Skip to main content
Log in

Optimized ensemble modeling based on feature selection using simple sphere criterion for multi-scale mechanical frequency spectrum

  • Methodologies and Application
  • Published:
Soft Computing Aims and scope Submit manuscript

Abstract

Several parameters of industrial processes are indirectly measured by multi-scale mechanical frequency spectrum. Selecting suitable mechanical sub-signals and relevant frequency spectral features for different process parameters remains an open issue. This study proposes a new optimized ensemble model based on feature selection using simple sphere criterion (SSC). Mechanical signals are adaptively decomposed and transformed into frequency spectral data with different timescales. These spectral data are fed into adaptive multi-scale spectral feature selection and modeling framework, in which local-scale frequency spectral features are adaptively selected with concurrent projection to latent structures and SSC based on unscaled data. The optimized ensemble model is constructed with selective information fusion strategy based on reduced frequency spectral data. The feature selection and model learning parameters are jointly selected. Simulation results based on the mechanical vibration and acoustic signals of an experimental laboratory-scale ball mill show the effectiveness of the proposed scheme.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Chai TY, Ding JL, Wu FH (2011) Hybrid intelligent control for optimal operation of shaft furnace roasting process. Control Eng Pract 19(3):264–275

    Article  Google Scholar 

  • Chai TY, Ding JL, Yu G, Wang H (2014a) Integrated optimization for the automation systems of mineral processing. IEEE Trans Autom Sci Eng 11(4):965–982

    Article  Google Scholar 

  • Chai TY, Qin SJ, Wang H (2014b) Optimal operational control for complex industrial processes. Annu Rev Control 38(1):81–92

    Article  Google Scholar 

  • Cusido J, Romeral L, Ortega JA, Rosero JA, Garcia-Espinosa A (2008) Fault detection in induction machines using power spectral density in wavelet decomposition. IEEE Trans Ind Electron 55:633–643

    Article  Google Scholar 

  • Dai W, Zhou P, Zhao D, Chai T (2016) Hardware-in-the-loop simulation platform for supervisory control of mineral grinding process. Powder Technol 288:422–434

    Article  Google Scholar 

  • Das SP, Das DP, Behera SK, Mishra BK (2011) Interpretation of mill vibration signal via wireless sensing. Miner Eng 24:245–251

    Article  Google Scholar 

  • Feng TJ, Wang HG, Xu WL, Xu N (2012) An on-line mill load monitoring system based on shell vibration signals. Min Metall 19:66–69

    Google Scholar 

  • Hao RH, Yang ZF, Wen XX (2009) An efficient gene selection algorithm based on mutual information. Neurocomputing 72(4–6):991–999

    Google Scholar 

  • Huang NE, Shen Z, Long SR (1998) The empirical mode decomposition and the Hilbert spectrum for non-linear and non stationary time series analysis. Proc R Soc Lond A 454:903–995

    Article  MathSciNet  MATH  Google Scholar 

  • Huang P, Jia MP, Zhong BL (2009) Investigation on measuring the fill level of an industrial ball mill based on the vibration characteristics of the mill shell. Miner Eng 14:1200–1208

    Article  Google Scholar 

  • Kadlec P, Gabrys B, Strandt S (2009) Data-driven soft sensors in the process industry. Comput Chem Eng 33(4):795–814

    Article  Google Scholar 

  • Kano M, Fujiwara K (2013) Virtual sensing technology in process industries: trends & challenges revealed by recent industrial applications. J Chem Eng Jpn 46(1):1–17

    Article  Google Scholar 

  • Leardi R, Seasholtz MB, Pell RJ (2002) Variable selection for multivariate calibration using a genetic algorithm: prediction of additive concentrations in polymer films from Fourier transform-infrared spectral data. Anal Chim Acta 461(2):189–200

    Article  Google Scholar 

  • Lei YG, He ZJ, Zi YY (2009) Application of the EEMD method to rotor fault diagnosis of rotating machinery. Mech Syst Signal Process 23:1327–1338

    Article  Google Scholar 

  • Liu H, Sun J, Liu L, Zhang H (2009) Feature selection with dynamic mutual information. Pattern Recogn 42(7):1330–1339

    Article  MATH  Google Scholar 

  • Lo YC, Oblad AE, Herbst JA (1996) Cost reduction in grinding plants through process optimization and control. Miner Metall Process 8:19–21

    Google Scholar 

  • Qin SJ (2012) Survey on data-driven industrial process monitoring and diagnosis. Annu Rev Control 36(2):220–234

    Article  Google Scholar 

  • Qin SJ, Zheng YY (2013) Quality-relevant and process-relevant fault monitoring with concurrent projection to latent structures. AIChE J 59(2):496–504

    Article  Google Scholar 

  • Rai VK, Mohanty AR (2007) Bearing fault diagnosis using FFT of intrinsic mode functions in Hilbert–Huang transform. Mech Syst Signal Process 21:2607–2615

    Article  Google Scholar 

  • Riera-Guasp M, Antonino-Daviu JA, Pineda-Sanchez M, Puche-Panadero R, Perez-Cruz J (2008) A general approach for the transient detection of slip-dependent fault components based on the discrete wavelet transform. IEEE Trans Ind Electron 55:4167–4180

    Article  Google Scholar 

  • Rosipal R, Trejo LJ (2002) Kernel partial least squares regression in reproducing kernel Hilbert space. J Mach Learn Res 2:97–123

    MATH  Google Scholar 

  • Seshadrinath J, Singh B, Panigrahi BK (2014) Vibration analysis based interturn fault diagnosis in induction machines. Trans Ind Inf 10:340–350

    Article  Google Scholar 

  • Tang J, Chai TY (2013) On-line KPLS algorithm with application to ensemble modeling parameters of mill load. Acta Autom Sin 39(5):471–486

    Article  Google Scholar 

  • Tang J, Zhao LJ, Zhou JW, Yue H, Chai TY (2010) Experimental analysis of wet mill load based on vibration signals of laboratory-scale ball mill shell. Miner Eng 23(9):720–730

    Article  Google Scholar 

  • Tang J, Zhao LJ, Yue H, Yu W, Chai TY (2011) Vibration analysis based on empirical mode decomposition and partial least squares. Proc Eng 16:646–652

    Article  Google Scholar 

  • Tang J, Chai TY, Zhao LJ, Yu W, Yue H (2012a) Soft sensor for parameters of mill load based on multi-spectral segments PLS sub-models and on-line adaptive weighted fusion algorithm. Neurocomputing 78:38–47

    Article  Google Scholar 

  • Tang J, Chai T, Yu W, Zhao LJ (2012b) Feature extraction and selection based on vibration spectrum with application to estimating the load parameters of ball mill in grinding process. Control Eng Pract 20:991–1004

    Article  Google Scholar 

  • Tang J, Chai T, Yu W, Zhao L (2013) Modeling load parameters of ball mill in grinding process based on selective ensemble multisensor information. IEEE Trans Autom Sci Eng 10(3):726–740

    Article  Google Scholar 

  • Tang J, Chai TY, Cong QM, Zhuo L, Wen Y (2015) Modeling mill load parameters based on selective fusion of multi-scale shell vibration frequency spectra. Control Theory Appl 32(12):1582–1591

    Google Scholar 

  • Tang J, Yu W, Chai TY, Liu Z, Zhou XJ (2016a) Selective ensemble modeling load parameters of ball mill based on multi-scale frequency spectral features and sphere criterion. Mech Syst Signal Process 66–67:485–504

    Article  Google Scholar 

  • Tang J, Chai TY, Yu W, Liu Z, Zhou XJ (2016b) A comparative study that measures ball mill load parameters through different single-scale and multi-scale frequency spectra-based approaches. IEEE Trans Ind Inf 12:2008–2019

    Article  Google Scholar 

  • Tang J, Liu Z, Chai T, Chai T, Chai T, Yu W (2016c) Kernel latent features adaptive extraction and selection method for multi-component non-stationary signal of industrial mechanical device. Neurocomputing 216:296–309

    Article  Google Scholar 

  • Tang J, Qiao J, Wu ZW, Chai T, Zhang J, Yu W (2018) Vibration and acoustic frequency spectra for industrial process modeling using selective fusion multi-condition samples and multi-source features. Mech Syst Signal Process 99:142–168

    Article  Google Scholar 

  • Wang W, Chai T, Yu W (2012) Modeling component concentrations of sodium aluminate solution via Hammerstein recurrent neural networks. IEEE Trans Control Syst Technol 20(4):971–982

    Article  Google Scholar 

  • Wu Z, Huang NE (2009) Ensemble empirical mode decomposition: a noise-assisted data analysis method. Adv Adapt Data Anal 1:1–41

    Article  Google Scholar 

  • Yu G, Chai TY, Luo XC (2011) Multiobjective production planning optimization using hybrid evolutionary algorithms for mineral processing. IEEE Trans Evol Comput 15(4):487–514

    Article  Google Scholar 

  • Yue H, Qin SJ, Markle RJ, Nauert C, Gatto M (2000) Fault detection of plasma ethchers using optical emission spectra. IEEE Trans Semicond Manuf 11:374–385

    Article  Google Scholar 

  • Zhou P, Chai T, Wang H (2009) Intelligent optimal-setting control for grinding circuits of mineral processing process. IEEE Trans Autom Sci Eng 6(4):730–743

    Article  Google Scholar 

Download references

Acknowledgements

This work is partially supported by the National Natural Science Foundation of China (61573364, 61703089, 61503066, 61503054, 61573249), State Key Laboratory of Synthetical Automation for Process Industries (PAL-N201605), State Key Laboratory of Process Automation in Mining and Metallurgy, and Beijing Key Laboratory of Process Automation in Mining and Metallurgy (BGRIMM-KZSKL-2017-07).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jian Tang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Communicated by V. Loia.

Appendices

Appendix A: PLS algorithm

Projection to latent structures or partial least squares (PLS) constructs a linear multivariable regression model with the extracted latent variables (LVs) from the original input/output data space. It projects input data \( \varvec{X} = \{\varvec{x}_{l} \}_{l = 1}^{k} \) and output data \( \varvec{Y} = \{\varvec{y}_{l} \}_{l = 1}^{k} \) to a low-dimensional space defined by a small number of LVs \( (\varvec{t}_{1}, \ldots,\varvec{t}_{h}) \). PLS decomposes the input and output data into the following form:

$$ \left\{{\begin{array}{*{20}l} {\varvec{X} = \sum\nolimits_{i = 1}^{h} {{\varvec{t}}_{i} {\varvec{p}}_{i}} + {\varvec{E}} = {\varvec{TP}}^{\text{T}} + {\varvec{E}}} \hfill \\ {{\varvec{Y}} = \sum\nolimits_{i = 1}^{h} {{\varvec{u}}_{i} {\varvec{q}}_{i}} + {\varvec{F}} = {\varvec{UQ}}^{\text{T}} + {\varvec{F}}} \hfill \\ \end{array}} \right. $$
(A1)

where \( {\varvec{T}} = \left[{{\varvec{t}}_{1}, \ldots,{\varvec{t}}_{h}} \right] \) and \( {\varvec{U}} = \left[{{\varvec{u}}_{1}, \ldots,{\varvec{u}}_{h}} \right] \) are the latent scores; \( {\varvec{P}} = \left[{{\varvec{p}}_{1}, \ldots,{\varvec{p}}_{h}} \right] \) and \( {\varvec{Q}} = \left[{{\varvec{q}}_{1}, \ldots,{\varvec{q}}_{h}} \right] \) are the loadings for \( {\varvec{X}} \) and \( {\varvec{Y}} \), respectively; and \( {\varvec{E}} \) and \( {\varvec{F}} \) are the residual matrices corresponding to \( {\varvec{X}} \) and \( {\varvec{Y}} \), respectively. The number of LVs \( h \) is usually determined with a cross-validation method. The prediction model based on PLS can be expressed as

$$ \left\{{\begin{array}{*{20}l} {{\varvec{Y}} = {\varvec{XB}} + {\varvec{G}}} \hfill \\ {{\varvec{B}} = {\varvec{X}}^{\text{T}} {\varvec{U}}\left({{\varvec{T}}^{\text{T}} {\varvec{XX}}^{\text{T}} {\varvec{U}}} \right)^{- 1} {\varvec{T}}^{\text{T}}} \hfill \\ \end{array}} \right.. $$
(A2)

However, unlike that with PCA, \( {\varvec{T}} \) cannot be presented in terms of the original input data \( {\varvec{X}} \) directly. We denote \( {\varvec{W}} = [{\varvec{w}}_{ 1},{\varvec{w}}_{ 2}, \ldots,{\varvec{w}}_{\text{h}}] \). Let \( {\varvec{R}} = [{\varvec{r}}_{ 1},{\varvec{r}}_{ 2}, \ldots,{\varvec{r}}_{\text{h}}] \), where \( {\varvec{r}}_{ 1} = {\varvec{w}}_{ 1} \), for \( i > 1 \)

$$ {\varvec{r}}_{i} = \prod\limits_{{j^{{\prime}} = 1}}^{i - 1} {\left({{\varvec{I}}_{p} - {\varvec{w}}_{{j^{{\prime}}}} {\varvec{p}}_{{j^{{\prime}}}}^{\text{T}}} \right)} {\varvec{w}}_{i} $$
(A3)

with

$$ {\varvec{R}} = ({\varvec{WP}}^{\text{T}} {\varvec{W}})^{- 1} $$
(A4)

The score matrix \( {\varvec{T}} \) can be computed as follows:

$$ {\varvec{T}} = {\varvec{XR}} = {\varvec{X}}({\varvec{WP}}^{\text{T}} {\varvec{W}})^{- 1} $$
(A5)

Matrices \( {\varvec{R}} \) and \( {\varvec{P}} \) has the following relation:

$$ {\varvec{P}}^{T} {\varvec{R}} = {\varvec{R}}^{T} {\varvec{P}} = {\varvec{I}}_{k}. $$
(A6)

Appendix B: CPLS algorithm (Qin and Zheng 2013)

To maximize the covariance between input \( {\varvec{X}} \) and output \( {\varvec{Y}} \), the traditional PLS algorithm extracts the score \( {\varvec{T}} \). However, the score \( {\varvec{T}} \) containing variations that are both relative and orthogonal to the output data CPLS is proposed to provide a complete scheme for monitoring the quality and process operation of data.

At first, \( {\varvec{T}} \), \( {\varvec{Q}} \), and \( {\varvec{R}} \) are obtained by using Eqs. (A1) and (A4). Subsequently, “predictable output” \( {\hat{\varvec{Y}}} \) is calculated with

$$ {\hat{\varvec{Y}}} = T{\varvec{Q}}^{\text{T}} . $$
(B1)

Singular value decomposition is performed on \( {\hat{\varvec{Y}}} \) with

$$ {\hat{\varvec{Y}}} = {\varvec{U}}_{\text{c}} {\varvec{D}}_{\text{c}} {\varvec{V}}_{\text{c}}^{\text{T}} \equiv {\varvec{U}}_{\text{c}} {\varvec{Q}}_{\text{c}}^{\text{T}} $$
(B2)

where \( {\varvec{Q}}_{\text{c}} = {\varvec{V}}_{\text{c}} {\varvec{D}}_{\text{c}} \) includes all \( h_{\text{c}} \) nonzero singular values in descending order and the corresponding right singular vectors. As \( {\varvec{V}}_{\text{c}} \) is orthonormal, \( {\varvec{U}}_{\text{c}} \) can be presented as

$$ {\varvec{U}}_{\text{c}} = {\hat{\varvec{Y}V}}_{\rm c} {\varvec{D}}_{\text{c}}^{- 1} = {\varvec{XRQ}}^{\text{T}} {\varvec{V}}_{\rm c} {\varvec{D}}_{\text{c}}^{- 1} = {\varvec{XR}}_{\text{c}} $$
(B3)

where

$$ {\varvec{R}}_{\text{c}} = {\varvec{RQ}}^{\text{T}} {\varvec{V}}_{\rm c} {\varvec{D}}_{\text{c}}^{- 1} $$
(B4)

The unpredictable output is formed and processed with PCA to yield the output-principal scores and output residuals. Finally, the output-irrelevant input is formed and processed with PCA to yield the input-principal scores and input residuals.

According to the above CPLS, the data matrices \( {\varvec{X}} \) and \( {\varvec{Y}} \) are decomposed as follows:

$$ \left\{{\begin{array}{*{20}c} {{\varvec{X}} = {\varvec{U}}_{\rm c} {\varvec{R}}_{\rm c}^{\diamondsuit} + {\varvec{T}}_{x} {\varvec{P}}_{x}^{\text{T}} + {\tilde{\varvec{X}}}} \\ {{\varvec{Y}} = {\varvec{U}}_{\rm c} {\varvec{Q}}_{\rm c}^{\text{T}} + {\varvec{T}}_{y} {\varvec{P}}_{y}^{\text{T}} + {\tilde{\varvec{Y}}}} \\ \end{array}} \right. $$
(B5)

where \( {\varvec{R}}_{\rm c}^{\diamondsuit} = ({\varvec{R}}_{\rm c}^{\text{T}} {\varvec{R}}_{\rm c})^{- 1} {\varvec{R}}_{\rm c}^{T},\,{\varvec{P}}_{x},\,{\varvec{Q}}_{\rm c} \), and \( {\varvec{P}}_{y} \) are the loading matrices; score \( {\varvec{U}}_{\rm c} \) represents the covariations in the input data \( {\varvec{X}} \) that are related to the predictable part \( {\hat{\varvec{Y}}} \) of the output data \( {\varvec{Y}} \); \( {\varvec{T}}_{x} \) represents the variations in \( {\varvec{X}} \) that are useless for predicting \( {\varvec{Y}} \); \( {\varvec{T}}_{y} \) represents the variations in \( {\varvec{Y}} \) unpredicted by \( {\varvec{X}} \); and \( {\tilde{\varvec{X}}} \) and \( {\tilde{\varvec{Y}}} \) denote the input residual and output residual, respectively.

Appendix C: List of abbreviations

Abbreviation

Meaning

Abbreviation

Meaning

FFT

Fast Fourier transformation

MBVR

Mill load parameter: material-to-ball volume ratio

EMD

Empirical mode decomposition

PD

Mill load parameter: pulp density

EEMD

Ensemble EMD

CVR

Mill load parameter: charge–volume ratio

IMF

Intrinsic mode function

BCVR

Mill load parameter: ball charge–volume ratio

VIMF

Vibration IMF

GPR

Grinding production ratio

AVIM

Acoustic IMF

MI

Mutual information

SC

Sphere criterion

BB

Branch and bound algorithm

SSC

Simple sphere criterion

AWF

Adaptive weighting fusion algorithm

PLS

Projection to latent structure/partial lest squares

LOOCV

Leave-one-out cross-validation

GA-PLS

Genetic algorithm-PLS

SVM

Support vector machines

CPLS

Concurrent PLS

LS-SVM

Least squares support vector machine

LSPLS

Local-scale PLS

PCA

Principal component analysis

LSCPLS

Local-scale CPLS

SEN

Selective ensemble

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tang, J., Qiao, J., Liu, Z. et al. Optimized ensemble modeling based on feature selection using simple sphere criterion for multi-scale mechanical frequency spectrum. Soft Comput 23, 7263–7278 (2019). https://doi.org/10.1007/s00500-018-3373-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00500-018-3373-9

Keywords

Navigation