Skip to main content
Log in

Compatibly involutive residuated lattices and the Nelson identity

  • Focus
  • Published:
Soft Computing Aims and scope Submit manuscript

Abstract

Nelson’s constructive logic with strong negation \(\mathbf {N3}\) can be presented (to within definitional equivalence) as the axiomatic extension \(\mathbf {NInFL}_{ew}\) of the involutive full Lambek calculus with exchange and weakening by the Nelson axiom

The algebraic counterpart of \(\mathbf {NInFL}_{ew}\) is the recently introduced class of Nelson residuated lattices. These are commutative integral bounded residuated lattices \(\langle A; \wedge , \vee , *, \Rightarrow , 0, 1 \rangle \) that: (i) are compatibly involutive in the sense that \(\mathop {\sim }\mathop {\sim }a = a\) for all \(a \in A\), where \(\mathop {\sim }a := a \Rightarrow 0\), and (ii) satisfy the Nelson identity, namely the algebraic analogue of (Nelson\(_{\vdash }\)), viz.

$$\begin{aligned} \bigl (x \Rightarrow (x \Rightarrow y)\bigr ) \wedge \bigl (\mathop {\sim }y \Rightarrow (\mathop {\sim }y \Rightarrow \mathop {\sim }x)\bigr ) \approx x \Rightarrow y. \end{aligned}$$
(Nelson)

The present paper focuses on the role played by the Nelson identity in the context of compatibly involutive commutative integral bounded residuated lattices. We present several characterisations of the identity (Nelson) in this setting, which variously permit us to comprehend its model-theoretic content from order-theoretic, syntactic, and congruence-theoretic perspectives. Notably, we show that a compatibly involutive commutative integral bounded residuated lattice \(\mathbf {A}\) is a Nelson residuated lattice iff for all \(a, b \in A\), the congruence condition

$$\begin{aligned} \varTheta ^{\mathbf {A}}(0, a) = \varTheta ^{\mathbf {A}}(0, b) \quad \text {and} \quad \varTheta ^{\mathbf {A}}(1, a) = \varTheta ^{\mathbf {A}}(1, b) \quad \text {implies} \quad a = b \end{aligned}$$

holds. This observation, together with others of the main results, opens the door to studying the characteristic property of Nelson residuated lattices (and hence Nelson’s constructive logic with strong negation) from a purely abstract perspective.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. Implicative lattices, also called Brouwerian lattices or generalised Heyting algebras in the literature, are precisely the 0-free subreducts of Heyting algebras \(\langle A; \wedge , \vee , \rightarrow , 0,1 \rangle \).

  2. We avoid using \(\wedge , \vee , \rightarrow , \Rightarrow \), etc., as logical symbols of the first-order language with equality \(\varLambda [{{\,\mathrm{{\textsc {fol}}}\,}}, \approx ]\), as determined by the algebraic language type \(\varLambda \), since these symbols are employed extensively to denote connective symbols of the algebraic language types considered throughout the paper.

  3. Implicative semilattices, also called Brouwerian semilattices in the literature, are precisely the \(\langle \rightarrow , \wedge \rangle \)-subreducts of Heyting algebras \(\langle A; \wedge , \vee , \rightarrow , 0, 1 \rangle \).

  4. In many texts, compatibly involutive commutative (integral) residuated lattices are simply referred to as involutive commutative (integral) residuated lattices. Here we follow the terminological conventions of Hsieh and Raftery (2007); note that in our previous work (Nascimento et al. 2018a, b) (and likewise in the earlier paper Galatos and Raftery 2004 of Galatos and Raftery) compatibly involutive commutative (integral) residuated lattices are called involutive commutative (integral) residuated lattices.

  5. Probably, this is because CIBRLs are \(\mathbf {1}\)-regular but not \(\mathbf {0}\)-regular.

  6. Numerous sequent calculi for constructive logic with strong negation have been proposed in the literature, including the systems of Almukdad and Nelson (1984), Gurevich (1977), Kutschera (1969), López-Escobar (1972), Thomason (1969), and Zaslavsky (1978). The sequent calculus of Metcalfe (2009) is distinguished among these systems in that—unlike any of the other calculi cited above—it does not contain rules acting on more than one connective at a time. See Kozak (2014, Footnote 3).

  7. A double p-algebra (Katriňák 1973) is an algebra \(\langle A; \wedge , \vee , {}^{*}, {}^{+}, 0, 1 \rangle \) where \(\langle A; \wedge , \vee , {}^{*}, 0, 1 \rangle \) is a pseudocomplemented distributive lattice (Balbes and Dwinger 1974, Chapter VIII) and \(\langle A; \wedge , \vee , {}^{+}, 0, 1 \rangle \) is a dually pseudocomplemented distributive lattice.

  8. The topological study of Nelson algebras can be traced back at least to Cignoli (1986); Sendlewski (1990). For \(\mathbf {N4}\)-lattices, a topological duality was first introduced in Odintsov (2010); see also Jansana and Rivieccio (2014). We notice in passing that the special filters of the first kind used in the duality of Odintsov (2010) coincide, within Nelson algebras, with our filters as defined in Sect. 2

  9. This corresponds to the move from the integral (Nelson) to the non-integral (\(\mathbf {N4}\)-lattice) case.

References

  • Almukdad A, Nelson D (1984) Constructible falsity and inexact predicates. J Symb Log 49:231–233

    Article  MathSciNet  MATH  Google Scholar 

  • Balbes R, Dwinger P (1974) Distributive lattices. University of Missouri Press, Columbia

    MATH  Google Scholar 

  • Baldwin JT, Berman J (1975) The number of subdirectly irreducible algebras in a variety. Algebra Universalis 5:379–389

    Article  MathSciNet  MATH  Google Scholar 

  • Blok WJ, Pigozzi D (1989) Algebraizable logics, vol 77, no. 396. Memoirs of the American Mathematical Society, Providence

    MATH  Google Scholar 

  • Blok WJ, Pigozzi D (1994a) On the structure of varieties with equationally definable principal congruences III. Algebra Universalis 32:545–608

    Article  MathSciNet  MATH  Google Scholar 

  • Blok WJ, Pigozzi D (1994b) On the structure of varieties with equationally definable principal congruences IV. Algebra Universalis 31:1–35

    Article  MathSciNet  MATH  Google Scholar 

  • Blok WJ, Raftery JG (1997) Varieties of commutative residuated integral pomonoids and their residuation subreducts. J Algebra 190:280–328

    Article  MathSciNet  MATH  Google Scholar 

  • Blok WJ, Pigozzi D (2001) Abstract algebraic logic and the deduction theorem. Manuscript. http://orion.math.iastate.edu/dpigozzi/papers/aaldedth.pdf. Accessed 31 July 2018

  • Blok WJ, Köhler P, Pigozzi D (1984) On the structure of varieties with equationally definable principal congruences II. Algebra Universalis 18:334–379

    Article  MathSciNet  Google Scholar 

  • Brignole D, Monteiro A (1967) Caracterisation des algèbres de Nelson par des egalités. I, II. Proc Jpn Acad 43:279–285. Reproduced in Notas de Lógica Matemática No. 20, Universidad Nacional del Sur, Bahía Blanca (1964)

  • Büchi JR, Owens TM (1975) Skolem rings and their varieties. Technical Report, CSD TR140, Purdue University. Also in: MacLane S, Siefkes D (eds) The collected works of J. Richard Büchi

  • Burris S, Sankappanavar HP (1981) A course in universal algebra, graduate texts in mathematics, vol 78. Springer, New York

    MATH  Google Scholar 

  • Busaniche M, Cignoli R (2008) \(n\)-potent residuated lattices. Manuscript

  • Busaniche M, Cignoli R (2010) Constructive logic with strong negation as a substructural logic. J Log Comput 20:761–793

    Article  MathSciNet  MATH  Google Scholar 

  • Cignoli R (1986) The class of Kleene algebras satisfying an interpolation property and Nelson algebras. Algebra Universalis 23:262–292

    Article  MathSciNet  MATH  Google Scholar 

  • Cignoli R, Torrens A (2012) Varieties of commutative integral bounded residuated lattices admitting a Boolean retraction term. Studia Log 100:1107–1136

    Article  MathSciNet  MATH  Google Scholar 

  • Clark DM, Davey BA (1998) Natural dualities for the working algebraist. Cambridge studies in advanced mathematics, vol 57. Cambridge University Press, Cambridge

    MATH  Google Scholar 

  • Cornejo JM, Viglizzo I (2018) Semi-Nelson algebras. Order 35:23–45

    Article  MathSciNet  MATH  Google Scholar 

  • Czelakowski J (2001) Protoalgebraic logics. In: Trends in logic. Studia logica library, vol 10. Kluwer, Dordrecht

  • Czelakowski J, Pigozzi D (2004) Fregean logics. Ann Pure Appl Log 127:17–76

    Article  MathSciNet  MATH  Google Scholar 

  • Ferreirim IM.A (1992) On varieties and quasivarieties of hoops and their reducts. Ph.D. thesis, University of Illinois at Chicago

  • Fichtner K (1970) Eine Bemerkung über Mannigfaltigkeiten universeller Algebren mit Idealen. Monatsberichte der Deutschen Akademie der Wissenschaften zu Berlin: Mitteilungen aus Mathematik, Naturwissenschaft, Medizin und Technik 12:21–25

    MATH  Google Scholar 

  • Font JM, Jansana R (2009) A general algebraic semantics for sentential logics. In: Lecture notes in logic, vol 7, 2nd edn. Association for Symbolic Logic, New York

  • Font JM, Jansana R, Pigozzi D (2003) A survey of abstract algebraic logic. Studia Log 74:13–97

    Article  MathSciNet  MATH  Google Scholar 

  • Galatos N, Raftery J (2004) Adding involution to residuated structures. Studia Log 77:181–207

    Article  MathSciNet  MATH  Google Scholar 

  • Galatos N, Jipsen P, Kowalski T, Ono H (2007) Residuated lattices: an algebraic glimpse at substructural logics. Elsevier, Amsterdam

    MATH  Google Scholar 

  • Grätzer G (2008) Universal algebra, 2nd edn. Springer, New York

    Book  MATH  Google Scholar 

  • Gumm HP, Ursini A (1984) Ideals in universal algebras. Algebra Universalis 19:45–54

    Article  MathSciNet  MATH  Google Scholar 

  • Gurevich Y (1977) Intuitionistic logic with strong negation. Studia Log 36:49–59

    Article  MathSciNet  MATH  Google Scholar 

  • Higgs D (1984) Dually residuated commutative monoids with identity element as least element do not form an equational class. Math Jpn 29:69–75

    MathSciNet  MATH  Google Scholar 

  • Hsieh A, Raftery JG (2007) Conserving involution in residuated structures. Math Log Q 53:583–609

    Article  MathSciNet  MATH  Google Scholar 

  • Idziak PM, Słomczyńska K, Wroński A (2009) Fregean varieties. Int J Algebra Comput 19:595–645

    Article  MathSciNet  MATH  Google Scholar 

  • Jansana R, Rivieccio U (2014) Dualities for modal N4-lattices. Log J IGPL Interest Gr Pure Appl Log 22:608–637

    MathSciNet  MATH  Google Scholar 

  • Järvinen J, Radeleczki S (2017) Representing regular pseudocomplemented Kleene algebras by tolerance-based rough sets. J Aust Math Soc Ser A Pure Math Stat 105:57–78

    Article  MathSciNet  MATH  Google Scholar 

  • Kabziński JK, Wroński A (1991) On equivalential algebras. In: Proceedings of the 1975 international symposium on multiple-valued logic. IEEE Computer Society, Long Beach, California, pp 419–428

  • Kalman JA (1958) Lattices with involution. Trans Am Math Soc 87:485–491

    Article  MathSciNet  MATH  Google Scholar 

  • Katriňák T (1973) The structure of distributive double p-algebras. Regularity and congruences. Algebra Universalis 3:238–246

    Article  MathSciNet  MATH  Google Scholar 

  • Köhler P, Pigozzi D (1980) Varieties with equationally definable principal congruences. Algebra Universalis 11:213–219

    Article  MathSciNet  MATH  Google Scholar 

  • Kowalski T (2004) Semisimplicity, EDPC and discriminator varieties of residuated lattices. Studia Log 77:255–265

    Article  MathSciNet  MATH  Google Scholar 

  • Kozak M (2014) Strong negation in intuitionistic style sequent systems for residuated lattices. Math Log Q 60:319–334

    Article  MathSciNet  MATH  Google Scholar 

  • López-Escobar EGK (1972) Refutability and elementary number theory. In: Indagationes mathematicae (proceedings), vol 75, pp 362–374

  • Maia P, Rivieccio U, Jung A Non-involutive twist-structures. Special issue of logic journal of the IGPL—recovery operators and logics of formal consistency & inconsistencies (accepted)

  • McCune W (2018) Prover 9. http://www.cs.unm.edu/~mccune/prover9/. Accessed 31 July 2018

  • McKenzie RN, McNulty GF, Taylor WF (1987) Algebras, lattices, varieties: the Wadsworth & Brooks/Cole mathematics series, vol I. Wadsworth & Brooks/Cole Advanced Books & Software, Monterey

    Google Scholar 

  • McKinsey JCC, Tarski A (1946) On closed elements in closure algebras. Ann Math Second Ser 47:122–162

    Article  MathSciNet  MATH  Google Scholar 

  • Metcalfe G (2009) A sequent calculus for constructive logic with strong negation as a substructural logic. Bull Sect Log 38:5–12

    MathSciNet  MATH  Google Scholar 

  • Nascimento T, Rivieccio U, Marcos J, Spinks M (2018a) Algebraic semantics for Nelson’s logic \(\mathscr {S}\). In: Moss L, de Queiroz R, Martinez M (eds) Logic, language, information, and computation, vol 10944. WoLLIC 2018. Lecture notes in computer science. Springer, Berlin, pp 271–288

  • Nascimento T, Rivieccio U, Marcos J, Spinks M (2018b) Nelson’s Logic \(\mathscr {S}\). ArXiv e-prints. arXiv:1803.10851 [math.LO]

  • Nelson D (1949) Constructible falsity. J Symb Log 14:16–26

    Article  MathSciNet  MATH  Google Scholar 

  • Nelson D (1959) Negation and separation of concepts in constructive systems. In: Heyting A (ed) Constructivity in mathematics. North-Holland, Amsterdam, pp 208–225

    Google Scholar 

  • Odintsov SP (2003) Algebraic semantics for paraconsistent Nelson’s logic. J Log Comput 13:453–468

    Article  MathSciNet  MATH  Google Scholar 

  • Odintsov SP (2004) On the representation of N4-lattices. Studia Log 76:385–405

    Article  MathSciNet  MATH  Google Scholar 

  • Odintsov SP (2008) Constructive negations and paraconsistency. In: Trends in logic. Studia logica library, vol 26. Springer, Berlin

  • Odintsov SP (2010) Priestley duality for paraconsistent Nelson’s logic. Studia Log 96:65–93

    Article  MathSciNet  MATH  Google Scholar 

  • Ono H (2010) Logics without contraction rule and residuated lattices. Australas J Log 8:50–81

    MathSciNet  MATH  Google Scholar 

  • Paoli F (2005) \(\star \)-autonomous lattices. Studia Log 79:283–304

    Article  MathSciNet  MATH  Google Scholar 

  • Pigozzi D (1991) Fregean algebraic logic. In: Andréka H, Monk JD, Németi I (eds) Algebraic logic, Colloquia Mathematica Societatis János Bolyai Budapest (Hungary), vol 54. North-Holland, New York, pp 473–502

    Google Scholar 

  • Pöschel R, Radeleczki S (2008) Endomorphisms of quasiorders and related lattices. In: Dorfer G, Eigenthaler G, Kautschitch H, More W, Müller WB (eds) Contributions to general algebra, vol 18. Proceedings of the Klagenfurt conference 2007 (AAA 73 + CYA 22). Verlag Johannes Heyn GmbH & Co., Klagenfurt, pp 113–128

  • Pynko AP (1999) Implicational classes of De Morgan lattices. Discrete Math 205:171–181

    Article  MathSciNet  MATH  Google Scholar 

  • Rasiowa H (1974) An algebraic approach to non-classical logics, studies in logic and the foundations of mathematics, vol 78. North-Holland, Amsterdam

    MATH  Google Scholar 

  • Rivieccio U, Spinks M (2018) Quasi-Nelson algebras. 13th workshop on logical and semantic frameworks, with applications (LSFA 2018) (accepted)

  • Sankappanavar HP (1980) A characterization of principal congruences of De Morgan algebras and its applications. In: Arruda AI, Chuaqui R, Da Costa NCA (eds) Mathematical logic in Latin America, vol 99. Proceedings of the IV Latin American symposium on mathematical logic held in Santiago, December 1978, Studies in logic and the foundations of mathematics. North-Holland Publishing Company, Amsterdam, pp 341–350

  • Sankappanavar HP (1987) Semi-De Morgan algebras. J Symb Log 52:712–724

    Article  MathSciNet  MATH  Google Scholar 

  • Sendlewski A (1984) Some investigations of varieties of \(\mathscr {N}\)-lattices. Studia Log 43:257–280

    Article  MathSciNet  MATH  Google Scholar 

  • Sendlewski A (1990) Nelson algebras through Heyting ones. I. Studia Log 49:105–126

    Article  MathSciNet  MATH  Google Scholar 

  • Slaney J (2004) Relevant logic and paraconsistency. In: Bertossi L, Hunter A, Schaub T (eds) Inconsistency tolerance, vol 3300. Lecture notes in computer science. Springer, Berlin, pp 270–293

    Chapter  Google Scholar 

  • Slaney J, Surendonk T, Girle R (1989) Time, truth and logic. Technical report TR-ARP-11/89, Automated reasoning project, Australian National University, Canberra. http://ftp.rsise.anu.edu.au/papers/slaney/TTL/TTL.ps.gz. Accessed 31 July 2018

  • Spinks M, Veroff R (2007) Characterisations of Nelson algebras. Revista de la Unión Mathemática Argentina 48:27–39

    MathSciNet  MATH  Google Scholar 

  • Spinks M, Veroff R (2008a) Constructive logic with strong negation is a substructural logic. I. Studia Log 88:325–348

    Article  MathSciNet  MATH  Google Scholar 

  • Spinks M, Veroff R (2008b) Constructive logic with strong negation is a substructural logic. II. Studia Log 89:401–425

    Article  MathSciNet  MATH  Google Scholar 

  • Spinks M, Veroff R (2010) Slaney’s logic \(\mathbf{F}^{**}\) is constructive logic with strong negation. Bull Sect Log 39:161–174

    MathSciNet  MATH  Google Scholar 

  • Spinks M, Veroff R (2018) Paraconsistent constructive logic with strong negation as a contraction-free relevant logic. In: Czelakowski J (ed) Don Pigozzi on Abstract algebraic logic, Universal Algebra, and Computer Science, outstanding contributions to logic, vol 16. Springer, Basel, pp 323–379

    Google Scholar 

  • Spinks M, Veroff R Paraconsistent constructive logic with strong negation is a contraction-free relevant logic. I. Term equivalence (in preparation)

  • Stone MH (1936) The theory of representations for Boolean algebras. Trans Am Math Soc 39:37–111

    MathSciNet  MATH  Google Scholar 

  • Thomason RH (1969) A semantical study of constructible falsity. Zeitschrift für mathematische Logik und Grundlagen der Mathematik 15:247–257

    Article  MathSciNet  MATH  Google Scholar 

  • Ursini A (1972) Sulle varietá di algebre con una buona teoria degli ideali. Bolletino della Unione Matematica Italiana 6:90–95 (Series 4)

    MATH  Google Scholar 

  • Vakarelov D (1977) Notes on \(\mathscr {N}\)-lattices and constructive logic with strong negation. Studia Log 36:109–125

    Article  MathSciNet  MATH  Google Scholar 

  • Varlet J (1972) A regular variety of type \({2, 2, 1, 1, 0, 0}\). Algebra Universalis 2:218–223

    Article  MathSciNet  MATH  Google Scholar 

  • Veroff R (2001) Solving open questions and other challenge problems using proof sketches. J Autom Reason 27:157–174

    Article  MathSciNet  MATH  Google Scholar 

  • von Kutschera F (1969) Ein verallgemeinerter Widerlegungsbegriff für Gentzenkalküle. Archiv für mathematische Logik und Grundlagenforschung 12:104–118

    Article  MathSciNet  MATH  Google Scholar 

  • Zaslavsky ID (1978) Symmetric constructive logic. Publishing House of the Academy of Sciences of Armenia SSR, Yerevan (in Russian)

    Google Scholar 

Download references

Acknowledgements

The authors would like to thank the anonymous referees for their detailed comments, which have helped improve the presentation of this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Umberto Rivieccio.

Ethics declarations

Conflict of interest

All three authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Communicated by C. Noguera.

Dedicated to Lluís Godo on the occasion of his 60th birthday.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Spinks, M., Rivieccio, U. & Nascimento, T. Compatibly involutive residuated lattices and the Nelson identity. Soft Comput 23, 2297–2320 (2019). https://doi.org/10.1007/s00500-018-3588-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00500-018-3588-9

Keywords

Navigation