Skip to main content
Log in

Uncertain multi-objective multi-item fixed charge solid transportation problem with budget constraint

  • Methodologies and Application
  • Published:
Soft Computing Aims and scope Submit manuscript

Abstract

Modeling of real-world problems requires data as input parameter which include information represented in the state of indeterminacy. To deal with such indeterminacy, use of uncertainty theory (Liu in Uncertainty theory, Springer, Berlin, 2007) has become an important tool for modeling real-life decision-making problems. This study presents a profit maximization and time minimization scheme which considers the existence of possible indeterminacy by designing an uncertain multi-objective multi-item fixed charge solid transportation problem with budget constraint (UMMFSTPwB) at each destination. Here, items are purchased at different source points with different prices and are accordingly transported to different destinations using different types of vehicles. The items are sold to the customers at different selling prices. In the proposed model, unit transportation costs, fixed charges, transportation times, supplies at origins, demands at destinations, conveyance capacities and budget at destinations are assumed to be uncertain variables. To model the proposed UMMFSTPwB, we have developed three different models: (1) expected value model, (2) chance-constrained model and (3) dependent chance-constrained model using uncertain programming techniques. These models are formulated under the framework of uncertainty theory. Subsequently, the equivalent deterministic transformations of these models are formulated and are solved using three different methods: (1) linear weighted method, (2) global criterion method and (3) fuzzy programming method. Finally, numerical examples are presented to illustrate the models.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Adlakha V, Kowalski K (2003) A simple heuristic for solving small fixed-charge transportation problems. Omega 31(3):205–211

    Article  Google Scholar 

  • Baidya A, Bera UK (2014) An interval valued solid transportation problem with budget constraint in different interval approaches. J Transp Secur 7(2):147–155

    Article  Google Scholar 

  • Bhatia HL, Swarup K, Puri MC (1976) Time minimizing solid transportation problem. Mathematische Operationsforschung und Statistik 7(3):395–403

    Article  MathSciNet  MATH  Google Scholar 

  • Bit AK, Biswal MP, Alam SS (1993) Fuzzy programming approach to multi-objective solid transportation problem. Fuzzy Sets Syst 57(2):183–194

    Article  MATH  Google Scholar 

  • Charnes A, Cooper WW (1959) Chance-constrained programming. Manag Sci 6(1):73–79

    Article  MathSciNet  MATH  Google Scholar 

  • Chen B, Liu Y, Zhou T (2017) An entropy based solid transportation problem in uncertain environment. J Ambient Intell Humaniz Comput. https://doi.org/10.1007/s12652-017-0535-z

    Article  Google Scholar 

  • Chen X, Gao J (2013) Uncertain term structure model of interest rate. Soft Comput 17(4):597–604

    Article  MATH  Google Scholar 

  • Cui Q, Sheng Y (2013) Uncertain programming model for solid transportation problem. Information 15(3):342–348

    Google Scholar 

  • Dalman H (2016) Uncertain programming model for multi-item solid transportation problem. Int J Mach Learn Cybern. https://doi.org/10.1007/s13042-016-0538-7

    Article  MATH  Google Scholar 

  • Das A, Bera UK, Maiti M (2016) A profit maximizing solid transportation model under rough interval approach. IEEE Trans Fuzzy Syst 25(3):485–498

    Article  Google Scholar 

  • Das A, Bera UK, Maiti M (2017) Defuzzification and application of trapezoidal type-2 fuzzy variables to green solid transportation problem. Soft Comput. https://doi.org/10.1007/s00500-017-2491-0

    Article  MATH  Google Scholar 

  • Gao J, Yang X, Liu D (2017) Uncertain Shapley value of coalitional game with application to supply chain alliance. Appl Soft Comput 56:551–556

    Article  Google Scholar 

  • Gao J, Yao K (2015) Some concepts and theorems of uncertain random process. Int J Intell Syst 30(1):52–65

    Article  Google Scholar 

  • Gao Y, Kar S (2017) Uncertain solid transportation problem with product blending. Int J Fuzzy Syst. https://doi.org/10.1007/s40815-016-0282-x

    Article  MathSciNet  Google Scholar 

  • Giri PK, Maity MK, Maiti M (2015) Fully fuzzy fixed charge multi-item solid transportation problem. Appl Soft Comput 27:77–91

    Article  Google Scholar 

  • Gen M, Ida K, Li Y, Kubota E (1995) Solving bi-criteria solid transportation problem with fuzzy numbers by a genetic algorithm. Comput Ind Eng 29(1–4):537–541

    Article  Google Scholar 

  • Guo C, Gao J (2017) Optimal dealer pricing under transaction uncertainty. J Intell Manuf 28(3):657–665

    Article  Google Scholar 

  • Guo H, Wang X, Zhou S (2015) A transportation problem with uncertain costs and random supplies. Int J e-Navig Marit Econ 2:1–11

    Google Scholar 

  • Hirsch WM, Dantzig GB (1968) The fixed charge problem. Naval Res Logist 15(3):413–424

    Article  MathSciNet  MATH  Google Scholar 

  • Hitchcock FL (1941) The distribution of product from several sources to numerous localities. J Math Phys 20(1–4):224–230

    Article  MathSciNet  MATH  Google Scholar 

  • Jiménez F, Verdegay J (1999) An evolutionary algorithm for interval solid transportation problems. Evol Comput 7(1):103–107

    Article  Google Scholar 

  • Kaur A, Kumar A (2012) A new approach for solving fuzzy transportation problems using generalized trapezoidal fuzzy numbers. Appl Soft Comput 12(3):1201–1213

    Article  Google Scholar 

  • Kennington J, Unger E (1976) A new branch-and-bound algorithm for the fixed charge transportation problem. Manag Sci 22(10):1116–1126

    Article  MathSciNet  MATH  Google Scholar 

  • Kundu P, Kar S, Maiti M (2013a) Multi-objective solid transportation problems with budget constraint in uncertain environment. Int J Syst Sci 45(8):1668–1682

    Article  MathSciNet  MATH  Google Scholar 

  • Kundu P, Kar S, Maiti M (2013b) Multi-objective multi-item solid transportation problem in fuzzy environment. Appl Math Model 37(4):2028–2038

    Article  MathSciNet  MATH  Google Scholar 

  • Kundu P, Kar S, Maiti M (2014a) A fuzzy MCDM method and an application to solid transportation problem with mode preference. Soft Comput 18(9):1853–1864

    Article  MATH  Google Scholar 

  • Kundu P, Kar S, Maiti M (2014b) Fixed charge transportation problem with type-2 fuzzy variables. Inf Sci 255:170–186

    Article  MathSciNet  MATH  Google Scholar 

  • Kundu P, Kar S, Maiti M (2017a) A fuzzy multi-criteria group decision making based on ranking interval type-2 fuzzy variables and an application to transportation mode selection problem. Soft Comput 21(11):3051–3062

    Article  MATH  Google Scholar 

  • Kundu P, Kar MB, Kar S, Pal T, Maiti M (2017b) A solid transportation model with product blending and parameters as rough variables. Soft Comput 21(9):2297–2306

    Article  MATH  Google Scholar 

  • Liu B (2002) Theory and practice of uncertain programming. Springer, Berlin

    Book  MATH  Google Scholar 

  • Liu B (2007) Uncertainty theory, 2nd edn. Springer, Berlin

    MATH  Google Scholar 

  • Liu B (2009) Some research problems in uncertainty theory. J Uncertain Syst 3(1):3–10

    Google Scholar 

  • Liu B (2010) Uncertainty theory: a branch of mathematics for modeling human uncertainty. Springer, Berlin

    Book  Google Scholar 

  • Liu B (2015) Uncertainty theory, 5th ed. Uncertainty Theory Laboratory, Beijing. http://orsc.edu.cn/liu/ut.pdf

  • Liu B, Liu YK (2002) Expected value of fuzzy variable and fuzzy expected value models. IEEE Trans Fuzzy Syst 10(4):445–450

    Article  Google Scholar 

  • Liu L, Yang X, Mu H, Jiao Y (2008) The fuzzy fixed charge transportation problem and genetic algorithm. In: FSKD ’08 Proceedings of the fifth international conference on fuzzy systems and knowledge discovery, IEEE Computer Society, Washington, DC, USA, pp 208–212

  • Liu L, Zhang B, Ma W (2017) Uncertain programming models for fixed charge multi-item solid transportation problem. Soft Comput. https://doi.org/10.1007/s00500-017-2718-0

    Article  MATH  Google Scholar 

  • Mou D, Zhao W, Chen X (2013) Transportation problem with uncertain truck times and unit costs. Ind Eng Manag Syst 12(1):30–35

    Google Scholar 

  • Pawlak Z (1982) Rough sets. Int J Inf Comput Sci 11(5):341–356

    Article  MATH  Google Scholar 

  • Pramanik S, Jana DK, Mondal SK, Maiti M (2015) A fixed-charge transportation problem in two-stage supply chain network in Gaussian type-2 fuzzy environments. Inf Sci 325:190–214

    Article  MathSciNet  MATH  Google Scholar 

  • Rao SS (2006) Engineering optimization-theory and practice, 3rd edn. New Age International Publishers, New Delhi

    Google Scholar 

  • Schell ED (1955) Distribution of a product by several properties. In: Proceedings 2nd symposium in linear programming. DCS/Comptroller, HQUS Air Force, Washington, DC, pp 615–642

  • Sheng Y, Yao K (2012a) Fixed charge transportation problem and its uncertain programming model. Ind Eng Manag Syst 11(2):183–187

    Google Scholar 

  • Sheng Y, Yao K (2012b) A transportation model with uncertain costs and demands. Information 15(8):3179–3186

    MathSciNet  MATH  Google Scholar 

  • Sinha B, Das A, Bera UK (2016) Profit maximization solid transportation problem with trapezoidal interval type-2 fuzzy numbers. Int J Appl Comput Math 2(1):41–56

    Article  MathSciNet  MATH  Google Scholar 

  • Sun M, Aronson JE, Mckeown PG, Drinka D (1998) A tabu search heuristic procedure for the fixed charge transportation problem. Eur J Oper Res 106(2–3):441–456

    Article  MATH  Google Scholar 

  • Yang X, Gao J (2016) Linear quadratic uncertain differential game with application to resource extraction problem. IEEE Trans Fuzzy Syst 24(4):819–826

    Article  MathSciNet  Google Scholar 

  • Yang X, Gao J (2017) Bayesian equilibria for uncertain bimatrix game with asymmetric information. J Intell Manuf 28(3):515–525

    Article  Google Scholar 

  • Zadeh LA (1965) Fuzzy sets. Inf Control 8(3):338–353

    Article  MATH  Google Scholar 

  • Zadeh LA (1975a) The concept of a linguistic variable and its application to approximate reasoning—I. Inf Sci 8(3):199–249

    Article  MathSciNet  MATH  Google Scholar 

  • Zadeh LA (1975b) The concept of a linguistic variable and its application to approximate reasoning—II. Inf Sci 8(4):301–357

    Article  MathSciNet  MATH  Google Scholar 

  • Zimmermann H-J (1978) Fuzzy programming and linear programming with several objective functions. Fuzzy Sets Syst 1(1):45–55

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors are deeply indebted to the Editor and the anonymous referees for their constructive and valuable suggestions to enhance the quality of the manuscript. Moreover, Saibal Majumder, an INSPIRE fellow (No. DST/INSPIRE Fellowship/2015/IF150410) would like to acknowledge Department of Science & Technology (DST), Government of India, for providing him financial support for the work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Samarjit Kar.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest regarding the publication of this article.

Ethical approval

This article does not contains any studies with human participants or animals performed by any of the authors.

Informed consent

Informed consent was obtained from all individual participants included in the study.

Additional information

Communicated by V. Loia.

Appendices

Appendix A

In this section, some theorems related to uncertain programming are revisited.

Theorem A.1

(Liu 2010) Let \(\zeta _{1}\), \(\zeta _{2}{,}~ .~ .~ .\) , \(\zeta _{n}\) are independent uncertain variables with uncertainty distributions \({\Phi }_{\mathrm {1}}\), \({\Phi }_{\mathrm {2}}\),...,\(~{\Phi }_{n}\), respectively, and \(f_{1}\left( x \right) \), \(f_{2}\left( x \right) {,}~ .~ .~ .{,}~ f_{n}\left( x \right) \), \(\overline{f} (x)\) are real valued functions. Then,

$$\begin{aligned} \mathcal {M}\left\{ \sum \nolimits _{i=1}^n {{\zeta _{i}f}_{i}\left( x \right) } \le \overline{f} (x)~\right\} \ge {\alpha } \end{aligned}$$

holds if and only if,

$$\begin{aligned}&\sum \nolimits _{i=1}^n {{\Phi }_{i}^{-1}\left( {\alpha } \right) f_{i}^{+}\left( x \right) } -\sum \nolimits _{i=1}^n {{\Phi }_{i}^{-1}\left( 1-\alpha \right) f_{i}^{-}\left( x \right) } \le \overline{f} \left( x \right) , \end{aligned}$$
(A1)

where

$$\begin{aligned} f_{i}^{+}\left( x \right) =\left\{ {\begin{array}{rl} f_{i}\left( x \right) ~ ;&{}f_{i}\left( x \right) >0 \\ 0~ ;&{}f_{i}\left( x \right) \le 0 \\ \end{array}} \right. \end{aligned}$$
(A2)

and

$$\begin{aligned} f_{i}^{-}\left( x \right) =\left\{ {\begin{array}{rl} 0~ ;&{}f_{i}\left( x \right) \ge 0 \\ -f_{i}\left( x \right) ~ ;&{}f_{i}\left( x \right) <0 \\ \end{array}} \right. \hbox { for } i=1,2,\ldots ,n. \end{aligned}$$
(A3)

If \(f_{1}\left( x \right) {,}~ f_{2}\left( x \right) {,}~ .~ .~ .{,}~ f_{n}\left( x \right) \) are all nonnegative, then \(\mathrm {(A1)}\) becomes \(\sum \nolimits _{i=1}^n {{\Phi }_{i}^{-1}\left( {\alpha } \right) f_{i}\left( x \right) } \le \overline{f} \left( x \right) \), and if \(f_{1}\left( x \right) \), \(f_{2}\left( x \right) {,}~ .~ .~ .{,}~ f_{n}\left( x \right) \) are all nonpositive, then \(\mathrm {(A1)}\) becomes \(\sum \nolimits _{i=1}^n {{\Phi }_{i}^{-1}\left( 1-\alpha \right) f_{i}\left( x \right) } \le \overline{f} \left( x \right) .\)

Theorem A.2

(Liu 2010) Let \(x_{1}{,}~ x_{2}{,}~\ldots , x_{n}\) are nonnegative decision variables and \(\zeta _{1}\), \(\zeta _{2}\), .  .  ., \(\zeta _{n}\) are independent zigzag uncertain variables which are represented as \(\mathcal {Z}\left( g_{1},h_{1},l_{1} \right) \), \(\mathcal {Z}\left( g_{2},h_{2},l_{2} \right) {,}~ .~ .~ .{,}~ \mathcal {Z}\left( g_{n},h_{n},l_{n} \right) \), respectively. Then,

(A4)

Theorem A.3

(Liu 2010) Let \(x_{1}{,}\, x_{2}{,}~\ldots , x_{n}\) are nonnegative decision variables and \(\zeta _{1}\), \(\zeta _{2}, \ldots , \zeta _{n}\) are independent normal uncertain variables which are denoted as \(\mathcal {N}\left( \rho _{1},\sigma _{1} \right) \), \(\mathcal {N}\left( \rho _{2},\sigma _{2} \right) {,}~\ldots , \mathcal {N}\left( \rho _{n},\sigma _{n} \right) \), respectively. Then,

$$\begin{aligned}&\mathcal {M}\left\{ \sum \nolimits _{i=1}^n {\zeta _{i}x_{i}} \le c~\right\} \nonumber \\&\quad =\left( 1+\exp \left( \frac{\pi \left( \sum \nolimits _{i=1}^n {\rho _{i}x_{i}-c} \right) }{\sqrt{3} \sum \nolimits _{i=1}^n {\sigma _{i}x_{i}}} \right) \right) ^{-1}. \end{aligned}$$
(A5)

Theorem A.4

(Liu 2010) Let \(\zeta \) be an uncertain variable with continuous uncertainty distribution \({\Phi }\). Then, for any real number x, we have

$$\begin{aligned} \mathcal {M}\left\{ \zeta \le x \right\} ={\Phi }(x),\quad \mathcal {M}\left\{ \zeta \ge x \right\} =1-{\Phi }(x). \end{aligned}$$
(A6)

Appendix B

In this section, we state the relevant theorems to formulate the crisp equivalents of chance-constrained model (CCM) and dependent chance-constrained model (DCCM) of UMMFSTPwB.

Crisp equivalents of chance-constrained model (CCM)

Lemma B.1

If a and r are positive real numbers, \(\xi \) is an independent uncertain variable with uncertainty distribution \({\Phi }\) and \(\alpha \) is the chance level. Then, \(\mathcal {M}\left\{ a-\xi \ge r \right\} \ge \alpha \) holds if and only if \(a-{\Phi }^{-1}\left( \alpha \right) \ge r\).

Proof

$$\begin{aligned} \mathcal {M}\left\{ a-\xi \ge r \right\}\ge & {} \alpha \quad \Leftrightarrow \quad \mathcal {M}\left\{ \xi \le a-r \right\} \ge \alpha \quad \Leftrightarrow \\ a-r\ge & {} {\Phi }^{-1}\left( \alpha \right) \quad \Leftrightarrow \quad a-{\Phi }^{-1}\left( \alpha \right) \ge r. \end{aligned}$$

Theorem B.1

Let \(\xi _{c_{ijk}^{p}}\), \(\xi _{f_{ijk}^{p}}\), \(\xi _{t_{ijk}^{p}}{,}~ \xi _{a_{i}^{p}}{,}~ \xi _{b_{j}^{p}}{,}~ \xi _{e_{k}}\) and \(\xi _{B_{j}}\) are the independent uncertain variables, respectively, associated with uncertainty distributions \({\Phi }_{\xi _{c_{ijk}^{p}}}{,}~ {\Phi }_{\xi _{f_{ijk}^{p}}}{,}~ {\Phi }_{\xi _{t_{ijk}^{p}}}{,}~ {\Phi }_{\xi _{a_{i}^{p}}}{,} {\Phi }_{\xi _{b_{j}^{p}}}{,}~ {\Phi }_{\xi _{e_{k}}}\) and \({\Phi }_{\xi _{B_{j}}}\) then the crisp equivalent of chance-constrained model (\(\mathrm {CCM})\) in model (10) can be equivalently formulated as model (B1).

$$\begin{aligned} \left\{ {\begin{array}{l} \mathrm{Max}~ \bar{Z}_{1}=\left[ \sum \nolimits _{p=1}^r \sum \nolimits _{i=1}^m \sum \nolimits _{j=1}^n \sum \nolimits _{k=1}^K \left\{ \left( s_{j}^{p}-v_{i}^{p}\right. \right. \right. \\ \quad \quad \quad \qquad \left. \left. \left. -{\Phi }_{\xi _{c_{ijk}^{p}}}^{\mathrm {-1}}\left( {\alpha }_{\mathrm {1}} \right) \right) x_{ijk}^{p}-{\Phi }_{\xi _{f_{ijk}^{p}}}^{\mathrm {-1}}\left( {\alpha }_{\mathrm {1}} \right) y_{ijk}^{p} \right\} \right] \\ \mathrm{Min}~ \bar{Z}_{2}=\sum \nolimits _{p=1}^r \sum \nolimits _{i=1}^m \sum \nolimits _{j=1}^n \sum \nolimits _{k=1}^K {{\Phi }_{\xi _{t_{ijk}^{p}}}^{\mathrm {-1}}\left( {\alpha }_{\mathrm {2}} \right) y_{ijk}^{p}} ~ \\ \mathrm{subject~ to} \\ \sum \nolimits _{j=1}^n \sum \nolimits _{k=1}^K {x_{ijk}^{p}-{\Phi }_{\xi _{a_{i}^{p}}}^{\mathrm {-1}}\left( {\mathrm {1-\upbeta }}_{{i}}^{p} \right) } \le 0,\\ \quad \quad \quad \qquad i=1,2,\ldots ,m,~ p=1,2,\ldots ,r~ \\ \sum \nolimits _{i=1}^m \sum \nolimits _{k=1}^K {x_{ijk}^{p}-\Phi _{\xi _{b_{j}^{p}}}^{-1}\left( {\upgamma }_{{j}}^{p} \right) {\ge 0}} ,\\ \quad \quad \quad \qquad j=1,2,\ldots ,n,~ p=1,2,\ldots ,r\\ \sum \nolimits _{p=1}^r \sum \nolimits _{i=1}^m {\sum \nolimits _{j=1}^n x_{ijk}^{p} -{\Phi }_{\xi _{e_{k}}}^{\mathrm {-1}}\left( \mathrm {1-}\delta _{k} \right) } \le 0,\\ \quad \quad \quad \qquad k=1,2,\ldots ,K \\ \sum \nolimits _{p=1}^r \sum \nolimits _{i=1}^m \sum \nolimits _{k=1}^K \left\{ {\left( v_{i}^{p}+{\Phi }_{\xi _{c_{ijk}^{p}}}^{\mathrm {-1}}\left( \rho _{j} \right) \right) }x_{ijk}^{p}\right. \\ \quad \quad \quad \qquad \left. +\,{\Phi }_{\xi _{f_{ijk}^{p}}}^{\mathrm {-1}}\left( \rho _{j} \right) y_{ijk}^{p} \right\} ~- \Phi _{B_{j}}^{-1}\left( \mathrm {1-}\rho _{j} \right) \le 0, j=1,2,\ldots ,n \\ x_{ijk}^{p}\ge 0,~ y_{ijk}^{p}=\left\{ {\begin{array}{l} 1;~~{x}_{ijk}^{p}>0~ \\ 0;~~\mathrm{otherwise}~ \\ \end{array}} \right. ~ \forall ~ p,i,j,k.~ \\ \end{array}} \right. \end{aligned}$$
(B1)

Proof

Considering the CCM of UMMFSTPwB presented in model (10), the corresponding constraints can be written as follow.

  1. (i)

    The constraint \(\mathcal {M}\left\{ \sum \nolimits _{p=1}^r \sum \nolimits _{i=1}^m \sum \nolimits _{j=1}^n \sum \nolimits _{k=1}^K\right. \left. \left[ \left( s_{j}^{p}-v_{i}^{p}-\xi _{c_{ijk}^{p}} \right) x_{ijk}^{p}-\left( \xi _{f_{ijk}^{p}} \right) y_{ijk}^{p} \right] \ge \bar{Z}_{1} \right\} \ge {\alpha }_{\mathrm {1}}\) can be rewritten as \(\mathcal {M}\left\{ Z_{1}\ge \bar{Z}_{1} \right\} \ge {\alpha }_{\mathrm {1}}\), since \(\xi _{c_{ijk}^{p}}\) and \(\xi _{f_{ijk}^{p}}\) are the independent uncertain variables with regular uncertainty distributions \({\Phi }_{\xi _{c_{ijk}^{p}}}\) and \({\Phi }_{\xi _{f_{ijk}^{p}}}\), respectively. Then according to Theorem 2.1 provided in Section 2 and the Lemma B.1, \(\mathcal {M}\left\{ Z_{1}\ge \bar{Z}_{1} \right\} \ge {\alpha }_{\mathrm {1}}\) can be reformulated as

    $$\begin{aligned}&\sum \nolimits _{p=1}^r \sum \nolimits _{i=1}^m \sum \nolimits _{j=1}^n \sum \nolimits _{k=1}^K \left[ \left( s_{j}^{p}-v_{i}^{p}\right. \right. \\&\quad \left. \left. -{\Phi }_{c_{ijk}^{p}}^{\mathrm {-1}}\left( {\alpha }_{\mathrm {1}} \right) \right) x_{ijk}^{p}-{\Phi }_{f_{ijk}^{p}}^{\mathrm {-1}}\left( {\alpha }_{\mathrm {1}} \right) y_{ijk}^{p} \right] \ge \bar{Z}_{1}. \end{aligned}$$

    In similar way, constraint \(\mathcal {M}\left\{ \sum \nolimits _{p=1}^r \sum \nolimits _{i=1}^m\right. \left. \sum \nolimits _{j=1}^n \sum \nolimits _{k=1}^K \left[ \xi _{t_{ijk}^{p}}y_{ijk}^{p} \right] \le \bar{Z}_{2} \right\} \ge {\alpha }_{\mathrm {2}}\) can be restructured as

    $$\begin{aligned} \sum \nolimits _{p=1}^r \sum \nolimits _{i=1}^m \sum \nolimits _{j=1}^n \sum \nolimits _{k=1}^K {{\Phi }_{t_{ijk}^{p}}^{\mathrm {-1}}\left( {\alpha }_{\mathrm {2}} \right) y_{ijk}^{p}} \le \bar{Z}_{2}. \end{aligned}$$
  2. (ii)

    Constraint \(\mathcal {M}\left\{ \sum \nolimits _{j=1}^n \sum \nolimits _{k=1}^K {x_{ijk}^{p}-\xi _{a_{i}^{p}}} \le 0 \right\} \ge \beta _{i}^{p}\)\(\Leftrightarrow ~ \mathcal {M}\left\{ \xi _{a_{i}^{p}}\ge \sum \nolimits _{j=1}^n \sum \nolimits _{k=1}^K x_{ijk}^{p} \right\} \ge \beta _{i}^{p}\). Since, \({\Phi }_{\xi _{a_{i}^{p}}}\) is the uncertainty distribution of \(\xi _{a_{i}^{p}}\) then from Theorem A.4 (cf. “Appendix A”),

    $$\begin{aligned}&\mathcal {M}\left\{ \xi _{a_{i}^{p}}\ge \sum \nolimits _{j=1}^n \sum \nolimits _{k=1}^K x_{ijk}^{p} \right\} \\&\quad \ge \beta _{i}^{p}\Leftrightarrow \mathrm {1-}{\Phi }_{\xi _{a_{i}^{p}}}\left( \sum \nolimits _{j=1}^n \sum \nolimits _{k=1}^K x_{ijk}^{p} \right) \ge \beta _{i}^{p}\\&\quad \Leftrightarrow \sum \nolimits _{j=1}^n \sum \nolimits _{k=1}^K x_{ijk}^{p} -{\Phi }_{a_{i}^{p}}^{\mathrm {-1}}\left( {{1-\upbeta }}_{{i}}^{\mathrm {p}} \right) \le 0 . \end{aligned}$$
  3. (iii)

    Constraint \(\mathcal {M}\left\{ \sum \nolimits _{i=1}^m \sum \nolimits _{k=1}^K {x_{ijk}^{p}-\xi _{b_{j}^{p}}} \ge 0 \right\} \ge \gamma _{j}^{p}\)\(\Leftrightarrow ~ \mathcal {M}\left\{ \xi _{b_{j}^{p}}\le \sum \nolimits _{i=1}^n \sum \nolimits _{k=1}^K x_{ijk}^{p} \right\} \ge \gamma _{j}^{p}\).

    Since, \({\Phi }_{\xi _{b_{j}^{p}}}\) is the uncertainty distribution of \(\xi _{b_{j}^{p}}\) then from Theorem A.4,

    $$\begin{aligned}&\mathcal {M}\left\{ \xi _{b_{j}^{p}}\le \sum \nolimits _{i=1}^m \sum \nolimits _{k=1}^K x_{ijk}^{p} \right\} \nonumber \\&\quad \ge \gamma _{j}^{p}\Leftrightarrow {\Phi }_{\xi _{b_{j}^{p}}}\left( \sum \nolimits _{j=1}^n \sum \nolimits _{k=1}^K x_{ijk}^{p} \right) \\&\quad \ge \gamma _{j}^{p}\Leftrightarrow \sum \nolimits _{j=1}^n \sum \nolimits _{k=1}^K x_{ijk}^{p} -{\Phi }_{\xi _{b_{j}^{p}}}^{\mathrm {-1}}\left( \gamma _{j}^{p} \right) \ge 0. \end{aligned}$$

    Similarly, constraint \(\mathcal {M}\left\{ \sum \nolimits _{p=1}^r \sum \nolimits _{i=1}^m \sum \nolimits _{j=1}^n x_{ijk}^{p} \right. \left. -\xi _{e_{k}} \le 0 \right\} \ge \delta _{k}\) can be equivalently transformed into \(\sum \nolimits _{p=1}^r \sum \nolimits _{i=1}^m {\sum \nolimits _{j=1}^n x_{ijk}^{p} -{\Phi }_{e_{k}}^{\mathrm {-1}}\left( \mathrm {1-}\delta _{k} \right) } \le 0 \).

  4. (iv)

    From Theorem A.1 and Theorem A.4, the crisp transformation of constraint

    $$\begin{aligned}&\mathcal {M}\left\{ \left\{ \sum \nolimits _{p=1}^r \sum \nolimits _{i=1}^m \sum \nolimits _{k=1}^K {\left( v_{i}^{p}+\xi _{c_{ijk}^{p}} \right) x}_{ijk}^{p}\right. \right. \\&\quad \left. \left. +\,\xi _{f_{ijk}^{p}} y_{ijk}^{p} \right\} -\xi _{B_{j}^{p}}\le 0 \right\} \ge \rho _{j} \qquad \hbox { is equivalently becomes}, \\&\quad \left\{ \sum \nolimits _{p=1}^r \sum \nolimits _{i=1}^m \sum \nolimits _{k=1}^K \left( v_{i}^{p} +{\Phi }_{c_{ijk}^{p}}^{\mathrm {-1}}\left( \rho _{j} \right) \right) x_{ijk}^{p} +{\Phi }_{f_{ijk}^{p}}^{\mathrm {-1}}\left( \rho _{j} \right) y_{ijk}^{p} \right\} \\&\quad -\,\Phi _{B_{j}}^{-1}\left( {1-\rho }_{j} \right) {\le 0}. \end{aligned}$$

Therefore, considering (i), (ii), (iii) and (iv) shown above, the crisp equivalent of model (10) follows directly, the model (B1).

Corollary B.1

If \(\xi _{c_{ijk}^{p}}\), \(\xi _{f_{ijk}^{p}}\), \(\xi _{t_{ijk}^{p}}{,}~ \xi _{a_{i}^{p}}{,}~ \xi _{b_{j}^{p}}{,}~ \xi _{e_{k}^{p}}\) and \(\xi _{B_{j}^{p}}\) are the independent zigzag uncertain variables of the form \(\mathcal {Z}\left( g,h,l \right) \) with \(g<h<l.\) Then, according to Theorem B.1 and the inverse uncertainty distribution of zigzag uncertain variables, we can conclude the following.

(i) For all chance levels \(<0.5\), model (B1) becomes

$$\begin{aligned} \left\{ {\begin{array}{l} \mathrm{Max}~ \bar{Z}_{1}=~ \sum \nolimits _{p=1}^r \sum \nolimits _{i=1}^m \sum \nolimits _{j=1}^n \sum \nolimits _{k=1}^K \left[ \left( s_{j}^{p}-v_{i}^{p}-\left( \left( 1-2{\alpha }_{\mathrm {1}} \right) g_{c_{ijk}^{p}}\right. \right. \right. \\ \quad \quad \quad \qquad \left. \left. \left. +2{\alpha }_{\mathrm {1}}h_{c_{ijk}^{p}} \right) \right) x_{ijk}^{p}-~ \left( \left( 1-2{\alpha }_{\mathrm {1}} \right) g_{f_{ijk}^{p}}+2{\alpha }_{\mathrm {1}}h_{f_{ijk}^{p}} \right) y_{ijk}^{p} \right] \\ \mathrm{Min}~ \bar{Z}_{2}=\sum \nolimits _{p=1}^r \sum \nolimits _{i=1}^m \sum \nolimits _{j=1}^n \sum \nolimits _{k=1}^K \left[ \left( \left( 1-2{\alpha }_{\mathrm {2}} \right) g_{t_{ijk}^{p}}+2{\alpha }_{\mathrm {2}}h_{t_{ijk}^{p}} \right) y_{ijk}^{p} \right] ~ \\ \mathrm{subject~ to} \\ \sum \nolimits _{j=1}^n \sum \nolimits _{k=1}^K {x_{ijk}^{p}-\left( 2\beta _{i}^{p}h_{a_{i}^{p}}+\left( 1-2\beta _{i}^{p} \right) l_{a_{i}^{p}} \right) } \le 0,~\\ \quad \quad \quad \qquad i=1,2,\ldots ,m,~ p=1,2,\ldots ,r~ \\ \sum \nolimits _{i=1}^m \sum \nolimits _{k=1}^K {x_{ijk}^{p}-\left( {\left( 1-2\gamma _{j}^{p} \right) }g_{b_{j}^{p}}+2\gamma _{j}^{p}h_{b_{j}^{p}} \right) \ge 0} ,\\ \quad \quad \quad \qquad j=1,2,\ldots ,n,~ p=1,2,\ldots ,r~ \\ \sum \nolimits _{p=1}^r \sum \nolimits _{i=1}^m {\sum \nolimits _{j=1}^n x_{ijk}^{p} -\left( 2\delta _{k}h_{e_{k}}+\left( 1-2\delta _{k} \right) l_{e_{k}} \right) } \le 0,\\ \quad \quad \quad \qquad k=1,2,\ldots ,K~ \\ \sum \nolimits _{p=1}^r \sum \nolimits _{i=1}^m \sum \nolimits _{k=1}^K {\left[ v_{i}^{p}+\left( \left( 1-2\rho _{j} \right) g_{c_{ijk}^{p}}+2\rho _{j}^{p}h_{c_{ijk}^{p}} \right) \right] }x_{ijk}^{p}\\ \quad \quad \quad \qquad +\left[ \left( \left( 1-2\rho _{j} \right) g_{f_{ijk}^{p}}+2\rho _{j}h_{f_{ijk}^{p}} \right) \right] y_{ijk}^{p}\\ \quad \quad \quad \qquad -\left( {2\rho _{j}h}_{B_{j}}+\left( 1-2\rho _{j} \right) l_{B_{j}} \right) {\le 0,~ j=1,2,\ldots ,n} \\ x_{ijk}^{p}\ge 0,~ y_{ijk}^{p}=\left\{ {\begin{array}{l} 1;~~x_{ijk}^{p}>0~ \\ 0;~~\mathrm{otherwise}~ \\ \end{array}} \right. ~ \forall ~ p,i,j,k.~ \\ \end{array}} \right. \end{aligned}$$
(B2)

(ii) For all chance levels \(\ge ~ 0.5\), model (B1) can be described as given in (B3).

$$\begin{aligned} \left\{ {\begin{array}{l} \mathrm{Max}~ \bar{Z}_{1}=\sum \nolimits _{p=1}^r \sum \nolimits _{i=1}^m \sum \nolimits _{j=1}^n \sum \nolimits _{k=1}^K \left[ \left( s_{j}^{p}-v_{i}^{p}-\left( \left( 2-2{\alpha }_{\mathrm {1}} \right) h_{c_{ijk}^{p}}\right. \right. \right. \\ \quad \quad \quad \qquad \left. \left. \left. +\left( 2{\alpha }_{\mathrm {1}}-1 \right) l_{c_{ijk}^{p}} \right) \right) x_{ijk}^{p}-\left( \left( 2-2{\alpha }_{\mathrm {1}} \right) h_{f_{ijk}^{p}}\right. \right. \\ \quad \quad \quad \qquad \left. \left. +{\left( 2{\alpha }_{\mathrm {1}}-1 \right) l}_{f_{ijk}^{p}} \right) y_{ijk}^{p} \right] \\ \mathrm{Min}~ \bar{Z}_{2}=~ \sum \nolimits _{p=1}^r \sum \nolimits _{i=1}^m \sum \nolimits _{j=1}^n \sum \nolimits _{k=1}^K \left[ \left( \left( 2-2{\alpha }_{\mathrm {2}} \right) h_{t_{ijk}^{p}}\right. \right. \\ \quad \quad \quad \qquad \left. \left. +\left( 2{\alpha }_{\mathrm {2}}-1 \right) l_{t_{ijk}^{p}} \right) y_{ijk}^{p} \right] ~ \\ \mathrm{subject~ to} \\ \sum \nolimits _{j=1}^n \sum \nolimits _{k=1}^K {x_{ijk}^{p}-\left( \left( 2\beta _{i}^{p}-1 \right) g_{a_{i}^{p}}+\left( 2-2\beta _{i}^{p} \right) h_{a_{i}^{p}} \right) } \le 0,\\ \quad \quad \quad \qquad i=1,2,\ldots ,m,~ p=1,2,\ldots ,r~ \\ \sum \nolimits _{i=1}^m \sum \nolimits _{k=1}^K {x_{ijk}^{p}-\left( \left( 2-2\gamma _{j}^{p} \right) h_{b_{j}^{p}}+\left( 2\gamma _{j}^{p}-1 \right) l_{b_{j}^{p}} \right) \ge 0} ,\\ \quad \quad \quad \qquad j=1,2,\ldots ,n,~ p=1,2,\ldots ,r~ \\ \sum \nolimits _{p=1}^r \sum \nolimits _{i=1}^m {\sum \nolimits _{j=1}^n x_{ijk}^{p} -\left( \left( 2\delta _{k}-1 \right) g_{e_{k}}+\left( 2-2\delta _{k} \right) h_{e_{k}} \right) } \le 0,\\ \quad \quad \quad \qquad k=1,2,\ldots ,K \\ \sum \nolimits _{p=1}^r \sum \nolimits _{i=1}^m \sum \nolimits _{k=1}^K {\left[ v_{i}^{p}+\left( \left( 2-2\rho _{j} \right) h_{c_{ijk}^{p}}+\left( 2\rho _{j}-1 \right) l_{c_{ijk}^{p}} \right) \right] }x_{ijk}^{p}\\ \quad \quad \quad \qquad +\left[ \left( 2-2\rho _{j} \right) h_{f_{ijk}^{p}}+\left( 2\rho _{j}-1 \right) l_{f_{ijk}^{p}} \right] y_{ijk}^{p} ~ \\ \quad \quad \quad \qquad -\left( \left( 2\rho _{j}-1 \right) g_{B_{j}}+\left( 2-2\rho _{j} \right) h_{B_{j}} \right) {\le 0,~ j=1,2,\ldots ,n} \\ x_{ijk}^{p}\ge 0,~ y_{ijk}^{p}=\left\{ {\begin{array}{l} 1{~ ;}x_{ijk}^{p}>0~ \\ 0~ ;\mathrm{otherwise}~ \\ \end{array}} \right. ~ \forall ~ p,i,j,k.~ \\ \end{array}} \right. \end{aligned}$$
(B3)

Corollary B.2

If \(\xi _{c_{ijk}^{p}}\), \(\xi _{f_{ijk}^{p}}\), \(\xi _{t_{ijk}^{p}}{,}~ \xi _{a_{i}^{p}}{,}~ \xi _{b_{j}^{p}}{,}~ \xi _{e_{k}}\) and \(\xi _{B_{j}}\) are independent normal uncertain variables of the form \(\mathcal {N}(\mu ,\sigma )\), such that \(\mu ,~ \sigma \in \mathcal {R}\) and \(\sigma >0.\) Then, according to Theorem B.1 and the inverse uncertainty distribution of normal uncertain variables, model (B1) can be written as follows.

$$\begin{aligned} \left\{ {\begin{array}{l} \mathrm{Max}~ \bar{Z}_{1}=\sum \nolimits _{p=1}^r \sum \nolimits _{i=1}^m \sum \nolimits _{j=1}^n \sum \nolimits _{k=1}^K \left[ \left( s_{j}^{p}-v_{i}^{p}-\left( \mu _{c_{ijk}^{p}}\right. \right. \right. ~\\ \quad \quad \quad \qquad \left. \left. \left. +\frac{\sqrt{3} \sigma _{c_{ijk}^{p}}}{\pi }ln\frac{{\alpha }_{\mathrm {1}}}{1-{\alpha }_{\mathrm {1}}} \right) \right) x_{ijk}^{p}\right. ~\\ \quad \quad \qquad \qquad \left. -\left( \mu _{f_{ijk}^{p}}+\frac{\sqrt{3} \sigma _{f_{ijk}^{p}}}{\pi }ln\frac{{\alpha }_{\mathrm {1}}}{1-{\alpha }_{\mathrm {1}}} \right) y_{ijk}^{p} \right] ~ \\ ~ \mathrm{Min}~ \bar{Z}_{2}=\sum \nolimits _{p=1}^r \sum \nolimits _{i=1}^m \sum \nolimits _{j=1}^n \sum \nolimits _{k=1}^K \left[ \left( \mu _{t_{ijk}^{p}}\right. \right. ~\\ \quad \quad \qquad \qquad \left. \left. +\frac{\sqrt{3} \sigma _{t_{ijk}^{p}}}{\pi }ln\frac{{\alpha }_{\mathrm {2}}}{1-{\alpha }_{\mathrm {2}}} \right) y_{ijk}^{p} \right] ~ \\ \mathrm{subject~ to} \\ ~\sum \nolimits _{j=1}^n \sum \nolimits _{k=1}^K {x_{ijk}^{p}-\left( \mu _{a_{i}^{p}}-\frac{\sqrt{3} \sigma _{a_{i}^{p}}}{\pi }ln\frac{\beta _{i}^{p}}{1-\beta _{i}^{p}} \right) } \le 0,~\\ \quad \quad \quad \quad i=1,2,\ldots ,m,~ p=1,2,\ldots ,r~ \\ \sum \nolimits _{i=1}^m \sum \nolimits _{k=1}^K {x_{ijk}^{p}-\left( \mu _{b_{j}^{p}}+\frac{\sqrt{3} \sigma _{b_{j}^{p}}}{\pi }ln\frac{\gamma _{j}^{p}}{{1-\gamma }_{j}^{p}} \right) {\ge 0}} ,~\\ \quad \quad \quad \quad j=1,2,\ldots ,n,~ p=1,2,\ldots ,r~ \\ \sum \nolimits _{p=1}^r \sum \nolimits _{i=1}^m {\sum \nolimits _{j=1}^n x_{ijk}^{p} -\left( \mu _{e_{k}}-\frac{\sqrt{3} \sigma _{e_{k}}}{\pi }ln\frac{\delta _{k}}{1-\delta _{k}} \right) } \le 0,~\\ \quad \quad \quad \quad k=1,2,\ldots ,K~ \\ \sum \nolimits _{p=1}^r \sum \nolimits _{i=1}^m \sum \nolimits _{k=1}^K {\left[ v_{i}^{p}+\mu _{c_{ijk}^{p}}+\frac{\sqrt{3} \sigma _{c_{ijk}^{p}}}{\pi }ln\frac{\rho _{j}}{1-\rho _{j}} \right] }x_{ijk}^{p} \\ \quad \quad \quad \quad +\left[ \mu _{f_{ijk}^{p}}+\frac{\sqrt{3} \sigma _{f_{ijk}^{p}}}{\pi }ln\frac{\rho _{j}}{1-\rho _{j}} \right] y_{ijk}^{p}\\ \quad \quad \quad \quad -\left( \mu _{B_{j}}-\frac{\sqrt{3} \sigma _{B_{j}}}{\pi }ln\frac{\rho _{j}}{1-\rho _{j}} \right) \le 0,~ ~ j=1,2,\ldots ,n \\ x_{ijk}^{p}\ge 0,~ y_{ijk}^{p}=\left\{ {\begin{array}{l} 1;\quad x_{ijk}^{p}>0~ \\ 0;\quad \mathrm{otherwise}~ \\ \end{array}} \right. ~ \forall ~ p,i,j,k.~ \\ \end{array}} \right. \end{aligned}$$
(B4)

Crisp equivalents of dependent chance-constrained model (DCCM)

For DCCM, the following model in (B5) is considered as a general case of crisp equivalent for DCCM corresponding to models (B6) and (B7), respectively, for zigzag and normal uncertain variables.

$$\begin{aligned} \left\{ {\begin{array}{l} \mathrm{Max}~ \upsilon _{Z_{1}^{'}}~ \\ \mathrm{Max}~ \upsilon _{Z_{2}^{'}}~ \\ \mathrm{subject~ to~ the~ constraints~of}~ \left( \mathrm {B}1 \right) . \\ \end{array}} \right. \end{aligned}$$
(B5)

Theorem B.2

Let \(\xi _{c_{ijk}^{p}}{,}~ \xi _{f_{ijk}^{p}}{,}~ \xi _{t_{ijk}^{p}}{,}~ \xi _{a_{i}^{p}}{,}~ \xi _{b_{j}^{p}}{,}~ \xi _{e_{k}}\) and \(\xi _{B_{j}}\) are the independent zigzag uncertain variables denoted as \(\mathcal {Z}\left( g_{c},h_{c},l_{c} \right) \) with \(c\in \left\{ \xi _{c_{ijk}^{p}}\mathrm {,~ }\xi _{f_{ijk}^{p}}\mathrm {,~ }\xi _{t_{ijk}^{p}}{,}~ \xi _{a_{i}^{p}}{,}~ \xi _{b_{j}^{p}}{,}~ \xi _{e_{k}}\mathrm {,~ }\xi _{B_{j}} \right\} \) and \(0.5\le \eta \le 1,\) where

\(\eta \in \left\{ {~ \beta }_{i}^{p},{~ \gamma }_{j}^{p},\delta _{k},\rho _{j} \right\} .\) Then, the crisp equivalent of DCCM, presented in model (11), is equivalent to model (B6).

$$\begin{aligned} \left\{ {\begin{array}{l} \mathrm{Max}~ \nu _{Z_{1}^{'}}~ \\ \mathrm{Max}~ \nu _{Z_{2}^{'}}~ \\ \mathrm{subject~ to~ the~ constraints~of}~ \left( \mathrm {B3} \right) , \\ \end{array}} \right. \end{aligned}$$
(B6)

where

$$\begin{aligned} \nu _{Z_{1}^{'}}= & {} \left\{ {\begin{array}{l@{\quad }l} 1,&{} \mathrm{if}~ Z_{1}^{'}\le \bar{g}~ \\ \frac{2\bar{h}-\bar{g}-Z_{1}^{'}}{2\left( \bar{h}-\bar{g} \right) },&{} \mathrm{if}~ \bar{g}<Z_{1}^{'}\le \bar{h} \\ \frac{\bar{l}-Z_{1}^{'}}{2\left( \bar{l}-\bar{h} \right) },&{} \mathrm{if}~ \bar{h}<Z_{1}^{'}\le \bar{l}~ \\ 0,&{} \mathrm{if}~ Z_{1}^{'}>\bar{l}~ \\ \end{array}} \right. {\mathrm{and} } \\ \nu _{Z_{2}^{'}}= & {} \left\{ {\begin{array}{l@{\quad }l} 0,&{} \mathrm{if}~ Z_{2}^{'}\le \overline{\overline{g}} \\ \frac{Z_{2}^{'}-\bar{\bar{g}}}{2\left( \bar{\bar{h}}-\bar{\bar{g}} \right) },&{} \mathrm{if}~ \overline{\overline{g}}<Z_{2}^{'}\le \overline{\overline{h}} \\ \frac{Z_{2}^{'}+\overline{\overline{l}}-2\overline{\overline{h}}}{2\left( \overline{\overline{l}}-\overline{\overline{h}} \right) },&{} \mathrm{if}~ \overline{\overline{h}}<Z_{2}^{'}\le \overline{\overline{l}} \\ 1,&{} \mathrm{if}~ Z_{2}^{'}>\overline{\overline{l}}, \\ \end{array}} \right. \end{aligned}$$

such that

$$\begin{aligned} \bar{g}= & {} \sum \nolimits _{p=1}^r \sum \nolimits _{i=1}^m \sum \nolimits _{j=1}^n \sum \nolimits _{k=1}^K \left[ \left( s_{j}^{p}-v_{i}^{p}-l_{\xi _{c_{ijk}^{p}}} \right) x_{ijk}^{p}\right. \\&\quad \left. -\left( l_{\xi _{f_{ijk}^{p}}} \right) y_{ijk}^{p} \right] ,\\ \bar{h}= & {} \sum \nolimits _{p=1}^r \sum \nolimits _{i=1}^m \sum \nolimits _{j=1}^n \sum \nolimits _{k=1}^K \left[ \left( s_{j}^{p}-v_{i}^{p}-h_{\xi _{c_{ijk}^{p}}} \right) x_{ijk}^{p}\right. \\&\quad \left. -\left( h_{\xi _{f_{ijk}^{p}}} \right) y_{ijk}^{p} \right] ,\\ \bar{l}= & {} \sum \nolimits _{p=1}^r \sum \nolimits _{i=1}^m \sum \nolimits _{j=1}^n \sum \nolimits _{k=1}^K \left[ \left( s_{j}^{p}-v_{i}^{p}-g_{\xi _{c_{ijk}^{p}}} \right) x_{ijk}^{p}\right. \\&\quad \left. -\left( g_{\xi _{f_{ijk}^{p}}} \right) y_{ijk}^{p} \right] \\ \overline{\overline{g}}= & {} \sum \nolimits _{p=1}^r \sum \nolimits _{i=1}^m \sum \nolimits _{j=1}^n \sum \nolimits _{k=1}^K \left[ \left( g_{\xi _{t_{ijk}^{p}}} \right) y_{ijk}^{p} \right] ,\\&\quad \overline{\overline{h}}=\sum \nolimits _{p=1}^r \sum \nolimits _{i=1}^m \sum \nolimits _{j=1}^n \sum \nolimits _{k=1}^K \left[ \left( h_{\xi _{t_{ijk}^{p}}} \right) y_{ijk}^{p} \right] \hbox { and} \\ \overline{\overline{l}}= & {} \sum \nolimits _{p=1}^r \sum \nolimits _{i=1}^m \sum \nolimits _{j=1}^n \sum \nolimits _{k=1}^K \left[ \left( l_{\xi _{t_{ijk}^{p}}} \right) y_{ijk}^{p} \right] . \end{aligned}$$

Proof

Considering the objective \(\mathcal {M}\left\{ \sum \nolimits _{p=1}^r \sum \nolimits _{i=1}^m \sum \nolimits _{j=1}^n\right. \left. \sum \nolimits _{k=1}^K \left[ \left( s_{j}^{p}-v_{i}^{p}-\xi _{c_{ijk}^{p}} \right) x_{ijk}^{p}-\left( \xi _{f_{ijk}^{p}} \right) y_{ijk}^{p} \right] \ge Z_{1}^{'} \right\} \), \(\xi _{c_{ijk}^{p}}\) and \(\xi _{f_{ijk}^{p}}\) are independent zigzag uncertain variables. \(x_{ijk}^{p},~ s_{j}^{p}\) and \(v_{i}^{p}\) are greater or equal to zero, and \(y_{ijk}^{p}\) are binary variables. Consequently, \(\mathcal {M}\left\{ \sum \nolimits _{p=1}^r \sum \nolimits _{i=1}^m \sum \nolimits _{j=1}^n \sum \nolimits _{k=1}^K\right. \left. \left[ \left( s_{j}^{p}-v_{i}^{p}-\xi _{c_{ijk}^{p}} \right) x_{ijk}^{p}-\left( \xi _{f_{ijk}^{p}} \right) y_{ijk}^{p} \right] \ge Z_{1}^{'} \right\} \) follows zigzag uncertainty distribution and therefore is a zigzag uncertain variable say \(\mathcal {Z}\left( \bar{g},\bar{h},\bar{l} \right) \), where \(\bar{g},\bar{h}\) and \(\bar{l}\) are defined above in (B6). Then, from Definition 2.2, and theorems A.2 and A.4, we write

$$\begin{aligned}&\mathcal {M}\left\{ \sum \nolimits _{p=1}^r \sum \nolimits _{i=1}^m \sum \nolimits _{j=1}^n \sum \nolimits _{k=1}^K \left[ \left( s_{j}^{p}-v_{i}^{p}-\xi _{c_{ijk}^{p}} \right) x_{ijk}^{p}\right. \right. \\&\left. \left. -\left( \xi _{f_{ijk}^{p}} \right) y_{ijk}^{p} \right] \ge Z_{1}^{'} \right\} \\&\quad \Leftrightarrow 1-\mathcal {M}\left\{ \mathcal {Z}\left( \bar{g},\bar{h},\bar{l} \right) \le Z_{1}^{'} \right\} =\nu _{Z_{1}^{'}}\\&\quad = \left\{ \begin{array}{l@{\quad }l} 1, &{} \mathrm{if}~ Z_{1}^{'}\le \bar{g}~ \\ \frac{2\bar{h}-\bar{g}-Z_{1}^{'}}{2\left( \bar{h}-\bar{g} \right) },&{} \mathrm{if}~ \bar{g}<Z_{1}^{'}\le \bar{h} \\ \frac{\bar{l}-Z_{1}^{'}}{2\left( \bar{l}-\bar{h} \right) },&{} \mathrm{if}~ \bar{h}<Z_{1}^{'}\le \bar{l} \\ 0,&{} \mathrm{if}~ Z_{1}^{'}>\bar{l}. \\ \end{array} \right. \end{aligned}$$

Similarly, for the second objective of model (11), \(\xi _{t_{ijk}^{p}}\)are independent zigzag uncertain variables. Hence, \(\mathcal {M}\left\{ \sum \nolimits _{p=1}^r \sum \nolimits _{i=1}^m \sum \nolimits _{j=1}^n \sum \nolimits _{k=1}^K \left[ \left( \xi _{t_{ijk}^{p}} \right) y_{ijk}^{p} \right] \le Z_{2}^{'} \right\} \) follows zigzag uncertainty distribution for a zigzag uncertain variable say \(\mathcal {Z}\left( \bar{\bar{g}},\bar{\bar{h}},\bar{\bar{l}} \right) \), where \(\bar{\bar{g}},\bar{\bar{h}}\) and \(\bar{\bar{l}}\) are defined above in model (B6). So, from Definition 2.2 and Theorem A.2 we have

$$\begin{aligned}&\mathcal {M}\left\{ \sum \nolimits _{p=1}^r \sum \nolimits _{i=1}^m \sum \nolimits _{j=1}^n \sum \nolimits _{k=1}^K \left[ \left( \xi _{t_{ijk}^{p}} \right) y_{ijk}^{p} \right] \le Z_{2}^{'} \right\} =\nu _{Z_{2}^{'}}\\&\quad =\left\{ {\begin{array}{l@{\quad }l} 0,&{} \mathrm{if}~ Z_{2}^{'}\le \overline{\overline{g}} \\ \frac{Z_{2}^{'}-\bar{\bar{g}}}{2\left( \bar{\bar{h}}-\bar{\bar{g}} \right) },&{} if\, \overline{\overline{g}}<Z_{2}^{'}\le \overline{\overline{h}} \\ \frac{Z_{2}^{'}+\overline{\overline{l}}-2\overline{\overline{h}}}{2\left( \overline{\overline{l}}-\overline{\overline{h}} \right) },&{} \mathrm{if}~ \overline{\overline{h}}<Z_{2}^{'}\le \overline{\overline{l}} \\ 1,&{} \mathrm{if}~ Z_{2}^{'}>\overline{\overline{l}}. \\ \end{array}} \right. \end{aligned}$$

Moreover, from Corollary B.1 (ii) the crisp transformations of the constraint set of model (11) become same to that of the constraint set of model (B3). Hence, it directly follows model (B6).

Theorem B.3

Le \(\xi _{c_{ijk}^{p}}\), \(\xi _{f_{ijk}^{p}}\), \(\xi _{t_{ijk}^{p}}{,}~ \xi _{a_{i}^{p}}{,}~ \xi _{b_{j}^{p}}{,}~ \xi _{e_{k}^{p}}\) and \(\xi _{B_{j}^{p}}\) are the independent normal uncertain variables of the form \(\mathcal {N}\left( \mu _{q},\sigma _{q} \right) \) with \(q\in \left\{ \xi _{c_{ijk}^{p}}\mathrm {,~ }\xi _{f_{ijk}^{p}}\mathrm {,~ }\xi _{t_{ijk}^{p}}{,}~ \xi _{a_{i}^{p}}{,}~ \xi _{b_{j}^{p}}{,}~ \xi _{e_{k}^{p}}\mathrm {,~ }\xi _{B_{j}^{p}} \right\} \). Then the crisp equivalent of model (11) is given in model (B7).

$$\begin{aligned} \left\{ {\begin{array}{l} \mathrm{Max}~ \nu _{Z_{1}^{'}}={1-\left( 1+\mathrm {exp}\left( \frac{\pi \left( \mu _{1}-Z_{1}^{'} \right) }{\sqrt{3} ~ \sigma _{1}} \right) \right) }^{-1}~ \\ Max{~ \nu }_{Z_{2}^{'}}=~ \left( 1+\mathrm {exp}\left( \frac{\pi \left( \mu _{2}-Z_{2}^{'} \right) }{\sqrt{3} ~ \sigma _{2}} \right) \right) ^{-1}~ \\ \mathrm{subject~ to~ the~ constraints}~\mathrm{of}~\mathrm{(B4)}.\\ \end{array}} \right. \end{aligned}$$
(B7)

Proof

Considering the first objective of model (11), i.e., \(\mathcal {M}\Big \{ \sum \nolimits _{p=1}^r \sum \nolimits _{i=1}^m \sum \nolimits _{j=1}^n \sum \nolimits _{k=1}^K \Big [ \Big ( s_{j}^{p}-v_{i}^{p}-\xi _{c_{ijk}^{p}} \Big )x_{ijk}^{p}-\Big ( \xi _{f_{ijk}^{p}} \Big )y_{ijk}^{p} \Big ] \ge Z_{1}^{'} \Big \}{,}~ \xi _{c_{ijk}^{p}}\) and \(\xi _{f_{ijk}^{p}}\) are independent normal uncertain variables. \(x_{ijk}^{p},~ s_{j}^{p}\) and \(v_{i}^{p}\) are greater or equal to zero, and \(y_{ijk}^{p}\) are binary variables. Then \(\sum \nolimits _{p=1}^r \sum \nolimits _{i=1}^m \sum \nolimits _{j=1}^n \sum \nolimits _{k=1}^K \Big [ \Big ( s_{j}^{p}-v_{i}^{p}-\xi _{c_{ijk}^{p}} \Big )x_{ijk}^{p}-\Big ( \xi _{f_{ijk}^{p}} \Big )y_{ijk}^{p} \Big ] \) can be considered as a normal uncertain variable \(\mathcal {N}\Big ( \mu _{1},\sigma _{1} \Big )\), such that \(\mu _{1}\) and \(\sigma _{1}\) are, respectively, \(\sum \nolimits _{p=1}^r \sum \nolimits _{i=1}^m \sum \nolimits _{j=1}^n \sum \nolimits _{k=1}^K \Big [ \Big ( s_{j}^{p}-v_{i}^{p}{-\mu }_{\xi _{c_{ijk}^{p}}} \Big )x_{ijk}^{p}+\Big ( \mu _{\xi _{f_{ijk}^{p}}} \Big )y_{ijk}^{p} \Big ] \) and \(\sum \nolimits _{p=1}^r \sum \nolimits _{i=1}^m \sum \nolimits _{j=1}^n \sum \nolimits _{k=1}^K \Big [ {\sigma _{\xi _{c_{ijk}^{p}}}}x_{ijk}^{p}+\sigma _{\xi _{f_{ijk}^{p}}}y_{ijk}^{p} \Big ] .\) Therefore, from Definition 2.3, and theorems A.3 and  A.4, \(\mathcal {M}\Big \{ \sum \nolimits _{p=1}^r \sum \nolimits _{i=1}^m \sum \nolimits _{j=1}^n \sum \nolimits _{k=1}^K \Big [ \Big ( s_{j}^{p}-v_{i}^{p}-\xi _{c_{ijk}^{p}} \Big )x_{ijk}^{p}-\Big ( \xi _{f_{ijk}^{p}} \Big )y_{ijk}^{p} \Big ] \ge Z_{1}^{'} \Big \}={1-\Big (1}{+\exp \Big ( \frac{\pi \Big ( \mu _{1}-Z_{1}^{'} \Big )}{\sqrt{3} ~ \sigma _{1}} \Big ) \Big )}^{-1}\).

Table 10 Unit purchase costs of items 1 and 2 at two different sources
Table 11 Unit selling prices of items 1 and 2 at three different destinations
Table 12 Transportation costs for item 1 and item 2 represented as zigzag and normal uncertain variables
Table 13 Fixed charge costs for item 1 and item 2 represented as zigzag and normal uncertain variables
Table 14 Transportation time for item 1 and item 2 represented as zigzag and normal uncertain variables

Similarly, for the second objective of model (11), \(\xi _{t_{ijk}^{p}}\) are the independent normal uncertain variables. Therefore, \(\mathcal {M}\Big \{ \sum \nolimits _{p=1}^r \sum \nolimits _{i=1}^m \sum \nolimits _{j=1}^n \sum \nolimits _{k=1}^K \Big [ \xi _{t_{ijk}^{p}}y_{ijk}^{p} \Big ] \le Z_{2}^{'} \Big \}\) is a normal uncertain variable, \(\mathcal {N}\Big ( \mu _{2},\sigma _{2} \Big )\) such that \(\mu _{2}\) and \(\sigma _{2}\) are, respectively, \(\sum \nolimits _{p=1}^r \sum \nolimits _{i=1}^m \sum \nolimits _{j=1}^n \sum \nolimits _{k=1}^K \Big [ \mu _{\xi _{t_{ijk}^{p}}}y_{ijk}^{p} \Big ] \) and \(\sum \nolimits _{p=1}^r \sum \nolimits _{i=1}^m \sum \nolimits _{j=1}^n \sum \nolimits _{k=1}^K \Big [ \sigma _{\xi _{t_{ijk}^{p}}}y_{ijk}^{p} \Big ] \).

Accordingly, from Definition 2.3, and theorems A.3 and A.4, \(\mathcal {M}\Big \{ \sum \nolimits _{p=1}^r \sum \nolimits _{i=1}^m \sum \nolimits _{j=1}^n \sum \nolimits _{k=1}^K \Big [ \xi _{t_{ijk}^{p}}y_{ijk}^{p} \Big ] \le Z_{2}^{'} \Big \}=\Big ( 1+\mathrm {exp}\Big ( \frac{\pi \Big ( \mu _{2}-Z_{2}^{'} \Big )}{\sqrt{3} ~ \sigma _{2}} \Big ) \Big )^{-1}.\) Further, from Corollary B.2 the crisp transformations of the constraints of model (11) becomes same to that of the constraint set of model (B4). Hence, the model (B7) follows directly.

Appendix C

Data tables for input parameters

The input parameters related to UMMFSTPwB are reported in tables 1011121314151617 and 18. The parameters shown in tables 10 and 11 are crisp. The parameters, presented in tables 121314151617 and 18 are uncertain. These uncertain parameters are represented as: (i) zigzag uncertain variables and (ii) normal uncertain variables.

Table 15 Available amounts of item 1 and item 2 represented as zigzag and normal uncertain variables
Table 16 Demands for item 1 and item 2 represented as zigzag and normal uncertain variables
Table 17 Transportation capacities of two conveyances expressed as zigzag and normal uncertain variables
Table 18 Budget availability at destinations represented as zigzag and normal uncertain variables

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Majumder, S., Kundu, P., Kar, S. et al. Uncertain multi-objective multi-item fixed charge solid transportation problem with budget constraint. Soft Comput 23, 3279–3301 (2019). https://doi.org/10.1007/s00500-017-2987-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00500-017-2987-7

Keywords

Navigation