Skip to main content
Log in

Model-aware categorical data embedding: a data-driven approach

  • Focus
  • Published:
Soft Computing Aims and scope Submit manuscript

Abstract

Learning from categorical data is a critical yet challenging task. Current research focuses on either leveraging the complex interaction between and within categorical values to generate a numerical representation, or designing a model that can tackle this types of data directly. However, both of these paradigms overlook the relation between the data characteristics and learning model hypothesis. In this paper, we propose a model-aware categorical data embedding framework that jointly reveals the intrinsic categorical data characteristics and optimizes the fitness of the representation for the follow-up learning model. An ELM-aware and a SVM-aware representation methods have been instantiated under this framework. Extensive experiments of classification with the embedded representation on 17 data sets demonstrate that the proposed framework can significantly improve the categorical data representation performance compared with state-of-the-art competitors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Notes

  1. The meaning of symbol styles in this paper is as follows: element: lowercase with Sans Serif font; value: lowercase; vector: lowercase with bold font; matrix: uppercase with bold font; set: uppercase; function: lowercase with parentheses; space: uppercase with calligraphic font; value index: subscript; attribute index: superscript with parenthesis.

  2. The data sets can be downloaded from: http://archive.ics.uci.edu/ml; https://www.sgi.com/tech/mlc/db; https://www.kaggle.com.

References

  • Ahmad A, Dey L (2007) A method to compute distance between two categorical values of same attribute in unsupervised learning for categorical data set. Pattern Recogn Lett 28(1):110–118

    Article  Google Scholar 

  • Bengio Y, Courville A, Vincent P (2013) Representation learning: A review and new perspectives. IEEE Trans Pattern Anal Mach Intell 35(8):1798–1828

    Article  Google Scholar 

  • Boriah S, Chandola V, Kumar V (2008) Similarity measures for categorical data: a comparative evaluation. In: SIAM international conference on data mining. SIAM, pp 243–254

  • Cao L (2015) Coupling learning of complex interactions. Inf Process Manag 51(2):167–186

    Article  Google Scholar 

  • Cao L, Ou Y, Philip SY (2012a) Coupled behavior analysis with applications. IEEE Trans Knowl Data Eng 24(8):1378–1392

    Article  Google Scholar 

  • Cao F, Liang J, Li D, Bai L, Dang C (2012b) A dissimilarity measure for the k-modes clustering algorithm. Knowl Based Syst 26:120–127

    Article  Google Scholar 

  • Cao W, Wang X, Ming Z, Gao J (2018) A review on neural networks with random weights. Neurocomputing 275:278–287

    Article  Google Scholar 

  • Cheng V, Li C-H, Kwok JT, Li C-K (2004) Dissimilarity learning for nominal data. Pattern Recogn 37(7):1471–1477

    Article  Google Scholar 

  • Cheung Y-M, Jia H (2013) Categorical-and-numerical-attribute data clustering based on a unified similarity metric without knowing cluster number. Pattern Recogn 46(8):2228–2238

    Article  MATH  Google Scholar 

  • Cuturi M, Avis D (2014) Ground metric learning. J Mach Learn Res 15(1):533–564

    MathSciNet  MATH  Google Scholar 

  • Ding S, Zhang N, Zhang J, Xinzheng X, Shi Z (2017) Unsupervised extreme learning machine with representational features. Int J Mach Learn Cybern 8(2):587–595

    Article  Google Scholar 

  • Gärtner T, Lloyd JW, Flach PA (2004) Kernels and distances for structured data. Mach Learn 57(3):205–232

    Article  MATH  Google Scholar 

  • Goodall DW (1966) A new similarity index based on probability. Biometrics 22(4):882–907

    Article  Google Scholar 

  • Grabczewski K, Jankowski N (2003) Transformations of symbolic data for continuous data oriented models. In: Lecture notes in computer science, pp 359–366

  • He Y, Chen W, Chen Y, Mao Y (2013) Kernel density metric learning. In: 2013 IEEE 13th international conference on data mining (ICDM). IEEE, pp 271–280

  • Huang G-B, Zhu Q-Y, Siew C-K (2006) Extreme learning machine: theory and applications. Neurocomputing 70(1):489–501

    Article  Google Scholar 

  • Huang G-B, Zhou H, Ding X (2012) Extreme learning machine for regression and multiclass classification. IEEE Trans Syst Man Cybern Part B (Cybernetics) 42(2):513–529

    Article  Google Scholar 

  • Ienco D, Pensa RG, Meo R (2012) From context to distance: learning dissimilarity for categorical data clustering. ACM Trans Knowl Discov Data 6(1):1–25

    Article  Google Scholar 

  • Jain P, Kulis B, Davis JV, Dhillon IS (2012) Metric and kernel learning using a linear transformation. J Mach Learn Res 13(Mar):519–547

    MathSciNet  MATH  Google Scholar 

  • Jia H, Cheung Y, Liu J (2016) A new distance metric for unsupervised learning of categorical data. IEEE Trans Neural Netw Learn Syst 27(5):1065–1079

    Article  MathSciNet  Google Scholar 

  • Kullback S, Leibler RA (1951) On information and sufficiency. Ann Math Stat 22(1):79–86

    Article  MathSciNet  MATH  Google Scholar 

  • Le SQ, Ho TB (2005) An association-based dissimilarity measure for categorical data. Pattern Recogn Lett 26(16):2549–2557

    Article  Google Scholar 

  • Lim D, Lanckriet G (2014) Efficient learning of mahalanobis metrics for ranking. In: International conference on machine learning, pp 1980–1988

  • Lim D, Lanckriet GRG, McFee B (2013) Robust structural metric learning. In: International conference on machine learning, pp 615–623

  • Liu M, Liu B, Zhang C, Wang W, Sun W (2017) Semi-supervised low rank kernel learning algorithm via extreme learning machine. Int J Mach Learn Cybern 8(3):1039–1052

    Article  Google Scholar 

  • Liu W, Mu C, Ji R, Ma S, Smith JR, Chang S-F (2015) Low-rank similarity metric learning in high dimensions. In: Twenty-ninth AAAI conference on artificial intelligence, pp 2792–2799

  • Mao W, Wang J, Xue Z (2017) An elm-based model with sparse-weighting strategy for sequential data imbalance problem. Int J Mach Learn Cybern 8(4):1333–1345

    Article  Google Scholar 

  • Ng M, Li MJ, Huang JZ, He Z (2007) On the impact of dissimilarity measure in k-modes clustering algorithm. IEEE Trans Pattern Anal Mach Intell 29(3):503–507

    Article  Google Scholar 

  • Peng S, Hu Q, Chen Y, Dang J (2015) Improved support vector machine algorithm for heterogeneous data. Pattern Recogn 48(6):2072–2083

    Article  MATH  Google Scholar 

  • Shi Y, Li W, Sha F (2016) Metric learning for ordinal data. In: Thirtieth AAAI conference on artificial intelligence. AAAI Press, pp 2030–2036

  • Stanfill C, Waltz D (1986) Toward memory-based reasoning. Commun ACM 29(12):1213–1228

    Article  Google Scholar 

  • van der Maaten L, Hinton G (2008) Visualizing data using t-sne. J Mach Learn Res 9(Nov):2579–2605

    MATH  Google Scholar 

  • Vapnik VN (1998) Statistical learning theory, vol 1. Wiley, New York

    MATH  Google Scholar 

  • Wang C, She Z, Cao L (2013) Coupled attribute analysis on numerical data. In: Twenty-third international joint conference on artificial intelligence, pp 1736–1742

  • Wang C, Dong X, Zhou F, Cao L, Chi CH (2015) Coupled attribute similarity learning on categorical data. IEEE Trans Neural Netw Learn Syst 26(4):781

    Article  MathSciNet  Google Scholar 

  • Weinberger KQ, Saul LK (2009) Distance metric learning for large margin nearest neighbor classification. J Mach Learn Res 10(Feb):207–244

    MATH  Google Scholar 

  • Wilson RD, Martinez TR (1997) Improved heterogeneous distance functions. J Artif Intell Res 6(1):1–34

    MathSciNet  MATH  Google Scholar 

  • Xie J, Szymanski BK, Zaki MJ (2013) Learning dissimilarities for categorical symbols. In: JMLR: workshop on feature selection in data mining. JMLR.org, pp 2228–2238

  • Xue J, Zhou SH, Liu Q, Liu X, Yin J (2017) Financial time series prediction using l2, 1rf-elm. Neurocomputing 277:176–186

  • Xue J, Liu Q, Li M, Liu X, Ye Y, Wang S, Yin J (2018) Incremental multiple kernel extreme learning machine and its application in Robo-advisors. Soft Computing. https://doi.org/10.1007/s00500-018-3031-2

  • Ye H-J, Zhan D-C, Jiang Y (2016) Instance specific metric subspace learning: a bayesian approach. In: Thirtieth AAAI conference on artificial intelligence, pp 2272–2278

  • Ying Y, Li P (2012) Distance metric learning with eigenvalue optimization. J Mach Learn Res 13(Jan):1–26

    MathSciNet  MATH  Google Scholar 

  • Zhai J, Zhang S, Wang C (2017) The classification of imbalanced large data sets based on mapreduce and ensemble of elm classifiers. Int J Mach Learn Cybern 8(3):1009–1017

    Article  Google Scholar 

  • Zhang K, Wang Q, Chen Z, Marsic I, Kumar V, Jiang G, Zhang J (2015) From categorical to numerical: Multiple transitive distance learning and embedding. In: SIAM international conference on data mining. SIAM, pp 46–54

  • Zhu C, Cao L, Liu Q, Yin J, Kumar V (2018) Heterogeneous metric learning of categorical data with hierarchical couplings. IEEE Trans Knowl Data Eng. https://doi.org/10.1109/TKDE.2018.2791525

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China under Grant 61672528 and 61773392.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jianping Yin.

Ethics declarations

Conflicts of interest

The authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Communicated by X. Wang, A.K. Sangaiah, M. Pelillo.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, W., Li, Q., Zhu, C. et al. Model-aware categorical data embedding: a data-driven approach. Soft Comput 22, 3603–3619 (2018). https://doi.org/10.1007/s00500-018-3170-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00500-018-3170-5

Keywords

Navigation