Skip to main content
Log in

Acceptably consistent incomplete interval-valued intuitionistic multiplicative preference relations

  • Focus
  • Published:
Soft Computing Aims and scope Submit manuscript

Abstract

We study the consistency property, and especially the acceptably consistent property, for incomplete interval-valued intuitionistic multiplicative preference relations. We propose a technique which first estimates the initial values for all missing entries in an incomplete interval-valued intuitionistic multiplicative preference relation and then improves them by a local optimization method. Two examples are presented in order to illustrate applications of the proposed method in group decision-making problems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. In Saaty (1977), the MPRs assessed on the discrete \((1/9){-}9\) scale has values only in the set \(\{1/9, 1/8, 1/7,\ldots , 1/2, 1, 2, \ldots , 7, 8, 9\}.\)

  2. Saaty (2001) showed that \(\beta =0.05\) and \(\beta =0.08\) are quite reasonable for \(n=3\) and \(n=4\), respectively, for acceptably consistent aggregated matrix computed by geometric mean. Note, \(\beta =0.1\) in Definition 3.

  3. Aczél and Saaty (1983) proved that to synthesize the group judgments, the geometric mean must be used in order to preserve the reciprocal property, that is, \(r_{ij}r_{ji}=1,\; \forall \; i,j\in N,\) must hold in the resultant aggregated matrix. Note that the weighted geometric mean preserves reciprocality on aggregation resulting in an aggregated MPR, while the same gets distorted if instead arithmetic mean is used for aggregating two or more MPRs.

References

  • Aczél J, Saaty TL (1983) Procedures for synthesizing ratio judgments. J Math-Mat Psychol 27:93–102

    Article  Google Scholar 

  • Alonso S, Chiclana F, Herrera F, Herrera-viedma E, Alcala-Fernadez J, Porcel C (2008) A consistency based procedure to estimate missing pairwise preference values. Int J Intell Syst 23:155–175

    Article  Google Scholar 

  • Alonso S, Herrera-Viedma E, Chiclana F, Herrera F (2010) A web based consensus support system for group decision making problems and incomplete preferences. Inf Sci 180:4477–4495

    Article  MathSciNet  Google Scholar 

  • Atanassov, K. (2012). On intuitionistic fuzzy sets theory. Springer, Berlin

    Chapter  Google Scholar 

  • Atanassov K, Gargov G (1989) Interval valued intuitionistic fuzzy sets. Fuzzy Sets Syst 31:343–349

    Article  MathSciNet  Google Scholar 

  • Brans JP, Vincke P (1985) A preference ranking organization method. Manag Sci 31:647–656

    Article  Google Scholar 

  • Chen SM, Lin TE, Lee LW (2014) Group decision making using incomplete fuzzy preference relations based on the additive consistency and the order consistency. Inf Sci 259:1–15

    Article  MathSciNet  Google Scholar 

  • Chiclana F, Herrera F, Herrera Viedma E (2001) Integrating multiplicative preference relations in a multipurpose decision-making model based on fuzzy preference relations. Fuzzy Sets Syst 122:277–291

    Article  MathSciNet  Google Scholar 

  • Deschrijver G, Kerre EE (2003) On the composition of intuitionistic fuzzy relations. Fuzzy Sets Syst 136:333–361

    Article  MathSciNet  Google Scholar 

  • Elsner L, Johnson CR, Dias Da Silva JA (1988) The Perron root of a weighted geometric mean of nonnegative matrices. Linear and Multilinear Algebra 24:1–13

    Article  MathSciNet  Google Scholar 

  • Fan ZP, Ma J, Jiang YP, Sun YH, Ma L (2006) A goal programming approach to group decision making based on multiplicative preference relation and fuzzy preference relations. Eur J Oper Res 174:311–321

    Article  Google Scholar 

  • Fedrizzi M, Giove S (2007) Incomplete pair wise comparison and consistency optimization. Eur J Oper Res 183:303–313

    Article  Google Scholar 

  • Figueira J, Greco S, Ehrgott M (eds) (2005) Multiple criteria decision analysis: state of the art surveys. International series in operations research and management science. Springer, New York, p 78

    Google Scholar 

  • Gong ZW, Li LS, Forrest J, Zhao Y (2011) The optimal priority models of the intuitionis tic fuzzy preference relation and their application in selecting industries with higher meteorological sensitivity. Expert Syst Appl 38:4394–4402

    Article  Google Scholar 

  • Harker PT (1987a) Alternative modes of questioning in the analytic hierarchy process. Math Modell 9:353–360

    Article  MathSciNet  Google Scholar 

  • Harker PT (1987b) Incomplete pairwise comparisons in the analytic hierarchy process. Math Modell 9:837–848

    Article  MathSciNet  Google Scholar 

  • Hwang CL, Yoon K (1981) Multiple attribute decision making: methods and applications. Springer, New York

    Book  Google Scholar 

  • Jiang Y, Xu ZS, Xu JP (2014) Interval-valued intuitionistic multiplicative sets. Int J Uncertain, Fuzziness Knowl-Based Syst 22(3):385–406

    Article  MathSciNet  Google Scholar 

  • Jiang Y, Xu ZS, Yu XH (2013) Compatibility measures and consensus models for group decision making with intuitionistic multiplicative preference relations. Appl Soft Comput 13:2075–2086

    Article  Google Scholar 

  • Jiang Y, Xu ZS, Yu XH (2015) Group decision making based on incomplete intuitinistic multiplicative preference relations. Inf Sci 295:33–52

    Article  Google Scholar 

  • Kou G, Peng Y, Chen Z, Shi Y (2009) Multiple criteria mathematical programming for multi-class classification and application in network intrusion detection. Inf Sci 179:371–381

    Article  Google Scholar 

  • Liao HC, Xu ZS, Xia MM (2014) Multiplicative consistency of interval-valued intuitionistic fuzzy preference relation. J Intell Fuzzy Syst 27:2969–2985

    MathSciNet  MATH  Google Scholar 

  • Lio H, Xu Z (2014) Priorities of intuitionistic fuzzy preference relation based on multiplicative consistency. IEEE Trans Fuzzy Syst 22:1669–1689

    Article  Google Scholar 

  • Liu F (2009) Acceptable consistency analysis of interval reciprocal comparison matrices. Fuzzy Sets Syst 160:2686–2700

    Article  MathSciNet  Google Scholar 

  • Liu F, Zhang WG, Wang ZX (2012) A goal programming model for incomplete interval multiplicative preference relations and its application in group decision-making. Eur J Oper Res 218:747–754

    Article  MathSciNet  Google Scholar 

  • Meng F, Chen X (2015) An approach to incomplete multiplicative preference relations and its application in group decision making. Inf Sci 309:119–137

    Article  Google Scholar 

  • Meng F, Tan C (2017) A new consistency concept for interval multiplicative preference relations. Appl Soft Comput 52:262–276

    Article  Google Scholar 

  • Meng F, Tan C, Chen X (2017) Multiplicative consistency analysis for interval fuzzy preference relations: a comparative study. Omega 68:17–38

    Article  Google Scholar 

  • Nishizawa K (1997) A method to find elements of cycles in an incomplete directed graph and its applications-binary AHP and petri nets. Comput Math Appl 33:33–46

    Article  MathSciNet  Google Scholar 

  • Orlovsky SA (1978) Decision-making with a fuzzy preference relation. Fuzzy Sets Syst 1:155–167

    Article  MathSciNet  Google Scholar 

  • Petra G, Lidija ZS (2012) Acceptably consistency of aggregated comparison matrices in analytic hierarchy process. Eur J Oper Res 223:417–420

    Article  Google Scholar 

  • Rezaei J (2015) Best-worst multi-criteria decision-making method. Omega 53:49–57

    Article  Google Scholar 

  • Roy B (1991) The outranking approach and the foundations of ELECTRE methods. Theor Decis 31:49–73

    Article  MathSciNet  Google Scholar 

  • Saaty TL (1977) A scaling method for priorities in hierarchical structures. J Math Psychol 15:234–281

    Article  MathSciNet  Google Scholar 

  • Saaty TL (1980) The analytic hierarchy process. McGraw-Hill, New York

    MATH  Google Scholar 

  • Saaty TL (2001) Fundamentals of decision making and priority theory with the analytic hierarchy process. RWS Publications, Pittsburgh

    Google Scholar 

  • Saaty TL, Vargas LG (1987) Uncertainty and rank order in the analytic hierarchy process. Eur J Oper Res 32:107–117

    Article  MathSciNet  Google Scholar 

  • Szmidt E, Kacprzyk J (2002) Using intuitinistic fuzzy sets in group decision making. Control Cybernet 31:1037–1053

    MATH  Google Scholar 

  • Triantaphyllou E (2000) Multi-criteria decision making methods: a comparative study, applied optimization series 44. Springer, NewYork

    Book  Google Scholar 

  • Ureña R, Chiclana F, Morente-Molinera JA, Herrera-Viedma E (2015) Managing incomplete preference relations in decision making: a review and future trends. Inf Sci 302:14–32

    Article  MathSciNet  Google Scholar 

  • Wan S, Wang F, Dong J (2017) Additive consistent interval-valued Atanassov intuitionistic fuzzy preference relation and likelihood comparison algorithm based group decision making. Eur J Oper Res 263:571–582

    Article  MathSciNet  Google Scholar 

  • Wan S, Wang F, Dong J (2018) A threephase method for group decision making with interval-valued intuitionistic fuzzy preference relations. IEEE Trans Fuzzy Syst 26(2):998–1010

    Article  Google Scholar 

  • Wan S, Xu GL, Dong J (2016) A novel method for group decision making with interval-valued Atanassov intuitionistic fuzzy preference relations. Inf Sci 372:53–71

    Article  Google Scholar 

  • Wang YM, Yang JB, Xu DL (2005) A twostage logarithmic goal programming method for generating weights from interval comparison matrices. Fuzzy Sets Syst 152:475–498

    Article  Google Scholar 

  • Xia MM, Xu ZS (2013) Group decision making based on intuitionistic multiplicative aggregation operators. Appl Math Model 37:5120–5133

    Article  MathSciNet  Google Scholar 

  • Xia MM, Xu ZS, Liao HC (2013) Preference relations based on intuitionistic multiplicative information. IEEE Trans Fuzzy Syst 21:113–133

    Article  Google Scholar 

  • Xu ZS (2004a) Goal programming models for obtaining the priority vector of incomplete fuzzy preference relation. Int J Approx Reason 36:261–270

    Article  MathSciNet  Google Scholar 

  • Xu ZS (2004b) On compatibility of interval fuzzy preference relations. Fuzzy Optim Decis Making 3:217–225

    Article  MathSciNet  Google Scholar 

  • Xu ZS (2007a) A survey of preference relations. Int J Gen Syst 36:179–203

    Article  MathSciNet  Google Scholar 

  • Xu ZS (2007b) Intuitionistic preference relations and their application in group decision making. Inf Sci 177:2363–2379

    Article  MathSciNet  Google Scholar 

  • Xu ZS (2012) A consensus reaching process under incomplete multiplicative preference relations. Int J Gen Syst 41:333–351

    Article  MathSciNet  Google Scholar 

  • Xu ZS (2013) Priority weight intervals derived from intuitionistic multiplicative preference. IEEE Trans Fuzzy Syst 21:642–654

    Article  Google Scholar 

  • Xu ZS, Cai XQ (2009) Incomplete interval-valued intuitionistic preference relations. Int J Gen Syst 38:871–886

    Article  MathSciNet  Google Scholar 

  • Xu ZS, Cai XQ (2012) Intuitionistic fuzzy information aggregation: theory and applications. Science Press, Berlin

    Book  Google Scholar 

  • Xu GL, Wan S, Wang F, Dong J, Zeng YF (2016) Mathematical programming methods for consistency and consensus in group decision making with intuitionistic fuzzy preference relations. Knowl-Based Syst 98:30–43

    Article  Google Scholar 

  • Yager RR, Xu ZS (2006) The continuous ordered weighted geometric operator and its application to decision making. Fuzzy Sets Syst 157:1393–1402

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors are thankful to the esteemed referees for their valuable comments which help to improve the presentation of the paper substantially. The authors acknowledge the editor-in-chief for being considerate and supportive.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anjana Gupta.

Ethics declarations

Conflict of interest

All three authors declare that they have no conflict of interest regarding the publication of this manuscript.

Additional information

Communicated by A. Genovese, G. Bruno.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix-1

We briefly include the operators of interval-valued intuitionistic fuzzy sets and numbers for the completeness of the ground-work theory. All notions and operators are described in Atanassov and Gargov (1989) and Xu and Cai (2012), while some of the interesting applications of I-MPRs and IVI-MPR are also included in (Xu et al. 2012).

Definition 13

Let X be a universal set. An intuitionistic fuzzy set (IFS) drawn from X is defined as \({\tilde{A}} = \{\langle x, \mu _{{\tilde{A}}}(x), \nu _{{\tilde{A}}}(x)\rangle \mid x \in X\},\) where \( \mu _{{\tilde{A}}},\; \nu _{{\tilde{A}}}: X \rightarrow [0,1]\) define, respectively, the degree of membership and the degree of non-membership of an element \(x\in X\) to the set \({\tilde{A}}\subseteq X\) such that \( \mu _{{\tilde{A}}}(x)+\nu _{{\tilde{A}}}(x) \le 1, \forall \;x \in X.\)

An intuitionistic fuzzy number (IFN) is defined by \(\alpha = (\mu _{\alpha }, \nu _{\alpha }),\) where \(\mu _{\alpha },\, \nu _{\alpha } \in [0,1],\;\mu _{\alpha }+\nu _{\alpha } \le 1.\)

Definition 14

Let X be a universal set. An IVIFS drawn from X is \( {\tilde{A}} = \{\langle x, \;{\tilde{\mu }}_{{\tilde{A}}}(x), \;{\tilde{\nu }}_{{\tilde{A}}}(x)\rangle \mid x \in X \}\,, \) where \({\tilde{\mu }}_{{\tilde{A}}},\; {\tilde{\nu }}_{{\tilde{A}}}: X\rightarrow 2^{[0,1]}\) are, respectively, the interval-valued membership and the interval-valued non-membership degrees of an element \(x\in X\) to the set \({\tilde{A}},\) such that, \(\sup _{x\in X} {\tilde{\mu }}_{{\tilde{A}}}(x) + \sup _{x\in X} {\tilde{\nu }}_{{\tilde{A}}}(x) \le 1.\)

Clearly if, \(\;\inf _{x\in X} {\tilde{\mu }}_{{\tilde{A}}}(x) = \sup _{x\in X} {\tilde{\mu }}_{{\tilde{A}}}(x)\;\) and \(\;\inf _{x\in X} {\tilde{\nu }}_{{\tilde{A}}}(x) = \sup _{x\in X} {\tilde{\nu }}_{{\tilde{A}}}(x),\;\) then the IVIFS \({\tilde{A}}\) reduces to the intuitionistic fuzzy set (IFS).

Definition 15

Let \({\tilde{A}} = \{\langle x, {\tilde{\mu }}_{{\tilde{A}}}(x), {\tilde{\nu }}_{{\tilde{A}}}(x)\rangle \mid x \in X \}, \; \tilde{A_1} = \{\langle x, {\tilde{\mu }}_{\tilde{A_1}}(x), {\tilde{\nu }}_{\tilde{A_1}}(x)\rangle \mid x \in X \}\) and \(\tilde{A_2} = \{\langle x, {\tilde{\mu }}_{\tilde{A_2}}(x), {\tilde{\nu }}_{\tilde{A_2}}(x)\rangle \mid x \in X \}\) be IVIFSs, and \(\lambda > 0\).

  1. 1.
    $$\begin{aligned} {\tilde{A}}^{\mathbf {c}} = \{\langle x, \;{\tilde{\nu }}_{{\tilde{A}}}(x), \;{\tilde{\mu }}_{{\tilde{A}}}(x)\rangle \mid x \in X \}; \end{aligned}$$
  2. 2.
    $$\begin{aligned}&\tilde{A_1} \cap \tilde{A_2} = \{\langle x, \;\left[ \min \{\inf {\tilde{\mu }}_{\tilde{A_1}}(x), \inf {\tilde{\mu }}_{\tilde{A_2}}(x)\}, \right. \\&\left. \quad \min \{\sup {\tilde{\mu }}_{\tilde{A_1}}(x), \sup {\tilde{\mu }}_{\tilde{A_2}}(x)\} \right] , \\&\quad \left[ \max \{\inf {\tilde{\nu }}_{\tilde{A_1}}(x), \inf {\tilde{\nu }}_{\tilde{A_2}}(x)\},\right. \\&\quad \max \{\sup {\tilde{\nu }}_{\tilde{A_1}}(x), \sup {\tilde{\nu }}_{\tilde{A_2}}(x)\} ]\rangle \mid x \in X \}\,; \end{aligned}$$
  3. 3.
    $$\begin{aligned}&\tilde{A_1} \cup \tilde{A_2} = \{\langle x, \;\left[ \max \{\inf {\tilde{\mu }}_{\tilde{A_1}}(x), \inf {\tilde{\mu }}_{\tilde{A_2}}(x)\},\right. \\&\left. \quad \max \{\sup {\tilde{\mu }}_{\tilde{A_1}}(x), \sup {\tilde{\mu }}_{\tilde{A_2}}(x)\} \right] , \\&\quad \left[ \min \{\inf {\tilde{\nu }}_{\tilde{A_1}}(x), \inf {\tilde{\nu }}_{\tilde{A_2}}(x)\},\right. \\&\left. \quad \min \{\sup {\tilde{\nu }}_{\tilde{A_1}}(x), \sup {\tilde{\nu }}_{\tilde{A_2}}(x)\} \right] \rangle \mid x \in X \}\,; \end{aligned}$$
  4. 4.
    $$\begin{aligned}&\tilde{A_1} + \tilde{A_2} = \{\langle x, \;\left[ \inf {\tilde{\mu }}_{\tilde{A_1}}(x) + \inf {\tilde{\mu }}_{\tilde{A_2}}(x) - \inf {\tilde{\mu }}_{\tilde{A_1}}(x)\,\inf {\tilde{\mu }}_{\tilde{A_2}}(x),\right. \\&\quad \left. \sup {\tilde{\mu }}_{\tilde{A_1}}(x) + \sup {\tilde{\mu }}_{\tilde{A_2}}(x) - \sup {\tilde{\mu }}_{\tilde{A_1}}(x)\,\sup {\tilde{\mu }}_{\tilde{A_2}}(x)\right] ,\\&\quad \left[ \inf {\tilde{\nu }}_{\tilde{A_1}}(x)\,\inf {\tilde{\nu }}_{\tilde{A_2}}(x),\; \sup {\tilde{\nu }}_{\tilde{A_1}}(x)\,\sup {\tilde{\nu }}_{\tilde{A_2}}(x)\right] \rangle \mid x \in X\}\,; \end{aligned}$$
  5. 5.
    $$\begin{aligned}&\tilde{A_1}\,\tilde{A_2} = \{\langle x, \;\left[ \inf {\tilde{\mu }}_{\tilde{A_1}}(x)\,\inf {\tilde{\mu }}_{\tilde{A_2}}(x),\; \sup {\tilde{\mu }}_{\tilde{A_1}}(x)\,\sup {\tilde{\mu }}_{\tilde{A_2}}(x)\right] , \\&\quad \left[ \inf {\tilde{\nu }}_{\tilde{A_1}}(x) + \inf {\tilde{\nu }}_{\tilde{A_2}}(x) - \inf {\tilde{\nu }}_{\tilde{A_1}}(x)\,\inf {\tilde{\nu }}_{\tilde{A_2}}(x),\right. \\&\left. \quad \sup {\tilde{\nu }}_{\tilde{A_1}}(x) + \sup {\tilde{\nu }}_{\tilde{A_2}}(x) - \sup {\tilde{\nu }}_{\tilde{A_1}}(x)\,\sup {\tilde{\nu }}_{\tilde{A_2}}(x)\right] \rangle \mid x \in X\}\,; \end{aligned}$$
  6. 6.
    $$\begin{aligned}&\lambda {\tilde{A}} = \{\langle x, \;\left[ 1- (1- \inf {\tilde{\mu }}_{{\tilde{A}}}(x))^{\lambda }, \;1- (1- \sup {\tilde{\mu }}_{{\tilde{A}}}(x))^{\lambda }\right] ,\\&\quad \left[ (\inf {\tilde{\nu }}_{{\tilde{A}}}(x))^{\lambda }, \;(\sup {\tilde{\nu }}_{{\tilde{A}}}(x))^{\lambda }\right] \rangle \mid x \in X\}\,; \end{aligned}$$
  7. 7.
    $$\begin{aligned}&{\tilde{A}}^{\lambda } = \{\langle x,\;\left[ (\inf {\tilde{\mu }}_{{\tilde{A}}}(x))^{\lambda }, \;(\sup {\tilde{\mu }}_{{\tilde{A}}}(x))^{\lambda }\right] , \\&\quad \left[ 1- (1- \inf {\tilde{\nu }}_{{\tilde{A}}}(x))^{\lambda }, \; 1- (1- \sup {\tilde{\nu }}_{{\tilde{A}}}(x))^{\lambda }\right] \rangle | x \in X\}. \end{aligned}$$

The basic component of an IVIFS is an ordered pair, characterized by an interval-valued membership degree and an interval-valued non-membership degree of x in \({\tilde{A}}\). This ordered pair is called an interval-valued intuitionistic fuzzy number (IVIFN).

An IVIFN is generally simplified as \(\left( [a, b],\; [c, d]\right) \), where \([a,b] \subseteq [0,1]\,,\; [c,d] \subseteq [0,1]\,, \;b+d \le 1\).

Obviously, when \(a=b\) and \(c=d\), then IVIFN reduces to an intuitionistic fuzzy number (IFN).

Definition 16

Let \({\tilde{\alpha }} = ([a, b],\; [c, d]), \;\tilde{\alpha _1} = ([a_1, b_1],\; [c_1, d_1])\) and \(\tilde{\alpha _2} = ([a_2, b_2], \;[c_2, d_2])\) be IVIFNs, and \(\lambda > 0\). Then

  1. 1.

    \({\tilde{\alpha }}^{\mathbf {c}} = ([c, d],\;[a, b])\)

  2. 2.
    $$\begin{aligned}&\tilde{\alpha _1} \wedge \tilde{\alpha _2} = (\left[ \min \{a_1,a_2\}, \min \{b_1,b_2\}\right] ,\;\\&\quad \left[ \max \{c_1,c_2\}, \max \{d_1,d_2\}\right] ); \end{aligned}$$
  3. 3.
    $$\begin{aligned}&\tilde{\alpha _1} \vee \tilde{\alpha _2} = (\left[ \max \{a_1,a_2\}, \max \{b_1,b_2\}\right] ,\\&\quad \left[ \min \{c_1,c_2\}, \min \{d_1,d_2\}\right] ); \end{aligned}$$
  4. 4.

    \(\tilde{\alpha _1} \oplus \tilde{\alpha _2} = (\left[ a_1+a_2-a_1a_2, b_1+c_2-b_1b_2\right] , \;\left[ c_1c_2, d_1d_2\right] )\,;\)

  5. 5.

    \(\tilde{\alpha _1} \otimes \tilde{\alpha _2} = (\left[ a_1a_2, b_1b_2\right] ,\; \left[ c_1+c_2-c_1c_2, d_1+d_2-d_1d_2\right] )\,;\)

  6. 6.

    \(\lambda {\tilde{\alpha }} = (\left[ 1-(1-a)^{\lambda }, 1-(1-b)^{\lambda }\right] ,\; \left[ c^{\lambda }, d^{\lambda }\right] )\,;\)

  7. 7.

    \({\tilde{\alpha }}^{\lambda } = (\left[ a^{\lambda }, b^{\lambda }\right] , \;\left[ 1-(1-c)^{\lambda }, 1-(1-d)^{\lambda }\right] ).\)

Appendix-2

Meng and Chen (2015) developed a deviation model for an MPR. In the same spirit, we formulate an equivalent deviation model for the model (P) proposed in Sect. 3.

$$\begin{aligned}&\qquad \min \;\;D=\sum _{q=1}^{4}\; \sum _{{i,j=1},{i<j},\;k\in \Omega (q)}^{n}(d_{ij,\; k}^{(q)+}+d_{ij,\;k}^{(q)-})\\&\quad \mathrm{subject\,to} \\&\quad \quad \begin{array}{lr} \delta _{ij}\left( \log a_{ij}^{(q)}-(\log a_{ik}^{(q)}+ \log a_{kj}^{(q)})\right) -d_{ij,\; k}^{(q)+}+d_{ij,\; k}^{(q)-}=0,\\ i<j,\; \forall \;i,\,j\in N, \;k\in \Omega (q),\; q=1,2,3,4\\ 1/9 \le a_{ij}^{(q)}, q = 1,2,\; \quad a_{ij}^{(q)}\in \Gamma (q)\\ a_{ij}^{(q)} \le 9,\; q = 3,4, \;\quad a_{ij}^{(q)}\in \Gamma (q)\\ a_{ij}^{(q)}a_{ij}^{(q+2)}\le 1,\quad q = 1,2, \;i,\,j,\,k \in N,\; \;i \ne j \ne k\\ a_{ij}^{(q+1)} \le a_{ij}^{(q)},\quad q = 1,3,\; i< j,\; \;i,j \in N\\ a_{ij}^{(q+1)} \ge a_{ij}^{(q)},\quad q = 1,3, \;i > j,\; \;i,j \in N\\ d_{ij,\;k}^{(q)+},\;\; d_{ij,\;k}^{(q)-} \ge 0, \quad i,\,j=1,\ldots , n, \;i<j\,,\\ \end{array} \end{aligned}$$

where \(d_{ij,\; k}^{(q)+}=\left( \log a_{ij}^{(q)}-(\log a_{ik}^{(q)}+ \log a_{kj}^{(q)})\right) \vee 0,\; k \in \Omega (q),\) and \(d_{ij,\;k}^{(q)-}=\left( (\log a_{ik}^{(q)}+ \log a_{kj}^{(q)})-\log a_{ij}^{(q)}\right) \vee 0,\; k\in \Omega (q),\) and

$$\begin{aligned} \delta _{ij}= \left\{ \begin{array}{lr} 1 &{}\quad k\in \Omega (q)\\ 0 &{}\quad \text {otherwise}\\ \end{array} \right. \end{aligned}$$

It is observed that both model (P) and the above deviation model are equivalent and yield the same optimal outputs. Moreover, the model formulated by Meng and Chen (2015) is a particular case of the above model and hence of model (P).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sahu, M., Gupta, A. & Mehra, A. Acceptably consistent incomplete interval-valued intuitionistic multiplicative preference relations. Soft Comput 22, 7463–7477 (2018). https://doi.org/10.1007/s00500-018-3358-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00500-018-3358-8

Keywords

Navigation