Skip to main content
Log in

A novel meta-heuristic approach to solve fuzzy multi-objective straight and U-shaped assembly line balancing problems

  • Methodologies and Application
  • Published:
Soft Computing Aims and scope Submit manuscript

Abstract

The consideration of this study is devoted to deal with the straight and U-shaped assembly line balancing problems (ALBPs). The ALBP involves allocation of required tasks to a set of workstations, so that objective functions being optimized are subjected to set of constraint. While many efforts have been dedicated in the literature to develop deterministic model of the assembly line, the attention is not considerably paid to those in uncertain circumstances. In this paper, along with proposing a novel fuzzy model for ALBP, triangular fuzzy numbers are deployed with to respect vagueness and uncertainty subjected to the task processing times. For this purpose, two conflicting objectives are considered simultaneously with regard to set of constraints, so that the efficiency of the line has to be maximized. To solve the problem, a modified NSGA-II, which utilized a new repairing mechanism, is proposed in response to the need of appropriate method treating such complicated problems. The validity of the proposed model and algorithm is evaluated and proved though a benchmark test problem. The obtained results reveal that in contrast to benchmark that applied an exact solution procedure, the proposed algorithm is capable of delivering the astonishing solutions in a more effective procedure. Along with the use of NSGA-II, in this study, three well-known meta-heuristic algorithms, namely PESA-II, NSACO and NPGA-II, are also employed for solving the problem in order to evaluate the effectiveness of the proposed algorithm, so that the results demonstrate the high performance for the NSGA-II over them. Finally, in light of the obtained results, this study offers an efficient framework enabling the decision maker to handle uncertainty in ALBPs along with the use of an efficient algorithm to solve them.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

References

  • Ajenblit DA, Wainwright RL (1998) Applying genetic algorithms to the Ushaped assembly line balancing problem. In: Paper presented at the evolutionary computation proceedings, 1998. IEEE world congress on computational intelligence. The 1998 IEEE international conference

  • Akpınar S, Mirac Bayhan G (2011) A hybrid genetic algorithm for mixed model assembly line balancing problem with parallel workstations and zoning constraints. Eng Appl Artif Intell 24(3):449–457. https://doi.org/10.1016/j.engappai.2010.08.006

    Article  Google Scholar 

  • Alavidoost MH, Zarandi MHF, Tarimoradi M, Nemati Y (2014) Modified genetic algorithm for simple straight and U-shaped assembly line balancing with fuzzy processing times. J Intell Manuf 28:313–336

    Article  Google Scholar 

  • Alavidoost MH, Tarimoradi M, Zarandi MHF (2015) Fuzzy adaptive genetic algorithm for multi-objective assembly line balancing problems. Appl Soft Comput 34:655–677

    Article  Google Scholar 

  • Al-Hawari T, Ali M, Al-Araidah O et al (2015) Development of a genetic algorithm for multiobjective assembly line balancing using multiple assignment approach. Int J Adv Manuf Technol 77(5–8):1419–1432

    Article  Google Scholar 

  • Arcus LA (1966) COMSOAL: a computer method of sequencing operations for assembly lines. Int J Prod Res 4:25–32

    Google Scholar 

  • Arqub OA, AL-Smadi M, Momani S et al (2016) Numerical solutions of fuzzy differential equations using reproducing kernel Hilbert space method. Soft Comput 20:3283. https://doi.org/10.1007/s00500-015-1707-4

    Article  MATH  Google Scholar 

  • Arqub OA, Momani S, Al-Mezel S, Kutbi M (2017) A novel iterative numerical algorithm for the solutions of systems of fuzzy initial value problems. Appl Math Inf Sci 11(4):1059–1074. https://doi.org/10.18576/amis/110412

    Article  Google Scholar 

  • Barathwaj N, Raja P, Gokulraj S (2015) Optimization of assembly line balancing using genetic algorithm. J Cent South Univ 22:3957. https://doi.org/10.1007/s11771-015-2940-9

    Article  Google Scholar 

  • Baudin M (2002) Lean assembly: the nuts and bolts of making assembly operations flow. Productivity Press, New York

    Book  Google Scholar 

  • Bautista J, Pereira J (2007) Ant algorithms for a time and space constrained assembly line balancing problem. Eur J Oper Res 177:2016–2032

    Article  MATH  Google Scholar 

  • Baybars I (1986) An efficient heuristic method for the simple assembly line balancing problem. Int J Prod Res 24(1):149–166

    Article  MathSciNet  MATH  Google Scholar 

  • Baykasoglu A (2006) Multi-rule multi-objective simulated annealing algorithm for straight and U type assembly line balancing problems. J Intell Manuf 17(2):217–232

    Article  MathSciNet  Google Scholar 

  • Becker C, Scholl A (2006) A survey on problems and methods in generalized assembly line balancing. Eur J Oper Res 168(3):694–715. https://doi.org/10.1016/j.ejor.2004.07.023

    Article  MathSciNet  MATH  Google Scholar 

  • Chica M, Cordón Ó, Damas S et al (2014) Interactive preferences in multiobjective ant colony optimisation for assembly line balancing. Soft Comput 19(10):2891–2903. https://doi.org/10.1007/s00500-014-1451-1

    Article  Google Scholar 

  • Chutima P, Chimklai P (2012) Multi-objective two-sided mixed-model assembly line balancing using particle swarm optimisation with negative knowledge. Comput Ind Eng 62(1):39–55

    Article  Google Scholar 

  • Coello CAC, Lamont GB, Van Veldhuizen DA (2007) Evolutionary algorithms for solving multi-objective problems, vol 5. Springer, Berlin

    MATH  Google Scholar 

  • Corne DW, Jerram NR, Knowles JD, Oates MJ (2001) PESA-II: region-based selection in evolutionary multiobjective optimization. In: Proceedings of the genetic and evolutionary computation conference

  • Dar-El EM (1973) MALB—a heuristic technique for balancing large single-model assembly lines. AIIE Trans 5(4):343–356

    Article  Google Scholar 

  • Dar-El EM, Rubinovitch Y (1979) Must—a multiple solutions technique for balancing single model assembly lines. Manag Sci 25(11):1105–1114. https://doi.org/10.1287/mnsc.25.11.1105

    Article  Google Scholar 

  • Deb K, Pratap A, Agarwal S, Meyarivan T (2002a) A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Trans Evol Comput 6(2):182–197. https://doi.org/10.1109/4235.996017

    Article  Google Scholar 

  • Deb K, Pratap A, Agarwal S, Meyarivan T (2002b) A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Trans Evol Comput 6:182–197

    Article  Google Scholar 

  • Deckro RF, Rangachari S (1990) A goal approach to assembly line balancing. Comput Oper Res 17(5):509–521. https://doi.org/10.1016/0305-0548(90)90055-C

    Article  MATH  Google Scholar 

  • Delice Y, Kızılkaya Aydoğan E, Özcan U et al (2014) A modified particle swarm optimization algorithm to mixed-model two-sided assembly line balancing. J Intell Manuf. https://doi.org/10.1007/s10845-014-0959-7

    Article  MATH  Google Scholar 

  • Dorigo M, Birattari M, Stutzle T (2006) Ant colony optimization. IEEE Comput Intell Mag 1(4):28–39

    Article  Google Scholar 

  • Dou J, Li J, Su C (2013) A novel feasible task sequence-oriented discrete particle swarm algorithm for simple assembly line balancing problem of type 1. Int J Adv Manuf Technol 69(9–12):2445–2457. https://doi.org/10.1007/s00170-013-5216-2

    Article  Google Scholar 

  • Erel E, Sarin SC (1998) A survey of the assembly line balancing procedures. Prod Plan Control 9(5):414–434

    Article  Google Scholar 

  • Erickson M, Mayer A, Horn J (2001) The niched pareto genetic algorithm 2 applied to the design of groundwater remediation systems. In: International conference on evolutionary multi-criterion optimization EMO: evolutionary multi-criterion optimization, pp 681–695

  • Falkenauer E, Delchambre A (1992) A genetic algorithm for bin packing and line balancing. In: Paper presented at the 1992 IEEE international conference on robotics and automation, 1992. Proceedings

  • Gen M, Tsujimura Y, Li Y (1996) Fuzzy assembly line balancing using genetic algorithms. Comput Ind Eng 31(3–4):631–634

    Article  Google Scholar 

  • Gutjahr AL, Nemhauser GL (1964) An algorithm for the line balancing problem. Manag Sci 11(2):308–315

    Article  MathSciNet  MATH  Google Scholar 

  • Gökçen H, Agˇpak K (2006) A goal programming approach to simple U-line balancing problem. Eur J Oper Res 171(2):577–585

    Article  MathSciNet  MATH  Google Scholar 

  • Hamta N, Fatemi Ghomi SMT, Jolai F et al (2013) A hybrid PSO algorithm for a multi-objective assembly line balancing problem with flexible operation times, sequence-dependent setup times and learning effect. Int J Prod Econ 141(1):99–111. https://doi.org/10.1016/j.ijpe.2012.03.013

    Article  Google Scholar 

  • Hamzadayi A, Yildiz G (2013) A simulated annealing algorithm based approach for balancing and sequencing of mixed-model U-lines. Comput Ind Eng 66(4):1070–1084. https://doi.org/10.1016/j.cie.2013.08.008

    Article  Google Scholar 

  • Haupt RL, Haupt SE (2004) Practical genetic algorithms, vol 2. Wiley, New York

    MATH  Google Scholar 

  • Hazır Ö, Dolgui A (2015) A decomposition based solution algorithm for U-type assembly line balancing with interval data. Comput Oper Res 59:126–131. https://doi.org/10.1016/j.cor.2015.01.010

    Article  MathSciNet  MATH  Google Scholar 

  • Helgeson WB, Birnie DP (1961) Assembly line balancing using the ranked positional weight technique. J Ind Eng 12(6):394–398

    Google Scholar 

  • Holland JH (1975) Adaptation in natural and artificial systems, vol 1. University of Michigan press, Ann Arbor, p 5

    Google Scholar 

  • Hwang RK, Katayama H (2009) A multi-decision genetic approach for workload balancing of mixed-model U-shaped assembly line systems. Int J Prod Res 47(14):3797–3822

    Article  Google Scholar 

  • Hwang RK, Katayama H, Gen M (2008) U-shaped assembly line balancing problem with genetic algorithm. Int J Prod Res 46(16):4637–4649

    Article  MATH  Google Scholar 

  • Jian-sha L, Ling-ling J, Xiu-lin Li (2009) Hybrid particle swarm optimization algorithm for assembly line balancing problem-2. In: 16th international conference. Paper presented at the industrial engineering and engineering management, 2009. IE&EM’09

  • Kalayci CB, Gupta SM (2013) A particle swarm optimization algorithm with neighborhood-based mutation for sequence-dependent disassembly line balancing problem. Int J Adv Manuf Technol 69(1–4):197–209

    Article  Google Scholar 

  • Kao EPC (1976) A preference order dynamic program for stochastic assembly line balancing. Manag Sci 22(10):1097–1104. https://doi.org/10.1287/mnsc.22.10.1097

    Article  MATH  Google Scholar 

  • Kara Y, Paksoy T, Chang CT (2009) Binary fuzzy goal programming approach to single model straight and U-shaped assembly line balancing. Eur J Oper Res 195(2):335–347. https://doi.org/10.1016/j.ejor.2008.01.003

    Article  MathSciNet  MATH  Google Scholar 

  • Kramer O (2010) A review of constraint-handling techniques for evolution strategies. Appl Comput Intell Soft Comput. https://doi.org/10.1155/2010/185063

    Article  Google Scholar 

  • Lapierre SD, Ruiz A, Soriano P (2006) Balancing assembly lines with tabu search. Eur J Oper Res 168(3):826–837

    Article  MathSciNet  MATH  Google Scholar 

  • La Scalia G (2013) Solving type-2 assembly line balancing problem with fuzzy binary linear programming. J Intell Fuzzy Syst 25(3):517–524. https://doi.org/10.3233/IFS-120656

    Article  MathSciNet  Google Scholar 

  • Laumanns, Zitzler, Thiele (2000) SPEA2: improving the strength pareto evolutionary algorithm for multiobjective optimization. Conference: evolutionary methods for design, optimization and control with applications to industrial problems, pp 19–21

  • Li D, Zhang C, Shao X, Lin W (2014) A multi-objective TLBO algorithm for balancing two-sided assembly line with multiple constraints. J Intell Manuf. https://doi.org/10.1007/s10845-014-0919-2

    Article  Google Scholar 

  • Luo F, Sun H, Geng T, Qi N (2008) Application of Taguchi’s method in the optimization of bridging efficiency between confluent and fresh micro carriers in bead-to-bead transfer of Vero cells. Biotechnol Lett 30(4):645–649

    Article  Google Scholar 

  • Lv Q (2011) Simple assembly line balancing using particle swarm optimization algorithm. Int J Dig Content Technol Appl 5(6)

  • Manavizadeh N, Hosseini N-s, Rabbani M, Jolai F (2013) A Simulated Annealing algorithm for a mixed model assembly U-line balancing type-I problem considering human efficiency and Just-In-Time approach. Comput Ind Eng 64(2):669–685. https://doi.org/10.1016/j.cie.2012.11.010

    Article  Google Scholar 

  • Mishra KS, Panda G, Majhi R (2014) A comparative performance assessment of a set of multiobjective algorithms for constrained portfolio assets selection. Swarm Evolut Comput 16:38–51. https://doi.org/10.1016/j.swevo.2014.01.001

    Article  Google Scholar 

  • Naderi B, Zandieh M, Roshanaei V (2009) Scheduling hybrid flow shops with sequence dependent setup times to minimize makespan and maximum tardiness. Int J Adv Manuf Technol 41(11–12):1186–1198

    Article  Google Scholar 

  • Nearchou AC (2011) Maximizing production rate and workload smoothing in assembly lines using particle swarm optimization. Int J Prod Econ 129(2):242–250. https://doi.org/10.1016/j.ijpe.2010.10.016

    Article  Google Scholar 

  • Peterson C (1993) A tabu search procedure for the simple assembly line balancing problem. In: Paper presented at the proceedings of the decision science institute conference

  • Quyen NT, Chen JC, Yang L (2016) Hybrid genetic algorithm to solve resource constrained assembly line balancing problem in footwear manufacturing. J Soft Comput. https://doi.org/10.1007/s00500-016-2181-3

    Article  Google Scholar 

  • Rashid MFF, Hutabarat W, Tiwari A (2012) A review on assembly sequence planning and assembly line balancing optimisation using soft computing approaches. Int J Adv Manuf Technol 59:335. https://doi.org/10.1007/s00170-011-3499-8

    Article  Google Scholar 

  • Rechenburg I (1989) Evolution Strategy: nature’s way of optimization. Optimization: methods and applications, possibilities and limitations, pp 106–126

  • Ruiz R, Maroto C, Alcaraz J (2006) Two new robust genetic algorithms for the flow shop scheduling problem. Omega 34(5):461–476

    Article  Google Scholar 

  • Sabuncuoglu I, Erel E, Alp A (2009) Ant colony optimization for the single model U-type assembly line balancing problem. Int J Prod Econ 120(2):287–300. https://doi.org/10.1016/j.ijpe.2008.11.017

    Article  Google Scholar 

  • Scholl A, Becker C (2006) State-of-the-art exact and heuristic solution procedures for simple assembly line balancing. Eur J Oper Res 168(3):666–693. https://doi.org/10.1016/j.ejor.2004.07.022

    Article  MathSciNet  MATH  Google Scholar 

  • Sivasankaran P, Shahabudeen P (2014) Literature review of assembly line balancing problems. Int J Adv Manuf Technol 73:1665. https://doi.org/10.1007/s00170-014-5944-y

    Article  Google Scholar 

  • Taguchi GAPO (1986) Introduction to quality engineering : designing quality into products and processes. Asian Productivity Organization, Tokyo

    Google Scholar 

  • Tarimoradi M, Alavidoost MH, Fazel Zarandi MH (2015) Comparative corrigendum note on papers “Fuzzy adaptive GA for multi-objective assembly line balancing” continued “Modified GA for different types of assembly line balancing with fuzzy processing times”: differences and similarities. Appl Soft Computing 35:786–788. https://doi.org/10.1016/j.asoc.2015.07.041

    Article  Google Scholar 

  • Tasan SO, Tunali S (2008) A review of the current applications of genetic algorithms in assembly line balancing. J Intell Manuf 19(1):49–69. https://doi.org/10.1007/s10845-007-0045-5

    Article  Google Scholar 

  • Toklu B, Özcan U (2008) A fuzzy goal programming model for the simple U-line balancing problem with multiple objectives. Eng Optim 40(3):191–204. https://doi.org/10.1080/03052150701651642

    Article  MathSciNet  Google Scholar 

  • Tsujimura Y, Gen M, Kubota E (1995) Solving fuzzy assembly-line balancing problem with genetic algorithms. Comput Ind Eng 29(1–4):543–547

    Article  Google Scholar 

  • Yagmahan B (2011) Mixed-model assembly line balancing using a multi-objective ant colony optimization approach. Expert Syst Appl 38(10):12453–12461. https://doi.org/10.1016/j.eswa.2011.04.026

    Article  Google Scholar 

  • Yu J, Yin Y (2010) Assembly line balancing based on an adaptive genetic algorithm. Int J Adv Manuf Technol 48(1–4):347–354

    Article  Google Scholar 

  • Yuan B, Zhang C, Shao X (2013) A late acceptance hill-climbing algorithm for balancing two-sided assembly lines with multiple constraints. J Intell Manuf. https://doi.org/10.1007/s10845-013-0770-x

    Article  Google Scholar 

  • Zacharia PT, Nearchou AC (2013) A meta-heuristic algorithm for the fuzzy assembly line balancing type-E problem. Comput Oper Res 40(12):3033–3044. https://doi.org/10.1016/j.cor.2013.07.012

    Article  MATH  Google Scholar 

  • Zadeh LA (1965) Fuzzy sets. Inf Control 8(3):338–353. https://doi.org/10.1016/S0019-9958(65)90241-X

    Article  MATH  Google Scholar 

  • Zha J, Yu J-j (2014) A hybrid ant colony algorithm for U-line balancing and rebalancing in just-in-time production environment. J Manuf Syst 33(1):93–102. https://doi.org/10.1016/j.jmsy.2013.08.002

    Article  Google Scholar 

  • Zimmermann H-J (1978) Fuzzy programming and linear programming with several objective functions. Fuzzy Sets Syst 1(1):45–55

    Article  MathSciNet  MATH  Google Scholar 

  • Zitzler E (1999) Evolutionary algorithms for multiobjective optimization: methods and applications, vol 63. Shaker, Ithaca

    Google Scholar 

  • Zitzler E, Deb K, Thiele L (2000) Comparison of multiobjective evolutionary algorithms: empirical results. 8(2):173–195

    Google Scholar 

  • Zitzler E, Laumanns M, Thiele L (2001) SPEA2: Improving the strength Pareto evolutionary algorithm, ed: Tik-report

  • Zhang ZQ, Cheng WM (2010) Solving fuzzy U-shaped line balancing problem with exact method. Appl Mech Mater 26:1046–1051

    Article  Google Scholar 

  • Zhang W, Gen M (2011) An efficient multiobjective genetic algorithm for mixed-model assembly line balancing problem considering demand ratio-based cycle time. Journal of Intelligent Manufacturing 22(3):367–378

    Article  Google Scholar 

Download references

Acknowledgements

The authors express their thanks to unknown referees for the careful reading and helpful comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hossein Babazadeh.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Communicated by V. Loia.

Appendices

Appendix 1

Table 10.

Table 10 Definition of the test problems

Appendix 2

Figure 19.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Babazadeh, H., Javadian, N. A novel meta-heuristic approach to solve fuzzy multi-objective straight and U-shaped assembly line balancing problems. Soft Comput 23, 8217–8245 (2019). https://doi.org/10.1007/s00500-018-3457-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00500-018-3457-6

Keywords

Navigation