzy adaptive control for multi-input multi-output nonlinear systems with a nonsymmetric control gain matrix and unknown control direction. Fuzzy Sets Syst 263:1–26

    Article  MathSciNet  MATH  Google Scholar 

  • Shi W (2016) Observer-based indirect adaptive fuzzy control for SISO nonlinear systems with unknown gain sign. Neurocomputing 171:1598–1605. doi:10.1016/j.neucom.2015.08.004

    Article  Google Scholar 

  • Shi W, Zhang M, Guo W, Guo L (2011) Stable adaptive fuzzy control for MIMO nonlinear systems. Comput Math with Appl 62:2843–2853

    Article  MathSciNet  MATH  Google Scholar 

  • Soyguder S, Karakose M, Alli H (2009) Design and simulation of self-tuning PID-type fuzzy adaptive control for an expert HVAC system. Expert Syst Appl 36:4566–4573. doi:10.1016/j.eswa.2008.05.031

    Article  Google Scholar 

  • Sun L, Huo W, Jiao Z (2017) Adaptive backstepping control of spacecraft rendezvous and proximity operations with input saturation and full-state constraint. IEEE Trans Ind Electron 64:480–492

    Article  Google Scholar 

  • Wang W, Wang D, Peng Z, Wang H (2016) Cooperative adaptive fuzzy output feedback control for synchronization of nonlinear multi-agent systems in the presence of input saturation. Asian J Control 18:619–630. doi:10.1002/asjc.1104

    Article  MathSciNet  MATH  Google Scholar 

  • Wu J, Su B, Li J et al (2017) Adaptive fuzzy control for full states constrained systems with nonstrict-feedback form and unknown nonlinear dead zone. Inf Sci 376:233–247

    Article  Google Scholar 

  • Wu LB, Yang GH (2016) Adaptive fuzzy tracking control for a class of uncertain nonaffine nonlinear systems with dead-zone inputs. Fuzzy Sets Syst 290:1–21. doi:10.1016/j.fss.2015.05.006

    Article  MathSciNet  MATH  Google Scholar 

  • Zhang J, Yang S (2016) A novel PSO algorithm based on an incremental-PID-controlled search strategy. Soft Comput 20:991–1005

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hesam Fallah Ghavidel.

Ethics declarations

Conflict of interest

The author declares that they have no conflict of interest.

Human participants

This article does not contain any studies with human participants or animals performed by any of the authors.

Informed consent

Informed consent was obtained from all individual participants included in the study.

Additional information

Communicated by V. Loia.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ghavidel, H.F. Robust control of large-scale nonlinear systems by a hybrid adaptive fuzzy observer design with input saturation. Soft Comput 22, 6473–6487 (2018). https://doi.org/10.1007/s00500-017-2699-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00500-017-2699-z

Keywords