Skip to main content
Log in

q-fractional differential equations with uncertainty

  • Foundations
  • Published:
Soft Computing Aims and scope Submit manuscript

Abstract

In this paper, first we are going to introduce the fuzzy q-derivative and fuzzy q-fractional derivative in Caputo sense by using generalized Hukuhara difference, and then provide the related theorems and properties in detail. Moreover, the characterization theorem between the solutions of fuzzy Caputo q-fractional initial value problem (for short FCqF-IVP), which allows us to translate a FCqF-IVP and system of ordinary Caputo q-fractional differential equations (for short OCqF-DEs), is presented. In detail, the existence and uniqueness theorem is proved for the solution of FCqF-IVP. Finally, we restrict our attention to explain our idea for solving the FCqF-IVP and introducing its numerical solution by means of q-Mittag-Leffler function. The numerical examples demonstrate that the proposed idea is quite reasonable.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Notes

  1. \([\alpha ]\) denotes the smallest integer greater or equal to \(\alpha \).

  2.  The set of fuzzy-valued function f which are defined on \(_{q}\Omega \), and be fuzzy continuous from the interior points of \(_{q}\Omega \).

  3.  i.e., for any \(\varepsilon >0\) and any \((t, x, y)\in \mathbb {T}_{q}\times \mathbb {R}^2\) we have \(\mid \underline{f}(t, x, y;r)-\underline{f}(t_1, x_1, y_1;r)\mid <\varepsilon \) and \(\mid {\overline{f}}(t, x, y;r)-{\overline{f}}(t_1, x_1, y_1;r)\mid <\varepsilon \),\( \forall r\in [0,1]\) whenever \(\Vert (t_1,x_1, y_1)-(t, x, y)\Vert <\delta .\)

References

  • Abdeljawad T, Baleanu D (2011) Caputo \(q\)-fractional initial value problems and a \(q\)-analogue Mittag-Leffler function. Commun Nonlinear Sci Numer Simul 16(12):4682–4688

    Article  MathSciNet  MATH  Google Scholar 

  • Agarwal RP (1969) Certain fractional \(q\)-integrals and \(q\)-derivatives. Math Proc Cambridge Philos Soc 66:365–370

    Article  MathSciNet  MATH  Google Scholar 

  • Agarwal RP, Lakshmikantham V, Nieto JJ (2010) On the concept of solution for fractional differential equations with uncertainty. Nonlinear Anal Theory Methods Appl 72:2859–2862

    Article  MathSciNet  MATH  Google Scholar 

  • Agarwal RP, Baleanu D, Nieto JJ, Torres DF, Zhou Y (2018) A survey on fuzzy fractional differential and optimal control nonlocal evolution equations. J Comput Appl Math 339:3–29

    Article  MathSciNet  MATH  Google Scholar 

  • Ahmad B, Nieto JJ (2013) Basic theory of nonlinear third-order \(q\)-difference equations and inclusions. Math Model Anal 18:122–135

    Article  MathSciNet  MATH  Google Scholar 

  • Ahmad B, Nieto JJ, Alsaedi A, Al-Hutami H (2014) Existence of solutions for nonlinear fractional \(q\)-difference integral equations with two fractional orders and nonlocal four-point boundary conditions. J Frankl Inst 351(5):2890–2909

    Article  MathSciNet  MATH  Google Scholar 

  • Allahviranloo T, Gouyandeh Z, Armand A (2014) Fuzzy fractional differential equations under generalized fuzzy Caputo derivative. J Intell Fuzzy Syst 26:1481–90

    MathSciNet  MATH  Google Scholar 

  • Al-Salam WA (1969) Some fractional \(q\)-integrals and \(q\)-derivatives. Proc Edinb Math Soc 15:135–140

    Article  MathSciNet  MATH  Google Scholar 

  • Bede B (2008) Note on “Numerical solutions of fuzzy differential equations by predictor-corrector method”. Inf Sci 178:1917–1922

    Article  MATH  Google Scholar 

  • Bede B, Gal SG (2005) Generalizations of the differentiability of fuzzy-number-valued functions with applications to fuzzy differential equations. Fuzzy Sets Syst 151:99–581

    Article  MathSciNet  MATH  Google Scholar 

  • Bede B, Stefanini L (2013) Generalized differentiability of fuzzy-valued functions. Fuzzy Sets Syst 230:119–141

    Article  MathSciNet  MATH  Google Scholar 

  • Bhaskara TG, Lakshmikanthama V, Leela S (2009) Fractional differential equations with a Krasnoselskii-Krein type condition. Nonlinear Anal Hybrid Syst 3(4):734–737

    Article  MathSciNet  Google Scholar 

  • El-Shahed M, Gaber M, Al-Yami M (2013) The fractional \(q\)-differential transformation and its application. Commun Nonlinear Sci Numer Simul 18:42–55

    Article  MathSciNet  MATH  Google Scholar 

  • Friedman M, Ming M, Kandel A (1998) Fuzzy linear systems. Fuzzy Sets Syst 96:201–209

    Article  MathSciNet  MATH  Google Scholar 

  • Jackson FH (1908) On \(q\)-functions and certain difference operator. Trans R Soc Edinb 46:253–281

    Article  Google Scholar 

  • Jackson FH (1910) On q-definite integrals. Q J Pure Appl Math 41:193–203

    MATH  Google Scholar 

  • Jarad F, Abdeljawad T, Baleanu D (2013) Stability of \(q\)-fractional non-autonomous system. Nonlinear Anal Real World Appl 14:780–784

    Article  MathSciNet  MATH  Google Scholar 

  • Jiang M, Zhong S (2015) Existence of solutions for nonlinear fractional \(q\)-difference equations with Riemann–Liouville type \(q\)-derivatives. J Appl Math Comput 47(1–2):429–459

    Article  MathSciNet  MATH  Google Scholar 

  • Kac V, Cheung P (2001) Quantum calculus-universitext. Springer, New York

    Google Scholar 

  • Kilbas AA, Srivastava MH, Trujillo JJ (2006) Theory and application of fractional differential equations, vol 204. Elsevier, North-Holland mathematics studies, USA

    MATH  Google Scholar 

  • Koekoek R, Lesky PA, Swarttouw RF (2010) Hypergeometric orthogonal polynomials and their \(q\)-analogues. Springer monographs in mathematics. Springer, Berlin

    Book  MATH  Google Scholar 

  • Lakshmikanthama V, Leela S (2009) A Krasnoselskii-Krein-type uniqueness result for fractional differential equations. Nonlinear Anal Theory Methods Appl 71(7–8):3421–3424

    Article  MathSciNet  MATH  Google Scholar 

  • Li X, Han Z, Li X (2015) Boundary value problems of fractional \(q\)-difference Schrodinger equations. Appl Math Lett 46:100–105

    Article  MathSciNet  MATH  Google Scholar 

  • Li X, Han Z, Sun SH, Sun L (2016) Eigenvalue problems of fractional \(q\)-difference equations with generalized \(p\)-Laplacian. Appl Math Lett 57:46–53

    Article  MathSciNet  MATH  Google Scholar 

  • Ma M, Friedman M, Kandel A (1999) A new fuzzy arithmetic. Fuzzy Sets Syst 108:83–90

    Article  MathSciNet  MATH  Google Scholar 

  • Mansour ZS (2014) On a class of volterra-fredholm \(q\)-integral equations. Fract Calc Appl Anal 17(1):61–78

    Article  MathSciNet  MATH  Google Scholar 

  • Mikaeilvand N, Noeiaghdam Z (2012) The general solution of \(m\times n\) fuzzy linear systems. Middle-East J Sci Res 11(1):128–133

    Google Scholar 

  • Mikaeilvand N, Noeiaghdam Z (2015) The general solutions of fuzzy linear matrix equations. J Math Ext 9:1–13

    MathSciNet  MATH  Google Scholar 

  • Miller KS, Ross B (1993) An introduction to the fractional calculus and fractional differential equations. A Wiley Interscience Publication, Wiley, New York

    MATH  Google Scholar 

  • Noeiaghdam Z, Mikaeilvand N (2012) Least squares solutions of inconsistent fuzzy linear matrix equations. Int J Ind Math 4(4):365–374

    Google Scholar 

  • Odibat ZM, Momani S (2006) Application of variational iteration method to nonlinear differential equations of fractional order. Int. J. Nonlinear Sci. Numer. Simul. 7(1):27–34

    Article  MathSciNet  MATH  Google Scholar 

  • Ossiander M, Siegrist F, Shirvanyan V, Pazourek R, Sommer A, Latka T, Guggenmos A, Nagele S, Feist J, Burgdorfer J, Kienberger R, Schultze M (2017) Attosecond correlation dynamics. Nat. Phys. 13:280–285

    Article  Google Scholar 

  • Podlubny I (1999) Fractional differential equations. Academic Press, San Diego

    MATH  Google Scholar 

  • Puri ML, Ralescu DA (1986) Fuzzy random variables. J. Math. Anal. Appl. 114:409–422

    Article  MathSciNet  MATH  Google Scholar 

  • Rajković PM, Marinković SD, Stanković MS (2007) Fractional integrals and derivatives in \(q\)-calculus. Appl. Anal. Discrete Math. 1:311–323

    Article  MathSciNet  MATH  Google Scholar 

  • Salahshour S, Ahmadian A, Chan CS (2015) Successive approximation method for Caputo \(q\)-fractional IVPs. Commun. Nonlinear Sci. Numer. Simul. 24:153–158

    Article  MathSciNet  Google Scholar 

  • Samko SG, Kilbas AA, Marichev OI (1993) Fractional integrals and derivatives: theory and applications. Gordon and Breach, Yverdon

    MATH  Google Scholar 

  • Stefanini L, Bede B (2009) Generalized Hukuhara differentiability of interval-valued functions and interval differential equations. Nonlinear Anal. 71:1311–1328

    Article  MathSciNet  MATH  Google Scholar 

  • Thomae J (1869) Beiträge zur Theorie der durch die Heinesche Reihe: darstellbaren Functionen. (in German). J Reine Angew Math 70:258–281

    MathSciNet  Google Scholar 

Download references

Acknowledgements

The work of J. J. Nieto has been partially supported by Agencia Estatal de Investigación (AEI) of Spain under grant MTM2016-75140-P, co-financed by the European Community fund FEDER, and XUNTA de Galicia under Grants GRC2015-004 and R2016-022. The authors wish to thank the editor in chief, the editor and the anonymous reviewers for their constructive comments on this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Z. Noeiaghdam.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Communicated by A. Di Nola.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Noeiaghdam, Z., Allahviranloo, T. & Nieto, J.J. q-fractional differential equations with uncertainty. Soft Comput 23, 9507–9524 (2019). https://doi.org/10.1007/s00500-019-03830-w

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00500-019-03830-w

Keywords

Navigation