Skip to main content
Log in

Green supply chain analysis under cost sharing contract with uncertain information based on confidence level

  • Focus
  • Published:
Soft Computing Aims and scope Submit manuscript

Abstract

In this paper, we study supply chain coordination issues arising out of green supply chain consisting of a manufacturer and a retailer under cost sharing contract with uncertain information. Instead of expected utility maximization, we present an alternative decision rule based on confidence level, that is, both the manufacturer’s and the retailer’s aims are to maximize the potential incomes under their confidence levels. First, we obtain the equilibrium values for the decentralized and the centralized channel cases under the given confidence levels, then compare the equilibrium values between the decentralized channel case and the centralized channel case to motivate cost sharing contract framework. Second, we consider the retailer participates in the green channel and obtain that the manufacturer and the retailer incur higher profits in the cost sharing contract case than the decentralized supply chain case. Third, we propose a cost sharing contract between the players who bargain on the cost sharing parameter, and the contract benefits the manufacturer significantly through sharing of costs with the retailer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Babich V, Li H, Ritchken P, Wang Y (2012) Contracting with asymmetric demand information in supply chains. Eur J Oper Res 217(2):333–341

    Article  MathSciNet  Google Scholar 

  • Bai Q, Chen M, Xu L (2017) Revenue and promotional cost-sharing contract versus two-part tariff contract in coordinating sustainable supply chain systems with deteriorating items. Int J Prod Econ 187:85–101

    Article  Google Scholar 

  • Bhaskaran S, Krishnan V (2009) Effort revenue and cost sharing mechanisms for collaborative new product development. Manag Sci 55(7):1152–1169

    Article  Google Scholar 

  • Carter C, Rogers D (2008) A framenwork of sustainable supply chain management: moving toward new theory. Int J Phys Distrib Logist Manag 38(5):360–387

    Article  Google Scholar 

  • Chao G, Iravani S, Savaskan R (2009) Quality improvement incentives and product recall cost sharing contracts. Manag Sci 55(7):1122–1138

    Article  Google Scholar 

  • Chen X, Ralescu D (2013) Liu process and uncertain calculus. J Uncertain Anal Appl 1(3):1–12

    Google Scholar 

  • Chen H, Yan Y, Ma N, Yang L (2018) Coopetition strategy and pricing timing in an outsourcing supply chain with uncertain operation risk. IEEE Trans Fuzzy Syst. https://doi.org/10.1109/TFUZZ.2018.2821106

    Article  Google Scholar 

  • Dai R, Zhang J, Tang W (2017) Cartelization or cost-sharing? Comparison of cooperation modes in a green supply chain. Int J Prod Econ, J Clean Prod 156:159–173

    Article  Google Scholar 

  • Ellsberg D (1961) Risk, ambiguity, and the savage axioms. Q J Econ 75(4):643–669

    Article  MathSciNet  Google Scholar 

  • Eyland T, Zaccour G (2014) Carbon tariffs and cooperative outcomes. Energy Policy 65:718–728

    Article  Google Scholar 

  • Fanti L (2016) Endogenous timing under price competition and unions. Int J Econ Theory 12(4):401–413

    Article  MathSciNet  Google Scholar 

  • Ghosh D, Shah J (2015) Supply chain analysis under green sensitive consumer demand and cost sharing contract. Int J Prod Econ 164:319–32

    Article  Google Scholar 

  • Hong Z, Guo X (2019) Green product supply chain contracts considering environmental responsibilities. Omega 83:155–166

    Article  Google Scholar 

  • Hsu C, Tan K, Zailani S, Jayaraman V (2013) Supply chain drivers that foster the development of green initiatives in an emerging economy. J Oper Manag 33(6):63–77

    Google Scholar 

  • Huang P, Zhang X, Deng X (2006) Survey and analysis of public environmental awareness and performance in Ningbo, China: a case study on household electrical and electronic equipment. J Clean Prod 14(18):1635–1643

    Article  Google Scholar 

  • Leng M, Parlar M (2010) Game-theoretic analyses of decentralized assembly supply chains: non-cooperative equilibria vs. coordination with cost-sharing contracts. Eur J Oper Res 204(1):96–104

    Article  MathSciNet  Google Scholar 

  • Li Z, Ryan J, Shao L, Sun D (2014) Supply contract design for competing heterogeneous suppliers under asymmetric information. Prod Oper Manag 24(5):791–807

    Article  Google Scholar 

  • Li B, Zhu M, Jiang Y, Li Z (2016) Pricing policies of a competitive dual-channel green supply chain. J Clean Prod 112:2029–2042

    Article  Google Scholar 

  • Linton J, Klassen R, Jayaraman V (2007) Sustainable supply chains: an introduction. J Oper Manag 25(6):1075–1082

    Article  Google Scholar 

  • Liu B (2007) Uncertainty theory. Springer, Berlin, pp 205–234

    Book  Google Scholar 

  • Liu B (2009) Some research problems in uncertainty theory. J Uncertain Syst 3(1):3–10

    Google Scholar 

  • Liu B (2009) Theory and practice of uncertain programming, 2nd edn. Springer, Berlin

    Book  Google Scholar 

  • Liu B (2010) Uncertainty theory: a branch of mathematics for modeling human uncertainty. Springer, Berlin

    Book  Google Scholar 

  • Liu B (2013) Toward uncertain finance theory. J Uncertain Anal Appl 1(1):1–15

    Article  Google Scholar 

  • Liu B (2015) Uncertainty theory, 4th edn. Springer, Berlin

    MATH  Google Scholar 

  • Liu Y, Ha M (2010) Expected value of function of uncertain variables. J Uncertain Syst 4(3):181–186

    Google Scholar 

  • Mu R, Lan Y, Tang W (2013) An uncertain contract model for rural migrant workers employment problems. Fuzzy Optim Decis Mak 12(1):29–39

    Article  MathSciNet  Google Scholar 

  • Raza S (2018) Supply chain coordination under a revenue-sharing contract with corporate social responsibility and partial demand information. Int J Prod Econ 205:1–14

    Article  Google Scholar 

  • Seuring S, Müller M (2008) From a literature review to a conceptual framework for sustainable supply chain management. J Clean Prod 16(15):1699–1710

    Article  Google Scholar 

  • Shang W, Ha A, Tong S (2015) Information sharing in a supply chain with a common retailer. Manag Sci 62(1):245–263

    Google Scholar 

  • Subramanian R, Gupta S, Talbot B (2009) Product design and supply chain coordination under extended producer responsibility. Prod Oper Manag 18(3):259–277

    Article  Google Scholar 

  • Swami S, Shah J (2013) Channel coordination in green supply chain management. J Oper Res Soc 64(3):336–351

    Article  Google Scholar 

  • Wu Z, Pagell M (2011) Balancing priorities: decision-making in sustainable supply chain management. J Oper Manag 29(6):57–90

    Article  Google Scholar 

  • Wu X, Zhao R, Tang W (2014) Uncertain agency models with multi-dimensional incomplete information based on confidence level. Fuzzy Optim Decis Mak 13(2):231–258

    Article  MathSciNet  Google Scholar 

  • Xu J, Chen Y, Bai Q (2016) A two-echelon sustainable supply chain coordination un- der cap-and-trade regulation. J Clean Prod 135:42–56

    Article  Google Scholar 

  • Yang F, Shan F, Jin M (2017) Capacity investment under cost sharing contracts. Int J Prod Econ 191:278–285

    Article  Google Scholar 

  • Yao K (2013) Extreme values and integral of solution of uncertain differential equation. J Uncertain Anal Appl 1(1):1–21

    Article  Google Scholar 

  • Zhang J, Gou Q, Liang L, Huang Z (2013) Supply chain coordination through cooperative advertising with reference price effect. Omega 41(2):345–353

    Article  Google Scholar 

  • Zhang C, John W, Henke J, Viswanathan S (2015) Reciprocity between buyer cost sharing and supplier technology sharing. Int J Prod Econ 163:61–70

    Article  Google Scholar 

  • Zhang Q, Tang W, Zhang J (2016) Green supply chain performance with cost learning and operational inefficiency effects. J Clean Prod 112:3267–3284

    Article  Google Scholar 

  • Zhou Y, Guo J, Zhou J (2018) Pricing/service strategies for a dual-channel supply chain with free riding and service-cost sharing. Int J Prod Econ 196:198–210

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant No. 61702389), Yanta Scholars Foundation of Xi’an University of Finance and Economics and Social Science Foundation of Hebei Province (Grant No. HB18GL036).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rong Gao.

Ethics declarations

Conflicts of interest

The authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Communicated by Y. Ni.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix A

Appendix A

Proof of Proposition 1

We first solve for the retailer’s \(\alpha \)-profit.

$$\begin{aligned} \max \limits _{p} \Pi _{r}(p)&= (p-w)(\Phi ^{-1}(1-\alpha )-\Psi _{1}^{-1}(\alpha )p\nonumber \\&+\,\Psi _{2}^{-1}(1-\alpha )\theta ). \end{aligned}$$
(24)
$$\begin{aligned} \frac{\partial }{\partial p}\Pi _{r}&= \Phi ^{-1}(1-\alpha )-2\Psi _{1}^{-1}(\alpha )p+\Psi _{1}^{-1}(\alpha )w\nonumber \\&+\,\Psi _{2}^{-1}(1-\alpha )\theta . \end{aligned}$$
(25)
$$\begin{aligned} \frac{\partial ^{2} }{\partial ^{2} p}\Pi _{r}&= -2\Psi _{1}^{-1}(\alpha )<0. \end{aligned}$$
(26)

Therefore, the retailer’s \(\alpha \)-profit function is strictly concave about p. Let the first-order condition equate to 0, we have

$$\begin{aligned} p=\frac{\Phi ^{-1}(1-\alpha )+\Psi _{1}^{-1}(\alpha )w+\Psi _{2}^{-1}(1-\alpha )\theta }{2\Psi _{1}^{-1}(\alpha )}. \end{aligned}$$
(27)

The manufacturer’s profit function is

$$\begin{aligned} \max \limits _{(w,\theta )}\Pi _{m}&= (w-c)(\Phi ^{-1}(1-\alpha )-\Psi _{1}^{-1}(\alpha )p\nonumber \\&+\,\Psi _{2}^{-1}(1-\alpha )\theta )-I\theta ^{2}. \end{aligned}$$
(28)

We substitute p into equation (28) and derive

$$\begin{aligned} \max \limits _{(w,\theta )}\Pi _{m}& = \frac{(w-c)(\Phi ^{-1}(1-\alpha )-\Psi _{1}^{-1}(\alpha )w+\Psi _{2}^{-1}(1-\alpha )\theta )}{2}\nonumber \\& \quad -I\theta ^{2}. \end{aligned}$$
(29)

The first-order condition

$$\begin{aligned} \frac{\partial }{\partial w}\Pi _{m}&= -\Psi _{1}^{-1}(\alpha )w+\frac{\Phi ^{-1}(1-\alpha )}{2}\nonumber \\&+\frac{\Psi _{1}^{-1}(\alpha )c}{2}+\frac{\Psi _{2}^{-1}(1-\alpha )\theta }{2}, \end{aligned}$$
(30)
$$\begin{aligned} \frac{\partial }{\partial \theta }\Pi _{m}&= \frac{(w-c)\Psi _{2}^{-1}(1-\alpha )}{2}-2I\theta . \end{aligned}$$
(31)

The second-order condition

$$\begin{aligned} \frac{\partial ^{2} }{\partial w^{2}}\Pi _{m}&= -\Psi _{1}^{-1}(\alpha )<0, \end{aligned}$$
(32)
$$\begin{aligned} \frac{\partial ^{2} }{\partial \theta ^{2}}\Pi _{m}&= -2I<0,\end{aligned}$$
(33)
$$\begin{aligned} \frac{\partial ^{2} }{\partial w \partial \theta }\Pi _{m}&= \frac{\Psi _{2}^{-1}(1-\alpha )}{2}. \end{aligned}$$
(34)

when \(2I\Psi _{1}^{-1}(\alpha )-\frac{\Psi _{2}^{-1}(1-\alpha )^{2}}{4}>0\), the Hessian H is negative definite. Thus the manufacturer’s profit function is jointly concave in w and \(\theta \). Let the first-order condition equate to 0, we have

$$\begin{aligned} w(\theta )&= \frac{\Phi ^{-1}(1-\alpha )+\Psi _{1}^{-1}(\alpha )c+\Psi _{2}^{-1}(1-\alpha )\theta }{2\Psi _{1}^{-1}(\alpha )}, \end{aligned}$$
(35)
$$\begin{aligned} \theta (w)&= \frac{(w-c)\Psi _{2}^{-1}(1-\alpha )}{4I}. \end{aligned}$$
(36)

And we have

$$\begin{aligned} \theta ^{D}&= \frac{\Psi _{2}^{-1}(1-\alpha )(\Phi ^{-1}(1-\alpha )-\Psi _{1}^{-1}(\alpha )c)}{8I\Psi _{1}^{-1}(\alpha )-(\Psi _{2}^{-1}(1-\alpha ))^{2}}, \end{aligned}$$
(37)
$$\begin{aligned} w^{D}&= \frac{4I(\Phi ^{-1}(1-\alpha )-\Psi _{1}^{-1}(\alpha )c)}{8I\Psi _{1}^{-1}(\alpha )-(\Psi _{2}^{-1}(1-\alpha ))^{2}}+c,\end{aligned}$$
(38)
$$\begin{aligned} p^{D}&= \frac{6I(\Phi ^{-1}(1-\alpha )-\Psi _{1}^{-1}(\alpha )c)}{8I\Psi _{1}^{-1}(\alpha )-(\Psi _{2}^{-1}(1-\alpha ))^{2}}+c,\end{aligned}$$
(39)
$$\begin{aligned} \Pi _{m}^{D}&= \frac{I(\Phi ^{-1}(1-\alpha )-\Psi _{1}^{-1}(\alpha )c)^{2}}{8I\Psi _{1}^{-1}(\alpha )-(\Psi _{2}^{-1}(1-\alpha ))^{2}}, \end{aligned}$$
(40)
$$\begin{aligned} \Pi _{r}^{D}&= \frac{4\Psi _{1}^{-1}(\alpha )I^{2}(\Phi ^{-1}(1-\alpha )-\Psi _{1}^{-1}(\alpha )c)^{2}}{(8I\Psi _{1}^{-1}(\alpha )-(\Psi _{2}^{-1}(1-\alpha ))^{2})^{2}}, \end{aligned}$$
(41)
$$\begin{aligned} \Pi _{s}^{D}&= \frac{I(\Phi ^{-1}(1-\alpha )-\Psi _{1}^{-1}(\alpha )c)^{2}(12I\Psi _{1}^{-1}(\alpha )-\Psi _{2}^{-1}(1-\alpha )^{2})}{(8I\Psi _{1}^{-1}(\alpha )-(\Psi _{2}^{-1}(1-\alpha ))^{2})^{2}}. \end{aligned}$$
(42)

\(\square \)

Proof of Proposition 2

The partial derivative w.r.t. I gives

$$\begin{aligned} \frac{\delta \theta ^{D}}{\delta I}&= \frac{-8\Psi _{1}^{-1}(\alpha )\Psi _{2}^{-1}(1-\alpha )(\Phi ^{-1}(1-\alpha )-\Psi _{1}^{-1}(\alpha )c)}{(8I\Psi _{1}^{-1}(\alpha )-(\Psi _{2}^{-1}(1-\alpha ))^{2})^{2}}< 0. \end{aligned}$$
(43)
$$\begin{aligned} \frac{\delta w^{D}}{\delta I}&= \frac{-4(\Psi _{1}^{-1}(\alpha ))^{2}(\Phi ^{-1}(1-\alpha )-\Psi _{1}^{-1}(\alpha )c)}{(8I\Psi _{1}^{-1}(\alpha )-(\Psi _{2}^{-1}(1-\alpha ))^{2})^{2}}< 0. \end{aligned}$$
(44)
$$\begin{aligned} \frac{\delta p^{D}}{\delta I}&= \frac{-6(\Psi _{1}^{-1}(\alpha ))^{2}(\Phi ^{-1}(1-\alpha )-\Psi _{1}^{-1}(\alpha )c)}{(8I\Psi _{1}^{-1}(\alpha )-(\Psi _{2}^{-1}(1-\alpha ))^{2})^{2}}< 0. \end{aligned}$$
(45)
$$\begin{aligned} \frac{\delta \Pi _{m}^{D}}{\delta I}&= \frac{-(\Psi _{1}^{-1}(\alpha ))^{2}(\Phi ^{-1}(1-\alpha )-\Psi _{1}^{-1}(\alpha )c)^{2}}{(8I\Psi _{1}^{-1}(\alpha )-(\Psi _{2}^{-1}(1-\alpha ))^{2})^{2}}\nonumber \\&< 0. \end{aligned}$$
(46)
$$\begin{aligned} \frac{\delta \Pi _{r}^{D}}{\delta I}&= \frac{-8I(\Psi _{1}^{-1}(\alpha ))^{2}(\Phi ^{-1}(1-\alpha )-\Psi _{1}^{-1}(\alpha )c)^{2}(8I\Psi _{1}^{-1}(\alpha )-(\Psi _{2}^{-1}(1-\alpha ))^{2})}{(8I\Psi _{1}^{-1}(\alpha )-(\Psi _{2}^{-1}(1-\alpha ))^{2})^{4}}\nonumber \\&< 0. \end{aligned}$$
(47)
$$\begin{aligned} \frac{\delta \Pi _{s}^{D}}{\delta I}&= \frac{(\Phi ^{-1}(1-\alpha )-\Psi _{1}^{-1}(\alpha )c)^{2}(8I\Psi _{1}^{-1}(\alpha )-(\Psi _{2}^{-1}(1-\alpha ))^{2})((\Psi _{2}^{-1}(1-\alpha ))^{2}-16I\Psi _{1}^{-1}(\alpha ))}{(8I\Psi _{1}^{-1}(\alpha )-(\Psi _{2}^{-1}(1-\alpha ))^{2})^{4}}\nonumber \\&< 0. \end{aligned}$$
(48)

\(\square \)

Proof of Proposition 3

In a centralized channel, we solve for the supply chain’s \(\alpha \)-profit function,

$$\begin{aligned} \max \limits _{(p,\theta )}\Pi _{s}&= (p-c)(\Phi ^{-1}(1-\alpha )-\Psi _{1}^{-1}(\alpha )p\nonumber \\&+\Psi _{2}^{-1}(1-\alpha )\theta )-I\theta ^{2}. \end{aligned}$$
(49)
$$\begin{aligned} \frac{\partial }{\partial p}\Pi _{s}&= \frac{\Phi ^{-1}(1-\alpha )-2\Psi _{1}^{-1}(\alpha )p+\Psi _{1}^{-1}(\alpha )c+\Psi _{2}^{-1}(1-\alpha )\theta }{2\Psi _{1}^{-1}}, \end{aligned}$$
(50)
$$\begin{aligned} \frac{\partial }{\partial \theta }\Pi _{s}&= (p-c)\Psi _{2}^{-1}(1-\alpha )-2I\theta . \end{aligned}$$
(51)

Let the first-order condition equate to 0, we have

$$\begin{aligned} \theta ^{C}&= \frac{\Psi _{2}^{-1}(1-\alpha )(\Phi ^{-1}(1-\alpha )-\Psi _{1}^{-1}(\alpha )c)}{4I\Psi _{1}^{-1}(\alpha )-(\Psi _{2}^{-1}(1-\alpha ))^{2}}, \end{aligned}$$
(52)
$$\begin{aligned} p^{C}&= \frac{2I(\Phi ^{-1}(1-\alpha )-\Psi _{1}^{-1}(\alpha )c)}{4I\Psi _{1}^{-1}(\alpha )-(\Psi _{2}^{-1}(1-\alpha ))^{2}}+c, \end{aligned}$$
(53)
$$\begin{aligned} \Pi _{s}^{C}&= \frac{I(\Phi ^{-1}(1-\alpha )-\Psi _{1}^{-1}(\alpha )c)^{2}}{4I\Psi _{1}^{-1}(\alpha )-(\Psi _{2}^{-1}(1-\alpha ))^{2}}. \end{aligned}$$
(54)

\(\square \)

Proof of Proposition 4

The partial derivative w.r.t. I gives

$$\begin{aligned} \frac{\delta \theta ^{C}}{\delta I}&= \frac{-4\Psi _{1}^{-1}(\alpha )\Psi _{2}^{-1}(1-\alpha )(\Phi ^{-1}(1-\alpha )-\Psi _{1}^{-1}(\alpha )c)}{(4I\Psi _{1}^{-1}(\alpha )-(\Psi _{2}^{-1}(1-\alpha ))^{2})^{2}}< 0. \end{aligned}$$
(55)
$$\begin{aligned} \frac{\delta p^{C}}{\delta I}&= \frac{-2(\Psi _{1}^{-1}(\alpha ))^{2}(\Phi ^{-1}(1-\alpha )-\Psi _{1}^{-1}(\alpha )c)}{(8I\Psi _{1}^{-1}(\alpha )-(\Psi _{2}^{-1}(1-\alpha ))^{2})^{2}}< 0. \end{aligned}$$
(56)
$$\begin{aligned} \frac{\delta \Pi _{s}^{C}}{\delta I}&= \frac{-(\Psi _{1}^{-1}(\alpha ))^{2}(\Phi ^{-1}(1-\alpha )-\Psi _{1}^{-1}(\alpha )c)^{2}}{(8I\Psi _{1}^{-1}(\alpha )-(\Psi _{2}^{-1}(1-\alpha ))^{2})^{2}}< 0. \end{aligned}$$
(57)

\(\square \)

Proof of Proposition 5

$$\begin{aligned} \theta ^{C}-\theta ^{D}&= \frac{\Psi _{2}^{-1}(1-\alpha )(\Phi ^{-1}(1-\alpha )-\Psi _{1}^{-1}(\alpha )c)}{4I\Psi _{1}^{-1}(\alpha )-(\Psi _{2}^{-1}(1-\alpha ))^{2}} -\frac{\Psi _{2}^{-1}(1-\alpha )(\Phi ^{-1}(1-\alpha )-\Psi _{1}^{-1}(\alpha )c)}{8I\Psi _{1}^{-1}(\alpha )-(\Psi _{2}^{-1}(1-\alpha ))^{2}}\\&= \frac{4I\Psi _{1}^{-1}(\alpha )\Psi _{2}^{-1}(1-\alpha )(\Phi ^{-1}(1-\alpha )-\Psi _{1}^{-1}(\alpha )c)}{(4I\Psi _{1}^{-1}(\alpha )-(\Psi _{2}^{-1}(1-\alpha ))^{2}) (8I\Psi _{1}^{-1}(\alpha )-(\Psi _{2}^{-1}(1-\alpha ))^{2})}\\&\ge 0. \\ p^{C}-p^{D}&= \frac{2I(\Phi ^{-1}(1-\alpha )-\Psi _{1}^{-1}(\alpha )c)}{4I\Psi _{1}^{-1}(\alpha )-(\Psi _{2}^{-1}(1-\alpha ))^{2}} -\frac{6I(\Phi ^{-1}(1-\alpha )-\Psi _{1}^{-1}(\alpha )c)}{8I\Psi _{1}^{-1}(\alpha )-(\Psi _{2}^{-1}(1-\alpha ))^{2}}\\&= \frac{4I(\Phi ^{-1}(1-\alpha )-\Psi _{1}^{-1}(\alpha )c)((\Psi _{2}^{-1}(1-\alpha ))^{2})-2I\Psi _{1}^{-1}(\alpha )}{(4I\Psi _{1}^{-1}(\alpha )-(\Psi _{2}^{-1}(1-\alpha ))^{2}) (8I\Psi _{1}^{-1}(\alpha )-(\Psi _{2}^{-1}(1-\alpha ))^{2})}\\&\le .\\ \Pi _{s}^{C}-\Pi _{s}^{D}&= \frac{I(\Phi ^{-1}(1-\alpha )-\Psi _{1}^{-1}(\alpha )c)^{2}}{4I\Psi _{1}^{-1}(\alpha )-(\Psi _{2}^{-1}(1-\alpha ))^{2}} -\frac{I(\Phi ^{-1}(1-\alpha )-\Psi _{1}^{-1}(\alpha )c)^{2}(12I\Psi _{1}^{-1}(\alpha )-(\Psi _{2}^{-1}(1-\alpha ))^{2})}{(8I\Psi _{1}^{-1}(\alpha )-(\Psi _{2}^{-1}(1-\alpha ))^{2})^{2}}\\&= \frac{16I^{3}\Psi _{1}^{-1}(\alpha )^{2}(\Phi ^{-1}(1-\alpha )-\Psi _{1}^{-1}(\alpha )c)^{2}}{(4I\Psi _{1}^{-1}(\alpha )-(\Psi _{2}^{-1}(1-\alpha ))^{2}) (8I\Psi _{1}^{-1}(\alpha )-(\Psi _{2}^{-1}(1-\alpha ))^{2})^{2}}\\& \ge 0. \end{aligned}$$

\(\square \)

Proof of Proposition 6

The \(\alpha \)-profit functions of the retailer and manufacturer are

$$\begin{aligned} \Pi _{r}&= (p-w)(\Phi ^{-1}(1-\alpha )-\Psi _{1}^{-1}(\alpha )p\nonumber \\&+\,\Psi _{2}^{-1}(1-\alpha )\theta )-(1-\phi ) I\theta ^{2}, \end{aligned}$$
(58)
$$\begin{aligned} \Pi _{m}&= (w-c)(\Phi ^{-1}(1-\alpha )-\Psi _{1}^{-1}(\alpha )p\nonumber \\&+\,\Psi _{2}^{-1}(1-\alpha )\theta )-\phi I\theta ^{2}. \end{aligned}$$
(59)

We first solve the first-order condition of the retailer’s profit function:

$$\begin{aligned} \frac{\partial }{\partial p}\Pi _{r}&= \Phi ^{-1}(1-\alpha )-2\Psi _{1}^{-1}(\alpha )p\nonumber \\&+\,\Psi _{1}^{-1}(\alpha )w+\Psi _{2}^{-1}(1-\alpha )\theta . \end{aligned}$$
(60)

The second-order condition

$$\begin{aligned} \frac{\partial ^{2} }{\partial p^{2}}\Pi _{r}=-2\Psi _{1}^{-1}(\alpha )<0. \end{aligned}$$
(61)

Therefore, the retailer’s profit function is strictly concave. Let the first-order condition equate to 0, we have

$$\begin{aligned} p=\frac{\Phi ^{-1}(1-\alpha )+\Psi _{1}^{-1}(\alpha )w+\Psi _{2}^{-1}(1-\alpha )\theta }{2\Psi _{1}^{-1}}. \end{aligned}$$
(62)

Substitute p into equation (62) and derive

$$\begin{aligned} \Pi _{m}&= \frac{(w-c)(\Phi ^{-1}(1-\alpha )-\Psi _{1}^{-1}(\alpha )w+\Psi _{2}^{-1}(1-\alpha )\theta )}{2}\nonumber \\&-\phi I\theta ^{2}. \end{aligned}$$
(63)
$$\begin{aligned} \frac{\partial }{\partial w}\Pi _{m}&= -\Psi _{1}^{-1}(\alpha )w+\frac{\Phi ^{-1}(1-\alpha )}{2} +\frac{\Psi _{1}^{-1}(\alpha )c}{2}\nonumber \\&+\frac{\Psi _{2}^{-1}(1-\alpha )\theta }{2}, \end{aligned}$$
(64)
$$\begin{aligned} \frac{\partial }{\partial \theta }\Pi _{m}&= \frac{(w-c)\Psi _{2}^{-1}(1-\alpha )}{2}-2I\theta \phi . \end{aligned}$$
(65)
$$\begin{aligned} \frac{\partial ^{2} }{\partial w^{2}}\Pi _{m}&= -\Psi _{1}^{-1}(\alpha )<0,\end{aligned}$$
(66)
$$\begin{aligned} \frac{\partial ^{2} }{\partial \theta ^{2}}\Pi _{m}&= -2I\phi <0, \end{aligned}$$
(67)
$$\begin{aligned} \frac{\partial ^{2} }{\partial w \partial \theta }\Pi _{m}&= \frac{\Psi _{2}^{-1}(1-\alpha )}{2}. \end{aligned}$$
(68)

when \(2I\Psi _{1}^{-1}(\alpha )\phi -\frac{\Psi _{2}^{-1}(1-\alpha )^{2}}{4}>0\), the Hessian H is negative definite. Let the first-order conditions equate to 0, we have

$$\begin{aligned} w(\theta )&= \frac{\Phi ^{-1}(1-\alpha )+\Psi _{1}^{-1}(\alpha )c+\Psi _{2}^{-1}(1-\alpha )\theta }{2\Psi _{1}^{-1}(\alpha )}, \end{aligned}$$
(69)
$$\begin{aligned} \theta (w)&= \frac{(w-c)\Psi _{2}^{-1}(1-\alpha )}{4I\phi }. \end{aligned}$$
(70)

Substituting w into \(\theta \), we have

$$\begin{aligned} \theta =\frac{\Psi _{2}^{-1}(1-\alpha )(\Phi ^{-1}(1-\alpha )-\Psi _{1}^{-1}(\alpha )c)}{8I\Psi _{1}^{-1}(\alpha )\phi -(\Psi _{2}^{-1}(1-\alpha ))^{2}}, \end{aligned}$$
(71)

And

$$\begin{aligned} w&= \frac{4I\phi (\Phi ^{-1}(1-\alpha )+\Psi _{1}^{-1}(\alpha )c)-(\Psi _{2}^{-1}(1-\alpha ))^{2}c}{8I\Psi _{1}^{-1}(\alpha )\phi -(\Psi _{2}^{-1}(1-\alpha ))^{2}}, \end{aligned}$$
(72)
$$\begin{aligned} p&= \frac{2I\phi (3\Phi ^{-1}(1-\alpha )+\Psi _{1}^{-1}(\alpha ))-(\Psi _{2}^{-1}(1-\alpha ))^{2}c}{8I\Psi _{1}^{-1}(\alpha )\phi -(\Psi _{2}^{-1}(1-\alpha ))^{2}}. \end{aligned}$$
(73)

Substituting the above values in the retailer’s profit function, we have

$$\begin{aligned}&\Pi _{r}=\frac{4I^{2}\phi ^{2}(\Phi ^{-1}(1-\alpha )-\Psi _{1}^{-1}(\alpha )c)^{2}}{(8I\Psi _{1}^{-1}(\alpha )\phi -(\Psi _{2}^{-1}(1-\alpha ))^{2})^{2}}-(1-\phi )\nonumber \\&\quad \frac{I(\Psi _{2}^{-1}(1-\alpha ))^{2}(\Phi ^{-1}(1-\alpha )+\Psi _{1}^{-1}(\alpha )c)^{2}}{(8I\Psi _{1}^{-1}(\alpha )\phi -(\Psi _{2}^{-1}(1-\alpha ))^{2})^{2}}. \end{aligned}$$
(74)

The first-order condition

$$\begin{aligned} \frac{\partial }{\partial \phi }\Pi _{r}=\frac{I(\Psi _{2}^{-1}(1-\alpha ))^{2}(\Phi ^{-1}(1-\alpha )-\Psi _{1}^{-1}(\alpha )c)^{2}((\Psi _{2}^{-1}(1-\alpha ))^{2}-16I\Psi _{1}^{-1}(\alpha )(1-\phi ))}{(8I\Psi _{1}^{-1}(\alpha )\phi -(\Psi _{2}^{-1}(1-\alpha ))^{2})^{3}}. \end{aligned}$$
(75)

The second-order condition

$$\begin{aligned} \small \frac{\partial ^{2} }{\partial \phi ^{2} }\Pi _{r}=\frac{8I^{2}(\Psi _{2}^{-1}(1-\alpha ))^{2}\Psi _{1}^{-1}(\alpha )(\Phi ^{-1}(1-\alpha )-\Psi _{1}^{-1}(\alpha )c)^{2}(5(\Psi _{2}^{-1}(1-\alpha ))^{2}- 16I\Psi _{1}^{-1}(\alpha )(3-2\phi ))}{(8I\Psi _{1}^{-1}(\alpha )\phi -(\Psi _{2}^{-1}(1-\alpha ))^{2})^{4}}. \end{aligned}$$
(76)

when \(5(\Psi _{2}^{-1}(1-\alpha ))^{2}- 16I\Psi _{1}^{-1}(\alpha )(3-2\phi )<0\), the retailer’s profit function is strictly concave in \(\phi \). Therefore, using the first-order conditions to obtain the optimal \(\phi \), we have

$$\begin{aligned} \phi ^{*}= \frac{(\Psi _{2}^{-1}(1-\alpha ))^{2}}{16I\Psi _{1}^{-1}(\alpha )}. \end{aligned}$$
(77)

Substituting the value of \(\phi ^{*}\) in the above expressions, we get

$$\begin{aligned} \theta ^{*}&= \frac{2\Psi _{2}^{-1}(1-\alpha )(\Phi ^{-1}(1-\alpha )-\Psi _{1}^{-1}(\alpha )c)}{16I\Psi _{1}^{-1}(\alpha )-3(\Psi _{2}^{-1}(1-\alpha ))^{2}}, \end{aligned}$$
(78)
$$\begin{aligned} w^{*}&= \frac{16I\Psi _{1}^{-1}(\alpha )(\Phi ^{-1}(1-\alpha )+\Psi _{1}^{-1}(\alpha )c)-(\Psi _{2}^{-1}(1-\alpha ))^{2}(\Phi ^{-1}(1-\alpha )+ 5\Psi _{1}^{-1}(\alpha )c)}{2\Psi _{1}^{-1}(\alpha )(16I\Psi _{1}^{-1}(\alpha )-3(\Psi _{2}^{-1}(1-\alpha ))^{2})}, \end{aligned}$$
(79)
$$\begin{aligned} p^{*}&= \frac{16I\Psi _{1}^{-1}(\alpha )(3\Phi ^{-1}(1-\alpha )+\Psi _{1}^{-1}(\alpha ))-3(\Psi _{2}^{-1}(1-\alpha ))^{2}(\Phi ^{-1}(1-\alpha )+ 3\Psi _{1}^{-1}(\alpha )c)}{4\Psi _{1}^{-1}(\alpha )(16I\Psi _{1}^{-1}(\alpha )-3(\Psi _{2}^{-1}(1-\alpha ))^{2})}, \end{aligned}$$
(80)
$$\begin{aligned} \Pi _{m}^{*}&= \frac{(\Phi ^{-1}(1-\alpha )-\Psi _{1}^{-1}(\alpha )c)^{2}(16I\Psi _{1}^{-1}(\alpha )-(\Psi _{2}^{-1}(1-\alpha ))^{2})}{8\Psi _{1}^{-1}(\alpha )(16I\Psi _{1}^{-1}(\alpha )-3(\Psi _{2}^{-1}(1-\alpha ))^{2})}, \end{aligned}$$
(81)
$$\begin{aligned} \Pi _{r}^{*}&= \frac{(\Phi ^{-1}(1-\alpha )-\Psi _{1}^{-1}(\alpha )c)^{2}(16I\Psi _{1}^{-1}(\alpha )+(\Psi _{2}^{-1}(1-\alpha ))^{2})}{16\Psi _{1}^{-1}(\alpha )(16I\Psi _{1}^{-1}(\alpha )-3(\Psi _{2}^{-1}(1-\alpha ))^{2})}, \end{aligned}$$
(82)
$$\begin{aligned} \Pi _{s}^{*}&= \frac{(\Phi ^{-1}(1-\alpha )-\Psi _{1}^{-1}(\alpha )c)^{2}(48I\Psi _{1}^{-1}(\alpha )-(\Psi _{2}^{-1}(1-\alpha ))^{2})}{16\Psi _{1}^{-1}(\alpha )(16I\Psi _{1}^{-1}(\alpha )-3(\Psi _{2}^{-1}(1-\alpha ))^{2})}. \end{aligned}$$
(83)

\(\square \)

Proof of Proposition 7

The partial derivative of \(\phi ^{*}\) w.r.t. I gives

$$\begin{aligned} \frac{\delta \phi ^{*}}{\delta I}=\frac{-16(\Psi _{2}^{-1}(1-\alpha ))^{2}\Psi _{1}^{-1}(\alpha )}{(16I\Psi _{1}^{-1}(\alpha ))^{2}}< 0. \end{aligned}$$
(84)

\(\square \)

Proof of Proposition 8

$$\begin{aligned} \theta ^{*}-\theta ^{D}&= \frac{2\Psi _{2}^{-1}(1-\alpha )(\Phi ^{-1}(1-\alpha )-\Psi _{1}^{-1}(\alpha )c)}{16I\Psi _{1}^{-1}(\alpha )-3(\Psi _{2}^{-1}(1-\alpha ))^{2}} -\frac{\Psi _{2}^{-1}(1-\alpha )(\Phi ^{-1}(1-\alpha )- \Psi _{1}^{-1}(\alpha )c)}{8I\Psi _{1}^{-1}(\alpha )-(\Psi _{2}^{-1}(1-\alpha ))^{2}}\\&= \frac{(\Psi _{2}^{-1}(1-\alpha ))^{3}(\Phi ^{-1}(1-\alpha )-\Psi _{1}^{-1}(\alpha )c)^{2}}{(16I\Psi _{1}^{-1}(\alpha )-3(\Psi _{2}^{-1}(1-\alpha ))^{2}) (8I\Psi _{1}^{-1}(\alpha )-(\Psi _{2}^{-1}(1-\alpha ))^{2})}\\& \ge 0.\\ w^{*}-w^{D}&= \frac{16I\Psi _{1}^{-1}(\alpha )(\Phi ^{-1}(1-\alpha )+\Psi _{1}^{-1}(\alpha )c)-(\Psi _{2}^{-1}(1-\alpha ))^{2}(\Phi ^{-1}(1-\alpha )+ 5\Psi _{1}^{-1}(\alpha )c)}{2\Psi _{1}^{-1}(\alpha )(16I\Psi _{1}^{-1}(\alpha )-3(\Psi _{2}^{-1}(1-\alpha ))^{2})}\\&\quad -\frac{4I(\Phi ^{-1}(1-\alpha )-\Psi _{1}^{-1}(\alpha )c)}{8I\Psi _{1}^{-1}(\alpha )-(\Psi _{2}^{-1}(1-\alpha ))^{2}}-c\\&= \frac{(\Psi _{2}^{-1}(1-\alpha ))^{4}(\Phi ^{-1}(1-\alpha )-\Psi _{1}^{-1}(\alpha )c)}{2\Psi _{1}^{-1}(\alpha )(16I\Psi _{1}^{-1}(\alpha )-3(\Psi _{2}^{-1}(1-\alpha ))^{2}) (8I\Psi _{1}^{-1}(\alpha )-(\Psi _{2}^{-1}(1-\alpha ))^{2})}\\& \ge 0.\\ p^{*}-p^{D}&= \frac{16I\Psi _{1}^{-1}(\alpha )(3\Phi ^{-1}(1-\alpha )+\Psi _{1}^{-1}(\alpha ))-3(\Psi _{2}^{-1}(1-\alpha ))^{2}(\Phi ^{-1}(1-\alpha )+ 3\Psi _{1}^{-1}(\alpha )c)}{4\Psi _{1}^{-1}(\alpha )(16I\Psi _{1}^{-1}(\alpha )-3(\Psi _{2}^{-1}(1-\alpha ))^{2})}\\&\quad -\frac{6I(\Phi ^{-1}(1-\alpha )-\Psi _{1}^{-1}(\alpha )c)}{8I\Psi _{1}^{-1}(\alpha )-(\Psi _{2}^{-1}(1-\alpha ))^{2}}-c\\&= \frac{3(\Psi _{2}^{-1}(1-\alpha ))^{4}(\Phi ^{-1}(1-\alpha )-\Psi _{1}^{-1}(\alpha )c)}{4\Psi _{1}^{-1}(\alpha )(16I\Psi _{1}^{-1}(\alpha )-3(\Psi _{2}^{-1}(1-\alpha ))^{2}) (8I\Psi _{1}^{-1}(\alpha )-(\Psi _{2}^{-1}(1-\alpha ))^{2})}\\& \ge 0. \end{aligned}$$

\(\square \)

Proof of Proposition 9

$$\begin{aligned} \Pi _{r}^{*}-\Pi _{r}^{D}&= \frac{(16I\Psi _{1}^{-1}(\alpha )+(\Psi _{2}^{-1}(1-\alpha ))^{2})((\Phi ^{-1}(1-\alpha )-\Psi _{1}^{-1}(\alpha )c))^{2}}{16\Psi _{1}^{-1}(\alpha )(16I\Psi _{1}^{-1}(\alpha )-3(\Psi _{2}^{-1}(1-\alpha ))^{2})} - \frac{4I^{2}\Psi _{1}^{-1}(\alpha )(\Phi ^{-1}(1-\alpha )-\Psi _{1}^{-1}(\alpha )c)^{2}}{8I\Psi _{1}^{-1}(\alpha )-(\Psi _{2}^{-1}(1-\alpha ))^{2}}-c\\&= \frac{(\Psi _{2}^{-1}(1-\alpha ))^{6}(\Phi ^{-1}(1-\alpha )-\Psi _{1}^{-1}(\alpha )c)^{2}}{16\Psi _{1}^{-1}(\alpha )(16I\Psi _{1}^{-1}(\alpha )-3(\Psi _{2}^{-1}(1-\alpha ))^{2}) (8I\Psi _{1}^{-1}(\alpha )-(\Psi _{2}^{-1}(1-\alpha ))^{2})}\\& \ge 0.\\ \Pi _{m}^{*}-\Pi _{m}^{D}&= \frac{(16I\Psi _{1}^{-1}(\alpha )-(\Psi _{2}^{-1}(1-\alpha ))^{2})((\Phi ^{-1}(1-\alpha )-\Psi _{1}^{-1}(\alpha )c))^{2}}{8\Psi _{1}^{-1}(\alpha )(16I\Psi _{1}^{-1}(\alpha )-3(\Psi _{2}^{-1}(1-\alpha ))^{2})} - \frac{I(\Phi ^{-1}(1-\alpha )-\Psi _{1}^{-1}(\alpha )c)^{2}}{8I\Psi _{1}^{-1}(\alpha )-(\Psi _{2}^{-1}(1-\alpha ))^{2}}-c\\&= \frac{(\Psi _{2}^{-1}(1-\alpha ))^{4}(\Phi ^{-1}(1-\alpha )-\Psi _{1}^{-1}(\alpha )c)^{2}}{16\Psi _{1}^{-1}(\alpha )(16I\Psi _{1}^{-1}(\alpha )-3(\Psi _{2}^{-1}(1-\alpha ))^{2}) (8I\Psi _{1}^{-1}(\alpha )-(\Psi _{2}^{-1}(1-\alpha ))^{2})}\\& \ge 0. \end{aligned}$$

\(\square \)

Proof of Proposition 10

The \(\alpha \)-profit functions of the retailer and manufacturer are

$$\begin{aligned} \Pi _{r}&= (p-w)(\Phi ^{-1}(1-\alpha )-\Psi _{1}^{-1}(\alpha )p\nonumber \\&+\,\Psi _{2}^{-1}(1-\alpha )\theta )-(1-\phi ) I\theta ^{2}, \end{aligned}$$
(85)
$$\begin{aligned} \Pi _{m}&= (w-c)(\Phi ^{-1}(1-\alpha )-\Psi _{1}^{-1}(\alpha )p\nonumber \\&+\,\Psi _{2}^{-1}(1-\alpha )\theta )-\phi I\theta ^{2}. \end{aligned}$$
(86)

We first solve the first-order condition of the retailer’s profit function:

$$\begin{aligned} \frac{\partial }{\partial p}\Pi _{r}&= \Phi ^{-1}(1-\alpha )-2\Psi _{1}^{-1}(\alpha )p+\Psi _{1}^{-1}(\alpha )w\nonumber \\&+\,\Psi _{2}^{-1}(1-\alpha )\theta . \end{aligned}$$
(87)

The second-order condition

$$\begin{aligned} \frac{\partial ^{2} }{\partial p^{2}}\Pi _{r}=-2\Psi _{1}^{-1}(\alpha )<0. \end{aligned}$$
(88)

Thus the retailer’s profit function is strictly concave in p. Let the first-order condition equate to 0, we have

$$\begin{aligned} p=\frac{\Phi ^{-1}(1-\alpha )+\Psi _{1}^{-1}(\alpha )w+\Psi _{2}^{-1}(1-\alpha )\theta }{2\Psi _{1}^{-1}(\alpha )}. \end{aligned}$$
(89)

Substitute p into equation (89) and derive

$$\begin{aligned} \Pi _{m}&= \frac{(w-c)(\Phi ^{-1}(1-\alpha )-\Psi _{1}^{-1}(\alpha )w+\Psi _{2}^{-1}(1-\alpha )\theta )}{2}\nonumber \\&-\phi I\theta ^{2}. \end{aligned}$$
(90)

The first-order condition

$$\begin{aligned} \frac{\partial }{\partial w}\Pi _{m}&= -\Psi _{1}^{-1}(\alpha )w+\frac{\Phi ^{-1}(1-\alpha )}{2} +\frac{\Psi _{1}^{-1}(\alpha )c}{2}\nonumber \\&+\frac{\Psi _{2}^{-1}(1-\alpha )\theta }{2}, \end{aligned}$$
(91)
$$\begin{aligned} \frac{\partial }{\partial \theta }\Pi _{m}&= \frac{(w-c)\Psi _{2}^{-1}(1-\alpha )}{2}-2I\theta \phi . \end{aligned}$$
(92)

The second-order condition

$$\begin{aligned} \frac{\partial ^{2} }{\partial w^{2}}\Pi _{m}&= -\Psi _{1}^{-1}(\alpha )<0, \end{aligned}$$
(93)
$$\begin{aligned} \frac{\partial ^{2} }{\partial \theta ^{2}}\Pi _{m}&= -2I\phi <0, \end{aligned}$$
(94)
$$\begin{aligned} \frac{\partial ^{2} }{\partial w \partial \theta }\Pi _{m}&= \frac{\Psi _{2}^{-1}(1-\alpha )}{2}. \end{aligned}$$
(95)

when \(2I\Psi _{1}^{-1}(\alpha )\phi -\frac{\Psi _{2}^{-1}(1-\alpha )^{2}}{4}>0\), the Hessian H is negative definite. Let the first-order conditions equate to 0, we have

$$\begin{aligned} w(\phi )&= \frac{4I\Phi ^{-1}(1-\alpha )\phi +c(4I\Psi _{1}^{-1}(\alpha )\phi -(\Psi _{2}^{-1}(1-\alpha ))^{2})}{8I\Psi _{1}^{-1}(\alpha )\phi -(\Psi _{2}^{-1}(1-\alpha ))^{2}}, \end{aligned}$$
(96)
$$\begin{aligned} \theta (\phi )&= \frac{(\Phi ^{-1}(1-\alpha )-\Psi _{1}^{-1}(\alpha )c)\Psi _{2}^{-1}(1-\alpha )}{8I\Psi _{1}^{-1}(\alpha )\phi -(\Psi _{2}^{-1}(1-\alpha ))^{2}}. \end{aligned}$$
(97)

Substituting \(w,\theta \) into p, we have

$$\begin{aligned} p(\phi )=\frac{6I\phi (3\Phi ^{-1}(1-\alpha )+c(2I\Psi _{1}^{-1}(\alpha )\phi -(\Psi _{2}^{-1}(1-\alpha ))^{2})}{8I\Psi _{1}^{-1}(\alpha )\phi -(\Psi _{2}^{-1}(1-\alpha ))^{2}}. \end{aligned}$$
(98)

Substituting the above values in the retailer’s profit function, we have

$$\begin{aligned}&\Pi _{r}(\phi ) =\frac{I(\Phi ^{-1}(1-\alpha )-\Psi _{1}^{-1}(\alpha )c)^{2}(4I\Psi _{1}^{-1}(\alpha )\phi ^{2}-(\Psi _{2}^{-1}(1-\alpha ))^{2}+(\Psi _{2}^{-1}(1-\alpha ))^{2}\phi )}{(8I\Psi _{1}^{-1}(\alpha )\phi -(\Psi _{2}^{-1}(1-\alpha ))^{2})^{2}}, \end{aligned}$$
(99)
$$\begin{aligned}&\Pi _{m}(\phi )\nonumber \\&\quad =\frac{I\phi (\Phi ^{-1}(1-\alpha )-\Psi _{1}^{-1}(\alpha )c)^{2}}{(8I\Psi _{1}^{-1}(\alpha )\phi -(\Psi _{2}^{-1}(1-\alpha ))^{2})^{2}}. \end{aligned}$$
(100)

The objective function is \(\Pi _{b}=\Pi _{m}(w,\theta )\Pi _{r}(p,\psi )\).

The first-order condition w.r.t. \(\phi \) gives

$$\begin{aligned}&\frac{\partial }{\partial \phi }\Pi _{b}\nonumber \\&\quad =\frac{-A(20I\Psi _{1}^{-1}(\alpha )\phi ^{2}-(\Psi _{2}^{-1}(1-\alpha ))^{2} +2(\Psi _{2}^{-1}(1-\alpha ))^{2}\phi -16I\Psi _{1}^{-1}(\alpha )\phi )}{(8I\Psi _{1}^{-1}(\alpha )\phi -(\Psi _{2}^{-1}(1-\alpha ))^{2})^{4}}. \end{aligned}$$
(101)

The second-order condition

$$\begin{aligned}&\frac{\partial ^{2} }{\partial \phi ^{2} }\Pi _{b}\nonumber \\&\quad =\frac{2A(160BI\Psi _{1}^{-1}(\alpha )\phi ^{2}-24BC +44BC\phi +C^{2}-192BI(\Psi _{1}^{-1}(\alpha ))\phi )}{(8I\Psi _{1}^{-1}(\alpha )\phi -(\Psi _{2}^{-1}(1-\alpha ))^{2})^{5}}. \end{aligned}$$
(102)

where \(A=I^{2}(\Psi _{2}^{-1}(1-\alpha ))^{2}(\Phi ^{-1}(1-\alpha )-\Psi _{1}^{-1}(\alpha )c)^{4},\)

\(B=I\Psi _{1}^{-1}(\alpha ),\)

\(C=(\Psi _{2}^{-1}(1-\alpha ))^{2}.\)

when \(\frac{ (\Psi _{2}^{-1}(1-\alpha ))^{2}}{24\Psi _{1}^{-1}(\alpha )}\le I\le \frac{ (5+\sqrt{33})(\Psi _{2}^{-1}(1-\alpha ))^{2}}{16\Psi _{1}^{-1}(\alpha )}\), \(\Pi _{b}\) is strictly concave. Thus, we have

$$\begin{aligned} \phi ^{b}=\frac{ 8I\Psi _{1}^{-1}(\alpha )-(\Psi _{2}^{-1}(1-\alpha ))^{2}+\sqrt{B}}{20I\Psi _{1}^{-1}(\alpha )}. \end{aligned}$$
(103)

Substituting \(\phi ^{b}\) in the above equations, we have

$$\begin{aligned} \theta ^{b}&= \frac{5\Psi _{2}^{-1}(1-\alpha )(\Phi ^{-1}(1-\alpha )-\Psi _{1}^{-1}(\alpha )c)}{A+2\sqrt{B}}, \end{aligned}$$
(104)
$$\begin{aligned} w^{b}&= \frac{(\Phi ^{-1}(1-\alpha )+\Psi _{1}^{-1}(\alpha )c)[8I\Psi _{1}^{-1}(\alpha )+\sqrt{A}]- (\Psi _{2}^{-1}(1-\alpha ))^{2}(\Phi ^{-1}(1-\alpha )+6\Psi _{1}^{-1}(\alpha )c)}{\Psi _{1}^{-1}(\alpha )(A+2\sqrt{B})}, \end{aligned}$$
(105)
$$\begin{aligned} p^{b}&= \frac{(3\Phi ^{-1}(1-\alpha )+\Psi _{1}^{-1}(\alpha )c)[8I\Psi _{1}^{-1}(\alpha )+\sqrt{A}]-\Psi _{2}^{-1}(1-\alpha )(3\Phi ^{-1}(1-\alpha )+11\Psi _{1}^{-1}(\alpha )c)}{2\Psi _{1}^{-1}(\alpha )(A+2\sqrt{B})}, \end{aligned}$$
(106)
$$\begin{aligned} \Pi _{m}^{b}&= \frac{(\Phi ^{-1}(1-\alpha )-\Psi _{1}^{-1}(\alpha )c)^{2}[8I\Psi _{1}^{-1}(\alpha )-(\Psi _{2}^{-1}(1-\alpha ))^{2}+\sqrt{A}]}{4\Psi _{1}^{-1}(\alpha )(A+2\sqrt{B})}, \end{aligned}$$
(107)
$$\begin{aligned} \Pi _{r}^{b}&= \frac{(\Phi ^{-1}(1-\alpha )-\Psi _{1}^{-1}(\alpha )c)^{2}[(16I\Psi _{1}^{-1}(\alpha )+3(\Psi _{2}^{-1}(1-\alpha ))^{2})(\sqrt{B}-3(\Psi _{2}^{-1}(1-\alpha ))^{4} +8I\Psi _{1}^{-1}(\alpha )(16I\Psi _{1}^{-1}(\alpha )-9(\Psi _{2}^{-1}(1-\alpha ))^{2})]}{4\Psi _{1}^{-1}(\alpha )(A+2\sqrt{B})}, \end{aligned}$$
(108)
$$\begin{aligned} \Pi _{s}^{b}&= \frac{(\Phi ^{-1}(1-\alpha )-\Psi _{1}^{-1}(\alpha )c)^{2}[(24I\Psi _{1}^{-1}(\alpha )-3(\Psi _{2}^{-1}(1-\alpha ))^{2})(\sqrt{A}+3(\Psi _{2}^{-1}(1-\alpha ))^{4} +4I\Psi _{1}^{-1}(\alpha )(48I\Psi _{1}^{-1}(\alpha )-17(\Psi _{2}^{-1}(1-\alpha ))^{2})]}{2\Psi _{1}^{-1}(\alpha )(A+2\sqrt{B})}. \end{aligned}$$
(109)

where

$$\begin{aligned} A&= 16I\Psi _{1}^{-1}(\alpha )-7(\Psi _{2}^{-1}(1-\alpha ))^{2}, B=(8I\Psi _{1}^{-1}(\alpha )\nonumber \\&+(\Psi _{2}^{-1}(1-\alpha ))^{2})^{2}-12I\Psi _{1}^{-1}(\alpha ) (\Psi _{2}^{-1}(1-\alpha ))^{2}. \end{aligned}$$

\(\square \)

Proof of Proposition 11

The proof is in the process of Proposition 10. \(\square \)

Proof of Proposition 12

$$\begin{aligned} \theta ^{b}-\theta ^{D}&= \frac{5\Psi _{2}^{-1}(1-\alpha )(\Phi ^{-1}(1-\alpha )-\Psi _{1}^{-1}(\alpha )c)}{A+2\sqrt{B}} -\frac{\Psi _{2}^{-1}(1-\alpha )(\Phi ^{-1}(1-\alpha ) - \Psi _{1}^{-1}(\alpha )c)}{8I\Psi _{1}^{-1}(\alpha )-(\Psi _{2}^{-1}(1-\alpha ))^{2}}\\&= \frac{4\Psi _{2}^{-1}(1-\alpha )(\Phi ^{-1}(1-\alpha )-\Psi _{1}^{-1}(\alpha )c)[(12I\Psi _{1}^{-1}(\alpha )+(\Psi _{2}^{-1}(1-\alpha ))^{2})-(A+2\sqrt{B})]}{(A+2\sqrt{B}) (8I\Psi _{1}^{-1}(\alpha )-(\Psi _{2}^{-1}(1-\alpha ))^{2})}\\& \ge 0.\\ w^{b}-w^{D}&= \frac{(\Phi ^{-1}(1-\alpha )+\Psi _{1}^{-1}(\alpha )c)[8I\Psi _{1}^{-1}(\alpha )+\sqrt{B}]- (\Psi _{2}^{-1}(1-\alpha ))^{2}(\Phi ^{-1}(1-\alpha )+6\Psi _{1}^{-1}(\alpha )c)}{\Psi _{1}^{-1}(\alpha )(A+2\sqrt{B})}\\&\quad -\frac{4I(\Phi ^{-1}(1-\alpha )-\Psi _{1}^{-1}(\alpha )c)}{8I\Psi _{1}^{-1}(\alpha )-(\Psi _{2}^{-1}(1-\alpha ))^{2}}-c\\&= \frac{(\Phi ^{-1}(1-\alpha )-\Psi _{1}^{-1}(\alpha )c)(12I\Psi _{1}^{-1}(\alpha )+(\Psi _{2}^{-1}(1-\alpha ))^{2}-\sqrt{B})}{4\Psi _{1}^{-1}(\alpha )(A+2\sqrt{B}) (8I\Psi _{1}^{-1}(\alpha )-(\Psi _{2}^{-1}(1-\alpha ))^{2})}\\& \ge 0.\\ p^{b}-p^{D}&= \frac{(3\Phi ^{-1}(1-\alpha )+\Psi _{1}^{-1}(\alpha )c)[8I\Psi _{1}^{-1}(\alpha )+\sqrt{B}]-(\Psi _{2}^{-1}(1-\alpha ))^{2}(3\Phi ^{-1}(1-\alpha )+11\Psi _{1}^{-1}(\alpha )c)}{2\Psi _{1}^{-1}(\alpha )(A+2\sqrt{B})}\\&\quad - \frac{6I(\Phi ^{-1}(1-\alpha )-\Psi _{1}^{-1}(\alpha )c)}{8I\Psi _{1}^{-1}(\alpha )-(\Psi _{2}^{-1}(1-\alpha ))^{2}}-c\\&= \frac{3(\Psi _{2}^{-1}(1-\alpha ))^{2}(\Phi ^{-1}(1-\alpha )-\Psi _{1}^{-1}(\alpha )c)(12I\Psi _{1}^{-1}(\alpha )+(\Psi _{2}^{-1}(1-\alpha ))^{2}-\sqrt{B})}{4\Psi _{1}^{-1}(\alpha )(A+2\sqrt{B})(8I\Psi _{1}^{-1}(\alpha )-(\Psi _{2}^{-1}(1-\alpha ))^{2})}\\& \ge .\\ \Pi _{m}^{b}-\Pi _{m}^{D}&= \frac{(\Phi ^{-1}(1-\alpha )-\Psi _{1}^{-1}(\alpha )c)^{2}[8I\Psi _{1}^{-1}(\alpha )-(\Psi _{2}^{-1}(1-\alpha ))^{2}+\sqrt{B}]}{4\Psi _{1}^{-1}(\alpha )(A+2\sqrt{B})}\\&\quad - \frac{I(\Phi ^{-1}(1-\alpha )-\Psi _{1}^{-1}(\alpha )c)^{2}}{8I\Psi _{1}^{-1}(\alpha )-(\Psi _{2}^{-1}(1-\alpha ))^{2}}\\&= \frac{12I\Psi _{1}^{-1}(\alpha )+(\Psi _{2}^{-1}(1-\alpha ))^{2}-\sqrt{B}}{4\Psi _{1}^{-1}(\alpha )(A+2\sqrt{B}) (8I\Psi _{1}^{-1}(\alpha )-(\Psi _{2}^{-1}(1-\alpha ))^{2})}\\& \ge 0. \end{aligned}$$

\(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ma, N., Gao, R., Wang, X. et al. Green supply chain analysis under cost sharing contract with uncertain information based on confidence level. Soft Comput 24, 2617–2635 (2020). https://doi.org/10.1007/s00500-019-03801-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00500-019-03801-1

Keywords

Navigation