Skip to main content

Advertisement

Log in

Novel elegant fuzzy genetic algorithms in classification problems

  • Methodologies and Application
  • Published:
Soft Computing Aims and scope Submit manuscript

Abstract

In this paper, we propose three novel algorithms such as Novel genetic algorithm complex-valued backpropagation neural network (GA-CVBNN), Novel elegant fuzzy genetic algorithm (EFGA) and elegant fuzzy genetic algorithm-based complex-valued backpropagation neural network (EFGA-CVBNN) for classification of accuracy in datasets. In GA-CVBNN, classical Genetic Algorithm has been used for selecting appropriate initial weights for CVBNN. The EFGA is developed to resolve the drawback of classical GA by employing fuzzy logic to control parameters and selective pressure of GA. The EFGA uses a Min-Heap data structure and Pareto principle to improve the classical genetic algorithm. The EFGA-CVBNN resolves the drawbacks of classical CVBNN by employing EFGA at the time of initial weight selection. From the simulation result, the GA-CVBNN performs better than existing CVBNN and it is not efficient. To enhance the performance of GA-CVBNN, we have developed EFGA-CVBNN. Experimental results on various synthetic datasets and benchmark datasets taken from UCI machine learning repository shows that EFGA-CVBNN outperforms PSO-CVBNN in terms of classification accuracy and time. Statistical t test has been used to validate the obtained results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

Similar content being viewed by others

References

  • Aguilar-Ruiz JS, Girldez R, Riquelme JC (2007) Natural encoding for evolutionary supervised learning. IEEE Trans Evol Comput 11(4):466–479

    Article  Google Scholar 

  • Aizenberg I (2011) Complex-valued neural networks with multi-valued neurons. Springer, Berlin

    Book  MATH  Google Scholar 

  • Alonso JM, Alvarruiz F, Desantes JM, Hernandez L, Hernandez V, Molto G (2007) Combining neural networks and genetic algorithms to predict and reduce diesel engine emissions. IEEE Trans Evol Comput 11(1):46–55

    Article  Google Scholar 

  • Amin MF, Islam MM, Murase K (2008) Single-layered complex-valued neural networks and their ensembles for real-valued classification problems. In: 2008 IEEE international joint conference on neural networks, Hong Kong. pp 2500–2506

  • Bacardit J, Goldberg DE, Butz MV (2007) Improving the performance of a pittsburgh learning classifier system using a default rule, learning classifier systems. Springer, Berlin, pp 291–307

    Google Scholar 

  • Bernad-Mansilla E, Garrell-Guiu JM (2003) Accuracy-based learning classifier systems: models, analysis and applications to classification tasks. Evol Comput 11(3):209–238

    Article  Google Scholar 

  • Bhanu B, Lee S (2012) Genetic learning for adaptive image segmentation. Springer, Berlin

    MATH  Google Scholar 

  • Che A, Wu P, Chu F, Zhou M (2005) Improved quantum-inspired evolutionary algorithm for large-size lane reservation. IEEE Trans Syst Man Cybern Syst 45(12):1535–1548

    Article  Google Scholar 

  • Chi Y, Sun F, Jiang L, Yu C (2012) An efficient population diversity measure for improved particle swarm optimization algorithm. In: 2012 6th IEEE international conference intelligent systems (IS). IEEE

  • Ding Z, Liu J, Sun Y, Jiang C, Zhou M (2015) A transaction and QoS-aware service selection approach based on genetic algorithm. IEEE Trans Syst Man Cybern Syst 45(7):1035–1046

    Article  Google Scholar 

  • Fernndez A, Garcia S, Luengo J, Bernado-Mansilla E, Herrera F (2010) Genetics-based machine learning for rule induction: state of the art, taxonomy, and comparative study. IEEE Trans Evol Comput 14(16):913–941

    Article  Google Scholar 

  • Hamidzadeh J, Zabihimayvan M, Sadeghi R (2017) Detection of web site visitors based on fuzzy rough sets. Soft Comput. https://doi.org/10.1007/s00500-016-2476-4

    Article  Google Scholar 

  • Hirose A (2009) Complex-valued neural networks: the merits and their origins. In: 2009 International joint conference on neural networks. pp 1237–1244

  • Hirose A, Yoshida S (2012) Generalization characteristics of complex-valued feed forward neural networks in relation to signal coherence. IEEE Trans Neural Netw Learn Syst 23(4):541–551

    Article  Google Scholar 

  • Holland JH (1992) Genetic algorithms. Sci Am 267(1):66–72

    Article  Google Scholar 

  • Huynh DC, Dunnigan MW (2010) Parameter estimation of an induction machine using advanced particle swarm optimisation algorithms. IET Electr Power Appl 4(9):748–760

    Article  Google Scholar 

  • Ishibuchi H, Nojima Y (2007) Analysis of interpretability-accuracy tradeoff of fuzzy systems by multiobjective fuzzy genetics-based machine learning. Int J Approx Reason 44(1):4–31

    Article  MathSciNet  MATH  Google Scholar 

  • Ishibuchi H, Yamamoto T, Nakashima T (2005) Hybridization of fuzzy GBML approaches for pattern classification problems. IEEE Trans Syst Man Cybern B Cybern 35(2):359–365

    Article  Google Scholar 

  • Kennedy J (2011) Particle swarm optimization. Encyclopedia of machine learning. Springer, New York, pp 760–766

    Google Scholar 

  • Lam HK (2010) Chaotic synchronisation using output/full state-feedback polynomial controller. IET Control Theory Appl 4(11):2285–2292

    Article  MathSciNet  Google Scholar 

  • Lam HK (2013) Output-feedback tracking control for polynomial fuzzy-model-based control systems. IEEE Trans Ind Electron 60(12):5830–5840

    Article  Google Scholar 

  • Lee CC (1990) Fuzzy logic in control systems: fuzzy logic controller. IEEE Trans Syst Man Cybern 20(2):419–435

    Article  MathSciNet  MATH  Google Scholar 

  • Lei J, You X, Abdel-Mottaleb M (2016) Automatic ear landmark localization, segmentation, and pose classification in range images. IEEE Trans Syst Man Cybern Syst 46(2):165–176

    Article  Google Scholar 

  • Liang J, Qin AK, Suganthan PN, Baskar S (2006) Comprehensive learning particle swarm optimizer for global optimization of multimodal functions. IEEE Trans Evol Comput 10(3):281–295

    Article  Google Scholar 

  • Lin HJ, Yang FW, Kao YT (2005) An efficient GA-based clustering technique. Tamkang J Sci Eng 8(2):113–122

    Google Scholar 

  • Lin CT, Prasad M, Saxena A (2015) An improved polynomial neural network classifier using real-coded genetic algorithm. IEEE Trans Syst Man Cybern Syst 45(11):1389–1401

    Article  Google Scholar 

  • Lu Q, Han Q, Liu S (2014) A finite-time particle swarm optimization algorithm for odor source localization. Inf Sci 277:111–140

    Article  MathSciNet  MATH  Google Scholar 

  • Mamdani EH, Assilian S (1975) An experiment in linguistic synthesis with a fuzzy logic controller. Int J Man Mach Stud 7(1):1–13

    Article  MATH  Google Scholar 

  • Nagham Azmi AL, Tajudin Khader A (2008) De Jongs sphere model test for a social-based genetic algorithm (SBGA). IJCSNS Int J Comput Sci Netw Secur 8(3):179–185

    Google Scholar 

  • Nitta T (1997) An extension of the back-propagation algorithm to complex numbers. Neural Netw 10(9):1391–1415

    Article  Google Scholar 

  • Nitta T (2003) Solving the XOR problem and the detection of symmetry using a single complex-valued neuron. Neural Netw 16(8):1101–1105

    Article  MathSciNet  Google Scholar 

  • Nitta T (2004) Orthogonality of decision boundaries in complex-valued neural networks. Neural Comput 16(1):73–97

    Article  MATH  Google Scholar 

  • Nitta T (2009) Complex-valued neural networks: utilizing high-dimensional parameters. IGI Global, Hershey

    Book  Google Scholar 

  • Obaid OI, Ahmad M, Mostafa SA, Mohammedu MA (2012) Comparing performance of genetic algorithm with varying crossover in solving examination timetabling problem. J Emerg Trends Comput Inf Sci 3(10):1427–1434

    Google Scholar 

  • Oh SK, Pedrycz W, Park HS (2006) Genetically optimized fuzzy polynomial neural networks. IEEE Trans Fuzzy Syst 14(1):125–144

    Article  Google Scholar 

  • Oong TH, Isa NAM (2011) Adaptive evolutionary artificial neural networks for pattern classification. IEEE Trans Neural Netw 22(11):1823–1836

    Article  Google Scholar 

  • Orriols-Puig A, Casillas J, Bernad-Mansilla E (2008) Genetic-based machine learning systems are competitive for pattern recognition. Evol Intell 1(3):209–232

    Article  Google Scholar 

  • Palmes PP, Hayasaka T, Usui S (2005) Mutation-based genetic neural network. IEEE Trans Neural Netw 16(3):587–600

    Article  Google Scholar 

  • Patrikar A, Provence J (1992) Pattern classification using polynomial networks. Electron Lett 28(12):1109–1110

    Article  MATH  Google Scholar 

  • Ramot D, Friedman M, Langholz G, Kandel A (2003) Complex fuzzy logic. IEEE Trans Fuzzy Syst 11(4):450–461

    Article  Google Scholar 

  • Rudolph G (1994) Convergence analysis of canonical genetic algorithms. IEEE Trans Neural Netw 5(1):96–101

    Article  Google Scholar 

  • Sadeghi R, Hamidzadeh J (2016) Automatic support vector data description. Soft Comput. https://doi.org/10.1007/s00500-016-2317-5

    Article  Google Scholar 

  • Savitha R, Suresh S, Sundararajan N (2011) A fast learning complex-valued neural classifier for real-valued classification problems. In: The 2011 international joint conference on neural networks. IEEE, pp 2243–2249

  • Telbany MEE, Refat S (2016) Complex-valued neural networks training: a particle swarm optimization strategy. Int J Adv Comput Sci Appl 7(1):627–632

    Google Scholar 

  • Wilson SW (1995) Classifier fitness based on accuracy. Evol Comput 3(2):149–175

    Article  MathSciNet  Google Scholar 

  • Wu S, Chiou Y, Lee S (2014) Multi-valued neuron with sigmoid activation function for pattern classification. J Comput Commun 2(4):172–181

    Article  Google Scholar 

  • Xu XX, Lei L (2011) The research of advances in adaptive genetic algorithm. In: 2011 IEEE international conference on signal processing, communications and computing (ICSPCC). IEEE

  • Yuen SY, Chow CK (2009) A genetic algorithm that adaptively mutates and never revisits. IEEE Trans Evol Comput 13(2):454–472

    Article  Google Scholar 

  • Zhang J, Zhu X, Wang W, Yao J (2014) A fast restarting particle swarm optimizer. In: 2014 IEEE congress on evolutionary computation (CEC). IEEE

  • Zhu X, Wu X (2004) Class noise vs. attribute noise: a quantitative study of their impacts. Artif Intell Rev 22:177–210

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Sakthivel.

Ethics declarations

Conflict of interest

All authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Communicated by V. Loia.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Venkatanareshbabu, K., Nisheel, S., Sakthivel, R. et al. Novel elegant fuzzy genetic algorithms in classification problems. Soft Comput 23, 5583–5603 (2019). https://doi.org/10.1007/s00500-018-3216-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00500-018-3216-8

Keywords

Navigation