Abstract
Temporal data classification is an extension field of data classification, where the observed datasets are temporally related across sequential domain and time domain. In this work, an inductive learning temporal data classification, namely Temporal Sleuth Machine (TSM), is proposed. Building on the latest release of C4.5 decision tree (C4.8), we consider its limitations in handling a large number of attributes and inherited information gain ratio problem. Fuzzy cognitive maps is incorporated in the TSM initial learning mechanism to adaptively harness the temporal relations of TSM rules. These extracted temporal values are used to revisit the information gain ratio and revise the number of TSM rules during the second learning mechanism, hence, yielding a stronger learner. Tested on 11 UCI Repository sequential datasets from diverse domains, TSM demonstrates its robustness by achieving an average classification accuracy of more than 95% in all datasets.
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
Alcaraz R, Hornero F, Rieta JJ (2013) Dynamic time warping applied to estimate atrial fibrillation temporal organization from the surface electrocardiogram. Med Eng Phys 35(9):1341–1348. doi:10.1016/j.medengphy.2013.03.004
Altun K, Barshan B, Tunçel O (2010) Comparative study on classifying human activities with miniature inertial and magnetic sensors. Pattern Recogn 43(10):3605–3620. doi:10.1016/j.patcog.2010.04.019
Anguita D, Ghio A, Oneto L, Parra X, Reyes-Ortiz JL (2013) Energy efficient smartphone-based activity recognition using fixed-point arithmetic. Special session in ambient assisted living: home care. J Univ Comput Sci 19(9):1295–1314
Antunes CM, Oliveira AL (2001) Temporal data mining: an overview. In: KDD workshop on temporal data mining, pp 1–13
Bansal NK, Feng X, Zhang W, Wei W, Zhao Y (2012) Modeling temporal pattern and event detection using hidden markov model with application to a sludge bulking data. Procedia Comput Sci 12:218–223. doi:10.1016/j.procs.2012.09.059
Basse RM, Charif O, Bódis K (2016) Spatial and temporal dimensions of land use change in cross border region of Luxembourg. Development of a hybrid approach integrating GIS, cellular automata and decision learning tree models. Appl Geogr 67:94–108. doi:10.1016/j.apgeog.2015.12.001
Boyacioglu MA, Avci D (2010) An adaptive network-based fuzzy inference system (ANFIS) for the prediction of stock market return: the case of the istanbul stock exchange. Expert Syst Appl 37(12):7908–7912. doi:10.1016/j.eswa.2010.04.045
Casale P, Pujol O, Radeva P (2012) Personalization and user verification in wearable systems using biometric walking patterns. Pers Ubiquit Comput 16(5):563–580. doi:10.1007/s00779-011-0415-z
Chen Y, Mazlack LJ, Minai AA, Lu LJ (2015) Inferring causal networks using fuzzy cognitive maps and evolutionary algorithms with application to gene regulatory network reconstruction. Appl Soft Comput 37:667–679. doi:10.1016/j.asoc.2015.08.039
Chu H-J, Lin C-Y, Liau C-J, Kuo Y-M (2012) Identifying controlling factors of ground-level ozone levels over southwestern Taiwan using a decision tree. Atmos Environ 60:142–152. doi:10.1016/j.atmosenv.2012.06.032
Deng H, Runger G, Tuv E (2011) Bias of importance measures for multi-valued attributes and solutions. In: Proceedings of the 21st international conference on artificial neural networks (ICANN2011), LNCS 6792, vol 2, pp 293–300
Durão RM, Mendes MT, João Pereira M (2016) Forecasting O3 levels in industrial area surroundings up to 24 h in advance, combining classification trees and MLP models. Atmos Pollut Res 7(6):961–970. doi:10.1016/j.apr.2016.05.008
Elman J (1990) Finding structure in time. Cognit Sci 14(2):179–211. doi:10.1016/0364-0213(90)90002-E
Fawcett T (2006) An introduction to ROC analysis. Pattern Recogn Lett 27(8):861–874. doi:10.1016/j.patrec.2005.10.010
Froelich W, Salmeron JL (2014) Evolutionary learning of fuzzy grey cognitive maps for the forecasting of multivariate, interval-valued time series. Int J Approx Reason 55(6):1319–1335. doi:10.1016/j.ijar.2014.02.006
Giabbanelli PJ, Torsney-Weir T, Mago VK (2012) A fuzzy cognitive map of the psychosocial determinants of obesity. Appl Soft Comput 12(12):3711–3724. doi:10.1016/j.asoc.2012.02.006
Groumpos P, Anninou P, Groumpos PV (2015) A new mathematical modelling approach for viticulture and winemaking using fuzzy cognitive maps. IFAC-PapersOnLine 48(24):15–20. doi:10.1016/j.ifacol.2015.12.049
Hall M, Frank E, Holmes G, Pfahringer B, Reutemann P, Witten IH (2009) The WEKA data mining software: an update. SIGKDD Explor 11(1):10–18
Hernandez-Leal P, Gonzalez J, Morales EF, Enrique Sucar L (2013) Learning temporal nodes Bayesian networks. Int J Approx Reason 54(8):956–977. doi:10.1016/j.ijar.2013.02.011
Jeong KS, Kim DK, Jung JM, Kim MC, Joo GJ (2008) Non-linear autoregressive modelling by Temporal Recurrent Neural Networks for the prediction of freshwater phytoplankton dynamics. Ecol Model 211(3–4):292–300. doi:10.1016/j.ecolmodel.2007.09.029
Jung S, Qin X, Oh C (2016) Improving strategic policies for pedestrian safety enhancement using classification tree modeling. Transp Res Part A Policy Pract 85:53–64. doi:10.1016/j.tra.2016.01.002
Kadous M (2002) Temporal classification: extending the classification paradigm to multivariate time series. Retrieved from http://scholar.google.com/scholar?hl=en&btnG=Search&q=intitle:Temporal+Classification+:+Extending+the+Classification+Paradigm+to+Multivariate+Time+Series#0
Karimi K, Hamilton HJ (2001) Temporal rules and temporal rules and temporal decision trees: a C4.5 approach. Technical Report CS-2001-02. Retrieved from https://pdfs.semanticscholar.org/872/88d6cf1c84dc819219d647bdc5708dc53248.pdf
Kasabov N, Capecci E (2015) Spiking neural network methodology for modelling, classification and understanding of EEG spatio-temporal data measuring cognitive processes. Inf Sci 294:565–575. doi:10.1016/j.ins.2014.06.028
Ko MH, West G, Venkatesh S, Kumar M (2008) Using dynamic time warping for online temporal fusion in multisensor systems. Inf Fus 9:370–388. doi:10.1016/j.inffus.2006.08.002
Kohavi R (1995) A study of cross-validation and bootstrap for accuracy estimation and model selection. In: International joint conference on artificial intelligence (IJCAI), vol 5, pp 1137–1143. Morgan Kaufmann, San Mateo
Kosko B (1986) Fuzzy cognitive maps. Int J Man Mach Stud 24:65–75
Lesh N, Zaki MJ, Ogihara M (1999) Mining features for sequence classification. In: KDD ’99 proceedings of the fifth ACM SIGKDD international conference on knowledge discovery and data mining, pp 342–346
Liu B, Ma Y, Wong CK, Yu PS (2003) Scoring the data using association rules. Appl Intell 18(2):119–135
Ooi SY, Tan SC, Cheah WP (2014a) LNCS 8836—anomaly based intrusion detection through temporal classification. Lecture notes in computer science (LNCS), 21st international conference on neural information processing (ICONIP 2014), pp 612–619
Ooi SY, Tan SC, Cheah WP (2014b) Temporal decision tree and interpretable temporal rules: J48 and fuzzy cognitive maps approach. Aust J Intell Inf Process Syst 14(1). Retrieved from http://cs.anu.edu.au/ojs/index.php/ajiips
Orphanou K, Stassopoulou A, Keravnou E (2014) Artificial intelligence in medicine temporal abstraction and temporal Bayesian networks in clinical domains: a survey. Artif Intell Med 60(3):133–149. doi:10.1016/j.artmed.2013.12.007
Papageorgiou EI, Salmeron JL (2013) A review of fuzzy cognitive maps research during the last decade. IEEE Trans Fuzzy Syst 21(1):66–79
Quinlan JR (1986) Induction of decision trees. Mach Learn 1(1):81–106
Quinlan JR (1989) Unknown attribute values in induction. In: Proceedings of the 6th international machine learning workshop cornell
Radicioni DP, Esposito R (2010) BREVE: an HMPerceptron-based chord recognition system. Adv Music Inf Retr Stud Comput Intell 274:143–164
Revesz P, Triplet T (2011) Temporal data classification using linear classifiers. Inf Syst 36(1):30–41. doi:10.1016/j.is.2010.06.006
Salmeron JL, Papageorgiou EI (2014) Fuzzy grey cognitive maps and nonlinear Hebbian learning in process control. Appl Intell. doi:10.1007/s10489-013-0511-z
San-Segundo R, Lorenzo-Trueba J, Martínez-González B, Pardo JM (2016) Segmenting human activities based on HMMs using smartphone inertial sensors. Pervasive Mob Comput 30:84–96. doi:10.1016/j.pmcj.2016.01.004
Stylios CD, Groumpos PP (2004) Modeling complex systems using fuzzy cognitive maps. IEEE Trans Syst Man Cybern Part A Syst Hum 34(1):155–162. doi:10.1109/TSMCA.2003.818878
Tseng VS, Lee CH (2009) Effective temporal data classification by integrating sequential pattern mining and probabilistic induction. Expert Syst Appl 36(5):9524–9532. doi:10.1016/j.eswa.2008.10.077
Tseng VSM, Lee C (2005) CBS: a new classification method by using sequential patterns. In: Proceedings of SIAM international conference on data mining, pp 596–600
Vasslides JM, Jensen OP (2016) Fuzzy cognitive mapping in support of integrated ecosystem assessments: developing a shared conceptual model among stakeholders. J Environ Manag 166:348–356. doi:10.1016/j.jenvman.2015.10.038
Wang X, Ji Q (2014) Context augmented dynamic Bayesian networks for event recognition. Pattern Recogn Lett 43:62–70. doi:10.1016/j.patrec.2013.07.015
Wang X, Liu X, Pedrycz W, Zhang L (2015) Fuzzy rule based decision trees. Pattern Recogn 48(1):50–59. doi:10.1016/j.patcog.2014.08.001
Wu G-D, Zhu Z-W (2014) An enhanced discriminability recurrent fuzzy neural network for temporal classification problems. Fuzzy Sets Syst 237:47–62. doi:10.1016/j.fss.2013.05.007
Zare M, Rezvani Z, Benasich AA (2016) Automatic classification of 6-month-old infants at familial risk for language-based learning disorder using a support vector machine. Clin Neurophysiol 127(7):2695–2703. doi:10.1016/j.clinph.2016.03.025
Acknowledgements
This research work was supported by two Fundamental Research Grant Schemes (FRGS) under the Ministry of Education and Multimedia University, Malaysia (Project ID: MMUE/130121 and MMUE/160029).
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Conflict of interest
The authors declare that they have no conflict of interest.
Additional information
Communicated by V. Loia.
Rights and permissions
About this article
Cite this article
Ooi, S.Y., Tan, S.C. & Cheah, W.P. Temporal Sleuth Machine with decision tree for temporal classification. Soft Comput 22, 8077–8095 (2018). https://doi.org/10.1007/s00500-017-2747-8
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00500-017-2747-8