Skip to main content

Advertisement

Log in

A Runge–Kutta neural network-based control method for nonlinear MIMO systems

  • Methodologies and Application
  • Published:
Soft Computing Aims and scope Submit manuscript

Abstract

In this paper, a novel Runge–Kutta neural network (RK-NN)-based control mechanism is introduced for multi-input multi-output ( MIMO) nonlinear systems. The overall architecture embodies an online Runge–Kutta model which computes a forward model of the system, an adaptive controller with tunable parameters and an adjustment mechanism realized by separate online Runge–Kutta neural networks to identify the dynamics of each tunable controller parameter. Runge–Kutta identification block has the competency to approximate the time-varying parameters of the model and unmeasurable states of the controlled system. Thus, the strengths of radial basis function (RBF) neural network structure and Runge–Kutta integration method are combined in this structure. Adaptive MIMO proportional–integral–derivative (PID) controller is deployed in the controller block. The control performance of the proposed adaptive control method has been evaluated via simulations performed on a nonlinear three-tank system and Van de Vusse benchmark system for different cases, and the obtained results reveal that the RK-NN-based control mechanism and Runge–Kutta model attain good control and modelling performances.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  • Akhyar S, Omatu S (1993) Self-tuning PID control by neural networks. In: International joint conference on neural network (IJCNN’93). Nagoya

  • AMIRA (2000) Lab Manual DTS200—laboratory setup three-tank system. Amira GmbH, Duisburg

  • Aström KJ (1983) Theory and applications of adaptive control—a survey. Automatica 19(5):471–486

    Article  MATH  Google Scholar 

  • Aström KJ, Hagglund T (1995) PID controllers: theory, design and tuning. Instrument Society of America, USA

  • Aström KJ, Wittenmark B (2008) Adaptive control. Dover Publications, Mineola

    MATH  Google Scholar 

  • Aström KJ, Borisson U, Ljung L, Wittenmark B (1977) Theory and applications of self-tuning regulators. Automatica 13(5):457–476

    Article  MATH  Google Scholar 

  • Beyhan S (2013) Runge–Kutta model-based nonlinear observer for synchronization and control of chaotic systems. ISA Trans 52(4):501–509

    Article  Google Scholar 

  • Bouallégue S, Haggege J, Ayadi M, Benrejeb M (2012) PID-type fuzzy logic controller tuning based on particle swarm optimization. Eng Appl Artif Intell 25(3):484–493. https://doi.org/10.1016/j.engappai.2011.09.018

    Article  Google Scholar 

  • Bishr M, Yang YG, Lee G (2000) Self-tuning PID control using an adaptive network based fuzzy inference system. Intell Autom Soft Comput 6(4):271–280

    Article  Google Scholar 

  • Bobal V, Bohm J, Fessl J, Machacek J (2005) Digital self-tuning controllers. Advanced textbooks in control and signal processing. Springer, London

    Google Scholar 

  • Cetin M, Iplikci S (2015) A novel auto-tuning PID control mechanism for nonlinear systems. ISA Trans 58:292–308

    Article  Google Scholar 

  • Chen H, Kremling A, Allgöwer F (1995) Nonlinear predictive control of a benchmark CSTR. In: European control conference (ECC’95). Rome

  • Denai MA, Palis F, Zeghbib A (2004) ANFIS based modelling and control of non-linear systems: a tutorial. In: IEEE international conference on systems, man and cybernetics

  • Efe MO (2011) Neural-network-based control. In: Wilamowski BM, Irwin JD (eds) The industrial electronics handbook: intelligent systems. CRC Press, Boca Raton

    Google Scholar 

  • Efe MO, Kaynak O (1999) A comparative study of neural network structures in identification of nonlinear systems. Mechatronics 9(3):287–300. https://doi.org/10.1016/S0957-4158(98)00047-6

    Article  Google Scholar 

  • Efe MO, Kaynak O (2000) A comparative study of soft-computing methodologies in identification of robotic manipulators. Robot Auton Syst 30(3):221–230

    Article  Google Scholar 

  • Engell S, Klatt KU (1993) Nonlinear control of a non-minimum-phase CSTR. In: American control conference. San Francisco

  • Flynn D, McLoone S, Irwin GW, Brown MD, Swidenbank E, Hogg BW (1997) Neural control of turbogenerator systems. Automatica 33(11):1961–1973. https://doi.org/10.1016/S0005-1098(97)00142-8

    Article  MathSciNet  MATH  Google Scholar 

  • Hagan MT, Demuth HB, De Jesus O (2002) An introduction to the use of neural networks in control systems. Int J Robust Nonlinear Control 12(11):959–985. https://doi.org/10.1002/rnc.727

    Article  MATH  Google Scholar 

  • Iplikci S (2006) Online trained support vector machines-based generalized predictive control of non-linear systems. Int J Adapt Control Signal Process 20(10):599–621. https://doi.org/10.1002/acs.919

    Article  MathSciNet  MATH  Google Scholar 

  • Iplikci S (2010a) A comparative study on a novel model-based PID tuning and control mechanism for nonlinear systems. Int J Robust Nonlinear Control 20(13):1483–1501. https://doi.org/10.1002/rnc.1524

    MathSciNet  MATH  Google Scholar 

  • Iplikci S (2010b) A support vector machine based control application to the experimental three-tank system. ISA Trans 49(3):376–386. https://doi.org/10.1016/j.isatra.2010.03.013

    Article  Google Scholar 

  • Iplikci S (2013) Runge-Kutta model-based adaptive predictive control mechanism for non-linear processes. Trans Inst Meas Control 35(2):166–180

    Article  Google Scholar 

  • Jang JSR (1993) ANFIS: adaptive-network-based fuzzy inference system. IEEE Trans Syst Man Cybern 23(3):665–685. https://doi.org/10.1109/21.256541

    Article  Google Scholar 

  • Kravaris C, Niemiec M, Berber R, Brosilow CB (1998) Nonlinear model-based control of nonminimum-phase processes. In: Kravaris C, Berber R (eds) Nonlinear model based process control. Springer, Dordrecht, pp 115–142

    Chapter  Google Scholar 

  • Kulikov GY, Kulikova MV (2014) Accurate state estimation in the Van Der Vusse reaction. In: IEEE international conference on control applications (CCA). Nice

  • Luenberger DG, Ye Y (2008) Linear and nonlinear programming. Springer, New York

    Book  MATH  Google Scholar 

  • Niemiec MP, Kravaris C (2003) Nonlinear model-state feedback control for nonminimum-phase processes. Automatica 39(7):1295–1302. https://doi.org/10.1016/S0005-1098(03)00103-1

    Article  MathSciNet  MATH  Google Scholar 

  • Nørregard JB (2007) A critical discussion of the continuous-discrete extended Kalman filter. In: European congress of chemical engineering-6. Copenhagen

  • Pham DT, Karaboga D (1999) Self-tuning fuzzy controller design using genetic optimisation and neural network modelling. Artif Intell Eng 13(2):119–130. https://doi.org/10.1016/S0954-1810(98)00017-X

    Article  Google Scholar 

  • Sharkawy AB (2010) Genetic fuzzy self-tuning PID controllers for antilock braking systems. Eng Appl Artif Intell 23(7):1041–1052. https://doi.org/10.1016/j.engappai.2010.06.011

    Article  Google Scholar 

  • Sung SW, Lee J, Lee IB (2009) Process identification and PID control. IEEE Press, Wiley, Singapore

    Book  Google Scholar 

  • Theilliol D, Noura H, Ponsart JC (2002) Fault diagnosis and accommodation of a three-tank system based on analytical redundancy. ISA Trans 41(3):365–382. https://doi.org/10.1016/S0019-0578(07)60094-9

    Article  Google Scholar 

  • Thrun S, Burgard W, Fox D (2005) Probabilistic robotics. The MIT Press, Cambridge

    MATH  Google Scholar 

  • Uçak K, Günel GO (2017) Generalized self-tuning regulator based on online support vector regression. Neural Comput Appl 28(Suppl 1):775–801. https://doi.org/10.1007/s00521-016-2387-4

    Article  Google Scholar 

  • Wanfeng S, Shengdun Z, Yajing S (2008) Adaptive PID controller based on online LSSVM identification. In: IEEE/ASME international conference on advanced intelligent mechatronics (AIM 2008). Xian

  • Wang YJ, Lin CT (1998) Runge-Kutta neural network for identification of dynamical systems in high accuracy. IEEE Trans Neural Netw 9(2):294–307. https://doi.org/10.1109/72.661124

    Article  MathSciNet  Google Scholar 

  • Wang GJ, Fong CT, Chang KJ (2001) Neural-network-based self-tuning PI controller for precise motion control of PMAC motors. IEEE Trans Ind Electron 48(2):408–415

    Article  Google Scholar 

  • Vojtesek J, Dostal P (2010) Adaptive control of chemical reactor. In: International conference cybernetics and informatics. Vysna Boca

  • Visioli A (2006) Practical PID control. Springer, London

    MATH  Google Scholar 

  • Zhao XD, Yang HJ, Karimi HR, Zhu YZ (2016a) Adaptive neural control of MIMO nonstrict-feedback nonlinear systems with time delay. IEEE Trans Cybern 46(6):1337–1349. https://doi.org/10.1109/TCYB.2015.2441292

    Article  Google Scholar 

  • Zhao XD, Shi P, Zheng XL (2016b) Fuzzy adaptive control design and discretization for a class of nonlinear uncertain systems. IEEE Trans Cybern 46(6):1476–1483. https://doi.org/10.1109/TCYB.2015.2447153

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kemal Uçak.

Ethics declarations

Conflict of interest

The author declares that there is no conflict of interests regarding the publication of this paper.

Human and animal rights statement

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Communicated by V. Loia.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Uçak, K. A Runge–Kutta neural network-based control method for nonlinear MIMO systems. Soft Comput 23, 7769–7803 (2019). https://doi.org/10.1007/s00500-018-3405-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00500-018-3405-5

Keywords

Navigation