Skip to main content

Temporal Sleuth Machine with decision tree for temporal classification

  • Methodologies and Application
  • Published:
Soft Computing Aims and scope Submit manuscript

Abstract

Temporal data classification is an extension field of data classification, where the observed datasets are temporally related across sequential domain and time domain. In this work, an inductive learning temporal data classification, namely Temporal Sleuth Machine (TSM), is proposed. Building on the latest release of C4.5 decision tree (C4.8), we consider its limitations in handling a large number of attributes and inherited information gain ratio problem. Fuzzy cognitive maps is incorporated in the TSM initial learning mechanism to adaptively harness the temporal relations of TSM rules. These extracted temporal values are used to revisit the information gain ratio and revise the number of TSM rules during the second learning mechanism, hence, yielding a stronger learner. Tested on 11 UCI Repository sequential datasets from diverse domains, TSM demonstrates its robustness by achieving an average classification accuracy of more than 95% in all datasets.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  • Alcaraz R, Hornero F, Rieta JJ (2013) Dynamic time warping applied to estimate atrial fibrillation temporal organization from the surface electrocardiogram. Med Eng Phys 35(9):1341–1348. doi:10.1016/j.medengphy.2013.03.004

    Article  Google Scholar 

  • Altun K, Barshan B, Tunçel O (2010) Comparative study on classifying human activities with miniature inertial and magnetic sensors. Pattern Recogn 43(10):3605–3620. doi:10.1016/j.patcog.2010.04.019

    Article  MATH  Google Scholar 

  • Anguita D, Ghio A, Oneto L, Parra X, Reyes-Ortiz JL (2013) Energy efficient smartphone-based activity recognition using fixed-point arithmetic. Special session in ambient assisted living: home care. J Univ Comput Sci 19(9):1295–1314

    Google Scholar 

  • Antunes CM, Oliveira AL (2001) Temporal data mining: an overview. In: KDD workshop on temporal data mining, pp 1–13

  • Bansal NK, Feng X, Zhang W, Wei W, Zhao Y (2012) Modeling temporal pattern and event detection using hidden markov model with application to a sludge bulking data. Procedia Comput Sci 12:218–223. doi:10.1016/j.procs.2012.09.059

    Article  Google Scholar 

  • Basse RM, Charif O, Bódis K (2016) Spatial and temporal dimensions of land use change in cross border region of Luxembourg. Development of a hybrid approach integrating GIS, cellular automata and decision learning tree models. Appl Geogr 67:94–108. doi:10.1016/j.apgeog.2015.12.001

    Article  Google Scholar 

  • Boyacioglu MA, Avci D (2010) An adaptive network-based fuzzy inference system (ANFIS) for the prediction of stock market return: the case of the istanbul stock exchange. Expert Syst Appl 37(12):7908–7912. doi:10.1016/j.eswa.2010.04.045

    Article  Google Scholar 

  • Casale P, Pujol O, Radeva P (2012) Personalization and user verification in wearable systems using biometric walking patterns. Pers Ubiquit Comput 16(5):563–580. doi:10.1007/s00779-011-0415-z

    Article  Google Scholar 

  • Chen Y, Mazlack LJ, Minai AA, Lu LJ (2015) Inferring causal networks using fuzzy cognitive maps and evolutionary algorithms with application to gene regulatory network reconstruction. Appl Soft Comput 37:667–679. doi:10.1016/j.asoc.2015.08.039

    Article  Google Scholar 

  • Chu H-J, Lin C-Y, Liau C-J, Kuo Y-M (2012) Identifying controlling factors of ground-level ozone levels over southwestern Taiwan using a decision tree. Atmos Environ 60:142–152. doi:10.1016/j.atmosenv.2012.06.032

    Article  Google Scholar 

  • Deng H, Runger G, Tuv E (2011) Bias of importance measures for multi-valued attributes and solutions. In: Proceedings of the 21st international conference on artificial neural networks (ICANN2011), LNCS 6792, vol 2, pp 293–300

    Google Scholar 

  • Durão RM, Mendes MT, João Pereira M (2016) Forecasting O3 levels in industrial area surroundings up to 24 h in advance, combining classification trees and MLP models. Atmos Pollut Res 7(6):961–970. doi:10.1016/j.apr.2016.05.008

    Article  Google Scholar 

  • Elman J (1990) Finding structure in time. Cognit Sci 14(2):179–211. doi:10.1016/0364-0213(90)90002-E

    Article  Google Scholar 

  • Fawcett T (2006) An introduction to ROC analysis. Pattern Recogn Lett 27(8):861–874. doi:10.1016/j.patrec.2005.10.010

    Article  MathSciNet  Google Scholar 

  • Froelich W, Salmeron JL (2014) Evolutionary learning of fuzzy grey cognitive maps for the forecasting of multivariate, interval-valued time series. Int J Approx Reason 55(6):1319–1335. doi:10.1016/j.ijar.2014.02.006

    Article  MathSciNet  MATH  Google Scholar 

  • Giabbanelli PJ, Torsney-Weir T, Mago VK (2012) A fuzzy cognitive map of the psychosocial determinants of obesity. Appl Soft Comput 12(12):3711–3724. doi:10.1016/j.asoc.2012.02.006

    Article  Google Scholar 

  • Groumpos P, Anninou P, Groumpos PV (2015) A new mathematical modelling approach for viticulture and winemaking using fuzzy cognitive maps. IFAC-PapersOnLine 48(24):15–20. doi:10.1016/j.ifacol.2015.12.049

    Article  Google Scholar 

  • Hall M, Frank E, Holmes G, Pfahringer B, Reutemann P, Witten IH (2009) The WEKA data mining software: an update. SIGKDD Explor 11(1):10–18

    Article  Google Scholar 

  • Hernandez-Leal P, Gonzalez J, Morales EF, Enrique Sucar L (2013) Learning temporal nodes Bayesian networks. Int J Approx Reason 54(8):956–977. doi:10.1016/j.ijar.2013.02.011

    Article  MathSciNet  MATH  Google Scholar 

  • Jeong KS, Kim DK, Jung JM, Kim MC, Joo GJ (2008) Non-linear autoregressive modelling by Temporal Recurrent Neural Networks for the prediction of freshwater phytoplankton dynamics. Ecol Model 211(3–4):292–300. doi:10.1016/j.ecolmodel.2007.09.029

    Article  Google Scholar 

  • Jung S, Qin X, Oh C (2016) Improving strategic policies for pedestrian safety enhancement using classification tree modeling. Transp Res Part A Policy Pract 85:53–64. doi:10.1016/j.tra.2016.01.002

    Article  Google Scholar 

  • Kadous M (2002) Temporal classification: extending the classification paradigm to multivariate time series. Retrieved from http://scholar.google.com/scholar?hl=en&btnG=Search&q=intitle:Temporal+Classification+:+Extending+the+Classification+Paradigm+to+Multivariate+Time+Series#0

  • Karimi K, Hamilton HJ (2001) Temporal rules and temporal rules and temporal decision trees: a C4.5 approach. Technical Report CS-2001-02. Retrieved from https://pdfs.semanticscholar.org/872/88d6cf1c84dc819219d647bdc5708dc53248.pdf

  • Kasabov N, Capecci E (2015) Spiking neural network methodology for modelling, classification and understanding of EEG spatio-temporal data measuring cognitive processes. Inf Sci 294:565–575. doi:10.1016/j.ins.2014.06.028

    Article  MathSciNet  Google Scholar 

  • Ko MH, West G, Venkatesh S, Kumar M (2008) Using dynamic time warping for online temporal fusion in multisensor systems. Inf Fus 9:370–388. doi:10.1016/j.inffus.2006.08.002

    Article  Google Scholar 

  • Kohavi R (1995) A study of cross-validation and bootstrap for accuracy estimation and model selection. In: International joint conference on artificial intelligence (IJCAI), vol 5, pp 1137–1143. Morgan Kaufmann, San Mateo

  • Kosko B (1986) Fuzzy cognitive maps. Int J Man Mach Stud 24:65–75

    Article  Google Scholar 

  • Lesh N, Zaki MJ, Ogihara M (1999) Mining features for sequence classification. In: KDD ’99 proceedings of the fifth ACM SIGKDD international conference on knowledge discovery and data mining, pp 342–346

  • Liu B, Ma Y, Wong CK, Yu PS (2003) Scoring the data using association rules. Appl Intell 18(2):119–135

    Article  Google Scholar 

  • Ooi SY, Tan SC, Cheah WP (2014a) LNCS 8836—anomaly based intrusion detection through temporal classification. Lecture notes in computer science (LNCS), 21st international conference on neural information processing (ICONIP 2014), pp 612–619

  • Ooi SY, Tan SC, Cheah WP (2014b) Temporal decision tree and interpretable temporal rules: J48 and fuzzy cognitive maps approach. Aust J Intell Inf Process Syst 14(1). Retrieved from http://cs.anu.edu.au/ojs/index.php/ajiips

  • Orphanou K, Stassopoulou A, Keravnou E (2014) Artificial intelligence in medicine temporal abstraction and temporal Bayesian networks in clinical domains: a survey. Artif Intell Med 60(3):133–149. doi:10.1016/j.artmed.2013.12.007

    Article  Google Scholar 

  • Papageorgiou EI, Salmeron JL (2013) A review of fuzzy cognitive maps research during the last decade. IEEE Trans Fuzzy Syst 21(1):66–79

    Article  Google Scholar 

  • Quinlan JR (1986) Induction of decision trees. Mach Learn 1(1):81–106

    Google Scholar 

  • Quinlan JR (1989) Unknown attribute values in induction. In: Proceedings of the 6th international machine learning workshop cornell

    Chapter  Google Scholar 

  • Radicioni DP, Esposito R (2010) BREVE: an HMPerceptron-based chord recognition system. Adv Music Inf Retr Stud Comput Intell 274:143–164

    Google Scholar 

  • Revesz P, Triplet T (2011) Temporal data classification using linear classifiers. Inf Syst 36(1):30–41. doi:10.1016/j.is.2010.06.006

    Article  Google Scholar 

  • Salmeron JL, Papageorgiou EI (2014) Fuzzy grey cognitive maps and nonlinear Hebbian learning in process control. Appl Intell. doi:10.1007/s10489-013-0511-z

    Article  Google Scholar 

  • San-Segundo R, Lorenzo-Trueba J, Martínez-González B, Pardo JM (2016) Segmenting human activities based on HMMs using smartphone inertial sensors. Pervasive Mob Comput 30:84–96. doi:10.1016/j.pmcj.2016.01.004

    Article  Google Scholar 

  • Stylios CD, Groumpos PP (2004) Modeling complex systems using fuzzy cognitive maps. IEEE Trans Syst Man Cybern Part A Syst Hum 34(1):155–162. doi:10.1109/TSMCA.2003.818878

    Article  Google Scholar 

  • Tseng VS, Lee CH (2009) Effective temporal data classification by integrating sequential pattern mining and probabilistic induction. Expert Syst Appl 36(5):9524–9532. doi:10.1016/j.eswa.2008.10.077

    Article  Google Scholar 

  • Tseng VSM, Lee C (2005) CBS: a new classification method by using sequential patterns. In: Proceedings of SIAM international conference on data mining, pp 596–600

    Chapter  Google Scholar 

  • Vasslides JM, Jensen OP (2016) Fuzzy cognitive mapping in support of integrated ecosystem assessments: developing a shared conceptual model among stakeholders. J Environ Manag 166:348–356. doi:10.1016/j.jenvman.2015.10.038

    Article  Google Scholar 

  • Wang X, Ji Q (2014) Context augmented dynamic Bayesian networks for event recognition. Pattern Recogn Lett 43:62–70. doi:10.1016/j.patrec.2013.07.015

    Article  Google Scholar 

  • Wang X, Liu X, Pedrycz W, Zhang L (2015) Fuzzy rule based decision trees. Pattern Recogn 48(1):50–59. doi:10.1016/j.patcog.2014.08.001

    Article  Google Scholar 

  • Wu G-D, Zhu Z-W (2014) An enhanced discriminability recurrent fuzzy neural network for temporal classification problems. Fuzzy Sets Syst 237:47–62. doi:10.1016/j.fss.2013.05.007

    Article  MathSciNet  Google Scholar 

  • Zare M, Rezvani Z, Benasich AA (2016) Automatic classification of 6-month-old infants at familial risk for language-based learning disorder using a support vector machine. Clin Neurophysiol 127(7):2695–2703. doi:10.1016/j.clinph.2016.03.025

    Article  Google Scholar 

Download references

Acknowledgements

This research work was supported by two Fundamental Research Grant Schemes (FRGS) under the Ministry of Education and Multimedia University, Malaysia (Project ID: MMUE/130121 and MMUE/160029).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shih Yin Ooi.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Communicated by V. Loia.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ooi, S.Y., Tan, S.C. & Cheah, W.P. Temporal Sleuth Machine with decision tree for temporal classification. Soft Comput 22, 8077–8095 (2018). https://doi.org/10.1007/s00500-017-2747-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00500-017-2747-8

Keywords