Skip to main content

States, state operators and quasi-pseudo-MV algebras

  • Foundations
  • Published:
Soft Computing Aims and scope Submit manuscript

Abstract

Quasi-pseudo-MV algebras (quasi-pMV algebras, for short) arising from quantum computational logics are the generalizations of both quasi-MV algebras and pseudo-MV algebras. In this paper, we introduce the notions of states, state-morphisms, state operators and state-morphism operators to quasi-pMV algebras. First, we present the related properties of states on quasi-pMV algebras and show that states and Bosbach states coincide on any quasi-pMV algebra. And then we investigate the relationship between state-morphisms and the normal and maximal ideals of quasi-pMV algebras. We prove state-morphisms and extremal states are equivalent. The existence of states on quasi-pMV algebras is also discussed. Finally, state operators and state-morphism operators are introduced to quasi-pMV algebras, and the corresponding structures are called state quasi-pMV algebras and state-morphism quasi-pMV algebras, respectively. We investigate the related properties of ideals under state operators and state-morphism operators. Meanwhile, we show that there is a bijective correspondence between normal \(\sigma \)-ideals and ideal congruences on state quasi-pMV algebras.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

Notes

  1. A word of caution is necessary here. We define “locally finite" as the similar notion of MV-algebras. However, in the usual algebraic meaning, “locally finite" is used as “finitely generated subalgebras are finite".

  2. In a quasi-pMV algebra, if \(0=1\), then it is called flat.

References

  • Bou F, Paoli F, Ledda A, Freytes H (2008) On some properties of quasi-MV algebras and \(\sqrt{^{\prime }}\)quasi-MV algebras. Part II. Soft Comput 12(4):341–352

    Article  Google Scholar 

  • Bou F, Paoli F, Ledda A, Spinks M, Giuntini R (2010) The logic of quasi-MV algebras. J Logic Comput 20(2):619–643

    Article  MathSciNet  Google Scholar 

  • Cattaneo G, Dalla Chiara ML, Giuntini R (2004a) An unsharp logic from quantum computation. Int J Theor Phys 43:1803–1817

    Article  MathSciNet  Google Scholar 

  • Cattaneo G, Dalla Chiara ML, Giuntini R, Leporini R (2004b) Quantum computational structures. Math Slovaca 54:87–108

    MathSciNet  MATH  Google Scholar 

  • Chang CC (1958) Algebraic analysis of many valued logics. Trans Am Math Soc 88:467–490

    Article  MathSciNet  Google Scholar 

  • Chen WJ, Davvaz B (2016) Some classes of quasi-pseudo-MV algebras. Logic Jnl IGPL 24(5):655–673

    Article  MathSciNet  Google Scholar 

  • Chen WJ, Dudek WA (2015) The representation of square root quasi-pseudo-MV algebras. Soft Comput 19(2):269–282

    Article  Google Scholar 

  • Chen WJ, Dudek WA (2016) Quantum computational algebra with a non-commutative generalization. Math Slovaca 66(1):19–34

    MathSciNet  MATH  Google Scholar 

  • Chen WJ, Dudek WA (2017) Ideals and congruences in quasi-pseudo-MV algebras. Soft Comput. https://doi.org/10.1007/s00500-017-2854-6

    Article  Google Scholar 

  • Ciungu LC (2008) Bosbach and Riecan states on residuated lattices. J Appl Funct Anal 3(2):175–188

    MathSciNet  MATH  Google Scholar 

  • Ciungu LC, Dvurecenskij A (2009) Measures, states and de Finetti maps on pseudo-BCK algebras. Fuzzy Sets Syst 161:2870–2896

    Article  MathSciNet  Google Scholar 

  • Ciungu LC (2013) Bounded pseudo-hoops with internal states. Math Slovaca 63:903–934

    Article  MathSciNet  Google Scholar 

  • Ciungu LC (2015) Internal states on equality algebras. Soft Comput 19(4):939–953

    Article  Google Scholar 

  • Di Nola A, Dvurecenskij A (2009) State-morphism MV-algebras. Ann Pure Appl Logic 161:161–173

    Article  MathSciNet  Google Scholar 

  • Dvurecenskij A (1999) Measures and states on BCK-algebras. Atti del Sem Mat Fisico Univ Modena 47:511–528

    MathSciNet  MATH  Google Scholar 

  • Dvurecenskij A (2001) States on pseudo MV-algebras. Stud Log 68:301–327

    Article  MathSciNet  Google Scholar 

  • Dvurecenskij A (2002) Pseudo MV-algebras are intervals in \(l\)-groups. J Austral Math Soc 72:427–445

    Article  MathSciNet  Google Scholar 

  • Dvurecenskij A, Rachunek J (2006a) Probabilistic averaging in bounded commutative residuated \(l\)-monoids. Discrete Math 306:1317–1326

    Article  MathSciNet  Google Scholar 

  • Dvurecenskij A, Rachunek J (2006b) Probabilistic averaging in bounded non-commutative R\(l\)-monoids. Semigroup Forum 72:190–206

    Article  MathSciNet  Google Scholar 

  • Dvurecenskij A, Rachunek J (2006c) On Riecan and Bosbach states for bounded non-commutative R\(l\)-monoids. Math Slovaca 56:487–500

    MathSciNet  MATH  Google Scholar 

  • Dymek G, Walendziak A (2007) Semisimple, archimedean, and semilocal pseudo MV-algebras. Scientiae Mathematicae Japonicae Online, pp 315–324

  • Flaminio T, Montagna F (2009) MV algebras with internal states and probabilistic fuzzy logics. Int J Approx Reason 50:138–152

    Article  MathSciNet  Google Scholar 

  • Georgescu G, Iorgulescu A (2001) Pseudo-MV algebras. Mult Val Logic 6:95–135

    MathSciNet  MATH  Google Scholar 

  • Georgescu G (2004) Bosbach states on fuzzy structures. Soft Comput 8:217–230

    Article  MathSciNet  Google Scholar 

  • Giuntini R, Ledda A, Paoli F (2007) Expanding quasi-MV algebras by a quantum operator. Stud Log 87:99–128

    Article  MathSciNet  Google Scholar 

  • He PF, Xin XL, Yang YW (2015) On state residuated lattices. Soft Comput 19:2083–2094

    Article  Google Scholar 

  • He PF, Zhao B, Xin XL (2017) States and internal states on semihoops. Soft Comput 21(11):2941–2957

    Article  Google Scholar 

  • Jipsen P, Ledda A, Panli F (2013) On some properties of quasi-MV algebras and \(\sqrt{^{\prime }}\) quasi-MV algebras. Part IV. Rep Math Logic 48:3–36

    MathSciNet  MATH  Google Scholar 

  • Kowalski T, Paoli F (2010) On some properties of quasi-MV algebras and \(\sqrt{^{\prime }}\)quasi-MV algebras. Part III. Rep Math Logic 45:161–199

    MathSciNet  MATH  Google Scholar 

  • Kowalski T, Paoli F (2011) Joins and subdirect products of varieties. Algebra Univ 65:371–391

    Article  MathSciNet  Google Scholar 

  • Kowalski T, Paoli F, Spinks M (2011) Quasi-subtractive varieties. J Symb Logic 76(4):1261–1286

    Article  MathSciNet  Google Scholar 

  • Ledda A, Konig M, Paoli F, Giuntini R (2006) MV algebras and quantum computation. Stud Log 82:245–270

    Article  MathSciNet  Google Scholar 

  • Leustean I (2001) Local pseudo MV-algebras. Soft Comput 5:386–395

    Article  Google Scholar 

  • Mundici D (1995) Averaging the truth-value in Lukasiewicz logic. Stud Log 55:113–127

    Article  Google Scholar 

  • Paoli F, Ledda A, Giuntini R, Freytes H (2009) On some properties of quasi-MV algebras and \(\sqrt{^{\prime }}\)quasi-MV algebras. Part I. Rep Math Logic 44:31–63

    MATH  Google Scholar 

  • Paoli F, Ledda A, Spinks M, Freytes H, Giuntini G (2011) Logics from \(\sqrt{^{\prime }}\) quasi-MV algebras. Int J Theor Phys 50:3882–3902

    Article  MathSciNet  Google Scholar 

  • Pulmannova S, Vincekova E (2014) State-morphism pseudo-effect algebras. Soft Comput 18:5–13

    Article  Google Scholar 

  • Pulmannova S, Vincekova E (2015) MV-pair and state operators. Fuzzy Set Syst 260:62–76

    Article  MathSciNet  Google Scholar 

  • Rachunek J (2002) A non-commutative generalization of MV-algebras. Czechoslovak Math J 52(127):255–273

    Article  MathSciNet  Google Scholar 

  • Rachunek J, Salounova D (2011) State operators on GMV algebras. Soft Comput 15:327–334

    Article  Google Scholar 

  • Riecan B (2000) On the probability on BL-algebras. Acta Math Nitra 4:3–13

    Google Scholar 

  • Turunen E, Mertanen J (2008a) States on semi-divisible residuated lattices. Soft Comput 12:353–357

    Article  Google Scholar 

  • Turunen E, Mertanen J (2008b) States on semi-divisible generalized residuated lattices reduce to states on MV-algebras. Fuzzy Sets Syst 159:3051–3064

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

This study was funded by the National Natural Science Foundation of China (Grant No. 11501245), China Postdoctoral Science Foundation (No. 2017M622177) and Shandong Province Postdoctoral Innovation Projects of Special Funds (No. 201702005).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wenjuan Chen.

Ethics declarations

Conflict of interest

Author A declares that she has no conflict of interest. Author B declares that he has no conflict of interest.

Ethical standard

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Communicated by A. Di Nola.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, W., Dudek, W.A. States, state operators and quasi-pseudo-MV algebras. Soft Comput 22, 8025–8040 (2018). https://doi.org/10.1007/s00500-018-3069-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00500-018-3069-1

Keywords