Skip to main content

Advertisement

Log in

An innovative OANF–IPFC based on MOGWO to enhance participation of DFIG-based wind turbine in interconnected reconstructed power system

An innovative OANF–IPFC based on MOGWO to enhance participation of DFIG-based wind turbine

  • Methodologies and Application
  • Published:
Soft Computing Aims and scope Submit manuscript

Abstract

Despite the affordability and popularity of doubly fed induction generator (DFIG) among the variable-speed wind turbines, it cannot follow the inertia response caused by the load perturbations and the imposed frequency fluctuations in the power system. Considering the growing participation of wind power generation, DFIG with no virtual inertia control cannot play a functional role in the frequency stability of traditional power systems. At the outset, a new inertia control strategy is proposed for DFIG to participate in system frequency control via absorption or disposal of kinetic energy based on active power control. Then after that, interline power flow controller (IPFC) known as an adaptable and complex compensator is introduced to simultaneously regulate and control the power flow of multiple lines during the large penetration of DFIGs. To enhance the damping capability of IPFC, this paper has suggested a novel optimal adaptive neuro-fuzzy (OANF). The frequency and tie-line power deviations as two prominent stability benchmarks have been considered and analysed to appraise the damping capability of the suggested controller in the affected interconnected power system. The dynamic stability problem has been formulated based on multi-objective grey wolf optimizer to optimally tune OANF-based IPFC towards simultaneous suppression of the abovementioned benchmarks. The accurate fuzzy membership functions and rules of OANF-based IPFC have been extracted during the severe perturbation in two interconnected reconstructed power systems. Eventually, the simulation results extracted from both the three-area and five-area interconnected power systems have primarily validated the inertia control-based DFIG and subsidiarily OANF–IPFC to effectively suppress the low-frequency oscillations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Abdeddaim S, Betka A, Drid S, Becherif M (2014) Implementation of MRAC controller of a DFIG based variable speed grid connected wind turbine. Energy Convers Manag 79(3):281–288

    Article  Google Scholar 

  • Ali SH (2012) A novel tool (FP-KC) for handle the three main dimensions reduction and association rule mining. In: IEEE, 2012 6th international conference on sciences of electronics, technologies of information and telecommunications (SETIT), Sousse, pp 951–961

  • Al-Janabi S (2017) Pragmatic miner to risk analysis for intrusion detection (PMRA-ID). In: Mohamed A, Berry M, Yap B (eds) Soft computing in data science. SCDS 2017. Communications in computer and information science, vol 788. Springer, Singapore. https://doi.org/10.1007/978-981-10-7242-0_23

    Chapter  Google Scholar 

  • Al-Janabi S (2018) Smart system to create optimal higher education environment using IDA and IOTs. Int J Comput Appl. https://doi.org/10.1080/1206212X.2018.1512460

    Article  Google Scholar 

  • Al-Janabi S, Patel A, Fatlawi H, Kalajdzic K, Al Shourbaji I (2014) Empirical rapid and accurate prediction model for data mining tasks in cloud computing environments. In: 2014 International congress on technology, communication and knowledge (ICTCK), pp 1–8

  • Baghya Shree S, Kamaraj N (2016) Hybrid Neuro Fuzzy approach for automatic generation control in restructured power system. Int J Electr Power Energy Syst 74(1):274–285

    Article  Google Scholar 

  • Banaei MR, Kami A (2011) Interline power flow controller (IPFC) based damping recurrent neural network controllers for enhancing stability. Energy Convers Manag 52(7):2629–2636

    Article  Google Scholar 

  • Bhatt P, Ghoshal SP, Roy R (2010) Load frequency stabilization by coordinated control of Thyristor Controlled Phase Shifters and superconducting magnetic energy storage for three types of interconnected two-area power systems. Int J Electr Power Energy Syst 32(10):1111–1124

    Article  Google Scholar 

  • Bhatt P, Long C, Wub J, Mehta B (2017) Dynamic participation of DFIG for frequency regulation in electrical power systems. Energy Procedia 142(12):2183–2188

    Article  Google Scholar 

  • Bhattacharyya B, Gupta VK (2014) Fuzzy genetic algorithm approach for the optimal placement of flexible AC transmission systems devices in a power system. Electr Power Compon Syst 42(7):779–787

    Article  Google Scholar 

  • Chaine S, Tripathy M, Satpathy S (2015) NSGA-II based optimal control scheme of wind thermal power system for improvement of frequency regulation characteristics. Ain Shams Eng J 6(3):851–863

    Article  Google Scholar 

  • Darabian M, Jalilvand A (2013) SSSC and TCPS based hydrothermal system to improve dynamic performance via FABFM. Int J Autom Power Eng 2(5):293–302

    Google Scholar 

  • Darfoun MA, El-Hawary ME (2015) Multi-objective optimization approach for optimal distributed generation sizing and placement. Electr Power Compon Syst 43(7):828–836

    Article  Google Scholar 

  • Dash PK, Morris S, Mishra S (2004) Design of a nonlinear variable-gain fuzzy controller for FACTS devices. IEEE Trans Control Syst Technol 12(3):428–438

    Article  Google Scholar 

  • Dash P, Saikia LC, Sinha N (2015) Comparison of performances of several FACTS devices using Cuckoo search algorithm optimized 2DOF controllers in multi-area AGC. Int J Electr Power Energy Syst 65(2):316–324

    Article  Google Scholar 

  • Dhurvey SN, Chandrakar VK (2016) Improvement of power system performance using fuzzy logic based interline power flow controller [IPFC]. J Power Energy Eng 4(4):67–77

    Article  Google Scholar 

  • Eriksson R, Modig N, Elkington K (2018) Synthetic inertia versus fast frequency response: a definition. IET Renew Power Gener 12(5):507–514

    Article  Google Scholar 

  • Falehi AD (2017) Optimal design of fuzzy-AGC based on PSO & RCGA to improve dynamic stability of interconnected multi area power systems. Int J Autom Comput. https://doi.org/10.1007/s11633-017-1064-0

    Article  Google Scholar 

  • Falehi AD (2018a) Augment dynamic and transient capability of DFIG using optimal design of NIOPID based DPC strategy. Environ Progress Sustain Energy 37(4):1491–1502

    Article  Google Scholar 

  • Falehi AD (2018b) Optimal design of fractional order ANFIS-PSS based on NSGA-II aimed at mitigation of DG-connection transient impacts. Proc Rom Acad Ser A 19(3):473–481

    MathSciNet  Google Scholar 

  • Falehi AD (2018c) Optimal design and analysis of NIOFPID-based direct power control to strengthen DFIG power control. J Dyn Syst Meas Control 140(9):1–11

    Google Scholar 

  • Falehi AD (2018d) MOBA based design of FOPID–SSSC for load frequency control of interconnected multi-area power systems. Smart Struct Syst 22(1):81–94

    Google Scholar 

  • Falehi AD, Rafiee M (2017) Enhancement of DFIG-wind turbine’s LVRT capability using novel DVR based odd-nary cascaded asymmetric multi-level inverter. Eng Sci Technol Int J 20(3):805–824

    Article  Google Scholar 

  • Falehi AD, Rafiee M (2018) LVRT/HVRT capability enhancement of DFIG wind turbine using optimal design and control of novel PIλDμ AMLI based DVR. Sustain Energy Grids Netw 16:111–125

    Article  Google Scholar 

  • Falehi AD, Rostami M, Doroudi A, Ashrafian A (2012) Optimization and coordination of SVC-based supplementary controllers and PSSs to improve the power system stability using genetic algorithm. Turk J Electr Eng Comput Scı 20(5):639–654

    Google Scholar 

  • Falehi AD, Piran N, Pourgholi M (2016) HFAGC based on MOPSO technique: optimal design, comparison, verification. J Intell Fuzzy Syst 31(3):1199–1209

    Article  Google Scholar 

  • Ghorbani A, Soleymani S, Mozafari B (2016) A PMU-based LOE protection of synchronous generator in the presence of GIPFC. IEEE Trans Power Deliv 31(2):551–558

    Article  Google Scholar 

  • Grace Sadhana S, Ashok S, Kumaravel S (2017) Small signal stability analysis of grid connected renewable energy resources with the effect of uncertain wind power penetration. Energy Procedia 117(6):769–776

    Article  Google Scholar 

  • Hosenuzzaman M, Rahim NA, Selvaraj J, Hasanuzzaman M, Malek MA, Nahar A (2014) Global prospects, progress, policies, and environmental impact of solar photovoltaic power generation. Renew Sustain Energy Rev 41(1):284–297

    Google Scholar 

  • Huang L, Xin H, Zhang L, Wang Z, Wu K, Wang H (2017) Synchronization and frequency regulation of DFIG-based wind turbine generators with synchronized control. IEEE Trans Energy Convers 32(3):1251–1262

    Article  Google Scholar 

  • Kalajdzic K, Ali SH, Patel A (2015) Rapid lossless compression of short text messages. Comput Stand Interfaces 37(1):53–59

    Article  Google Scholar 

  • Lal DK, Barisal AK, Meng W (2017) Comparative performances evaluation of FACTS devices on AGC with diverse sources of energy generation and SMES. Cogent Eng 4(1):1–29

    Article  Google Scholar 

  • Li S, Deng C, Chen L, Zheng F (2015) A novel inertia control method suitable for doubly fed induction generator considering stability constraints. Int Trans Electr Energy Syst 25(12):3630–3643

    Article  Google Scholar 

  • Li S, Deng C, Shu Z, Huang W, He J, You Z (2016) Equivalent inertia time constant of doubly fed induction generator considering synthetic inertia control. J Renew Sustain Energy 8(5):1–12

    Article  Google Scholar 

  • Liu Y, Wu QH, Zhou XX (2016) Coordinated multiloop switching control of DFIG for resilience enhancement of wind power penetrated power systems. IEEE Trans Sustain Energy 7(3):1089–1099

    Article  Google Scholar 

  • Mirjalili S, Mirjalili SM, Lewis A (2014) Grey wolf optimizer. Adv Eng Softw 69(3):46–61

    Article  Google Scholar 

  • Mirjalili SA, Saremi S, Mirjalili SM, Coelho LDS (2016) Multi-objective grey wolf optimizer: a novel algorithm for multi-criterion optimization. Expert Syst Appl 47(5):106–119

    Article  Google Scholar 

  • Mitra A, Chatterjee D (2013) A sensitivity based approach to assess the impacts of integration of variable speed wind farms on the transient stability on power systems. Renew Energy 60(12):662–671

    Article  Google Scholar 

  • Mohamed AA, Mohamed YS, El-Gaafary AAM (2017) Optimal power flow using moth swarm algorithm. Electr Power Syst Res 143(1):190–206

    Article  Google Scholar 

  • Morsali J, Kazam Z, Tarafdar Hagh M (2016) Performance comparison of TCSC with TCPS and SSSC controllers in AGC of realistic interconnected multi-source power system. Ain Shams Eng J 7(1):143–148

    Article  Google Scholar 

  • Ngamroo I (2017) Review of DFIG wind turbine impact on power system dynamic performances. IEEJ Trans Electr Electron Eng 12(3):301–311

    Article  Google Scholar 

  • Panda S, Mohanty B, Hota PK (2013) Hybrid BFOA–PSO algorithm for automatic generation control of linear and nonlinear interconnected power system. Appl Soft Comput 13(12):4718–4730

    Article  Google Scholar 

  • Patel A, Al-Janabi S, AlShourbaji I, Pedersen J (2015) A novel methodology towards a trusted environment in mashup web applications. Comput Secur 49(2):107–122

    Article  Google Scholar 

  • Pradhan PC, Sahu RK, Panda S (2016) Firefly algorithm optimized fuzzy PID controller for AGC of multi-area multi-source power systems with UPFC and SMES. Eng Sci Technol Int J 19(1):338–354

    Article  Google Scholar 

  • Prakash S, Sinha SK (2015) Neuro-fuzzy computational technique to control load frequency in hydro-thermal interconnected power system. J Inst Eng (India) Ser B 96(3):273–282

    Article  Google Scholar 

  • Prakash S, Sinha SK (2017) Automatic load frequency control of six areas’ hybrid multi-generation power systems using neuro-fuzzy intelligent controller. IETE J Res 63(5):1–11

    Google Scholar 

  • Ramadan HS (2017) Optimal fractional order PI control applicability for enhanced dynamic behavior of on-grid solar PV systems. Int J Hydrog Energy 42(7):4017–4403

    Article  Google Scholar 

  • Sahoo A, Chandra S (2017) Multi-objective grey wolf optimizer for improved cervix lesion classification. Appl Soft Comput 52(2):64–80

    Article  Google Scholar 

  • Sahu RK, Panda S, Padhan S (2014) Optimal gravitational search algorithm for interconnected power systems. Ain Shams Eng J 5(3):721–733

    Article  Google Scholar 

  • Subbaramaiah K (2011) Comparison of performance of SSSC and TCPS in automatic generation control of hydrothermal system under deregulated scenario. Int J Electr Comput Eng 1(1):21–30

    Google Scholar 

  • Wang ZW, Shen C, Liu F (2016) Probabilistic analysis of small signal stability for power systems with high penetration of wind generation. IEEE Trans Sustain Energy 7(3):1182–1193

    Article  Google Scholar 

  • Xia J, Dysko A, O’Reilly J (2015) Frequency stability challenges for the UK network with high wind penetration levels. IET Gener Transm Distrib 9(11):1160–1167

    Article  Google Scholar 

  • Yang B, Yu T, Shu H, Dong J, Jiang L (2018) Robust sliding-mode control of wind energy conversion systems for optimal power extraction via nonlinear perturbation observers. Appl Energy 210(2):711–723

    Article  Google Scholar 

  • Yaramasu V, Wu B, Sen PC, Kouro S, Narimani M (2015) High-power wind energy conversion systems: state-of-the-art and emerging technologies. Proc IEEE 103(5):740–788

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ali Darvish Falehi.

Ethics declarations

Conflict of interest

The author declares that he has no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Informed consent

Informed consent was obtained from all individual participants included in the study.

Additional information

Communicated by V. Loia.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix 1: DFIG-based VSWT Bhatt et al. (2017)

He = 3.5 p.u. MW.sec, Kωi = 0.1, Kωp = 1.23, R = 3, Ta = 0.2 s, Tω = 6, C1 = 0.5176, C2 = 116, C3 = 0.4, C4 = 5, C5 = 21, C6 = 0.0068, Vω = 12 m/s.

Appendix 2: Linearization process of IPFC for AGC

Based on the phasor diagram shown in Fig. 3c, the total steady-state current of area m (Im0) can be presented by:

$$ I_{m0} = I_{mn0} + I_{mk0} $$
(42)
$$ I_{mn0} = \frac{{V_{m} \angle \theta_{m} - V_{n} \angle \theta_{n} }}{{jX_{mn} }} $$
(43)
$$ I_{mk0} = \frac{{V_{m} \angle \theta_{m} - V_{n} \angle \theta_{n} }}{{jX_{mk} }} $$
(44)

where Xmn= XL,mn+ XS,mn and Xmk= XL,mk+ XS,mk. The current angle of each area can be extracted as follows:

$$ \theta_{c,mn} = \cos^{ - 1} \left( {\frac{{V_{m} \sin \theta_{m} - V_{n} \sin \theta_{n} }}{{\sqrt {V_{n}^{2} + V_{m}^{2} - 2V_{n} V_{m} \cos \theta_{mn} } }}} \right) $$
(45)
$$ \theta_{c,mk} = \cos^{ - 1} \left( {\frac{{V_{m} \sin \theta_{m} - V_{k} \sin \theta_{k} }}{{\sqrt {V_{k}^{2} + V_{m}^{2} - 2V_{k} V_{m} \cos \theta_{mn} } }}} \right) $$
(46)

where \( \cos \theta_{mn} = \cos (\theta_{m} - \theta_{n} ) \), \( \cos \theta_{mk} = \cos (\theta_{m} - \theta_{k} ) \)

Existing IPFC in multiple transmission lines (Fig. 3d), Eqs. 43 and 44 are represented as follows:

$$ I_{mn} = \frac{{V_{m} \angle \theta_{m} - V_{s,mn} \angle \alpha - V_{n} \angle \theta_{n} }}{{jX_{mn} }} = \left[ {\frac{{V_{m} \angle \theta_{m} - V_{n} \angle \theta_{n} }}{{jX_{mn} }}} \right] + \left[ { - \frac{{V_{s,mn} \angle \alpha }}{{jX_{mn} }}} \right] = I_{mn0} + \Delta I_{mn0} $$
(47)
$$ I_{mk} = \frac{{V_{m} \angle \theta_{m} - V_{s,mk} \angle \alpha - V_{k} \angle \theta_{k} }}{{jX_{mk} }} = \left[ {\frac{{V_{m} \angle \theta_{m} - V_{k} \angle \theta_{k} }}{{jX_{mk} }}} \right] + \left[ { - \frac{{V_{s,mk} \angle \beta }}{{jX_{mk} }}} \right] = I_{mk0} + \Delta I_{mk0} $$
(48)

ΔImn0 and ΔImk0 are, respectively, the complementary current terms related to the IPFC compensation voltages. The apparent power of area m is given as follows:

$$ \begin{aligned} S_{m} & = V_{m} \left( {I_{mn} + I_{mk} } \right)^{*} = S_{m0} + \Delta S_{m} \\ P_{m} + jQ_{m} & = (P_{m0} + \Delta P_{m} ) + j(Q_{m0} + \Delta Q_{m} ) \\ \end{aligned} $$
(49)

where Pm0 and Qm0 are, respectively, the active and reactive powers lacking IPFC, i.e. (Vs,mn= Vs,mk= 0). The active power of area m flowed to area n and area k with existence of IPFC can be attained as follows:

$$ \Delta P_{mn} = \frac{{V_{m} V_{s,mn} }}{{X_{mn} }}\sin (\theta_{m} - \alpha ) $$
(50)
$$ \Delta P_{mk} = \frac{{V_{m} V_{s,mk} }}{{X_{mk} }}\sin (\theta_{m} - \beta ) $$
(51)

It is worth mentioning that Vs,mn and Vs,mk are, respectively, perpendicular to Imn and Imk (\( \alpha = \theta_{c,mn} - \pi /2 \), \( \beta = \theta_{c,mk} - \pi /2 \)); hence, ΔPmn and ΔPmk are:

$$ \Delta P_{mn} = \frac{{V_{m} V_{s,mn} }}{{X_{mn} }}\cos (\theta_{m} - \theta_{c,mn} ) $$
(52)
$$ \Delta P_{mk} = \frac{{V_{m} V_{s,mk} }}{{X_{mk} }}\cos (\theta_{m} - \theta_{c,mk} ) $$
(53)

As there is no active power exchange by IPFC, the active power in the left and right sides of IPFC’s VSCs is alike:

$$ \Delta P_{mn} = \frac{{V_{m} V_{s,mn} }}{{X_{mn} }}\cos (\theta_{m} - \theta_{c,mn} ) = \frac{{V_{n} V_{s,mn} }}{{X_{mn} }}\cos (\theta_{n} - \theta_{c,mn} ) $$
(54)
$$ \Delta P_{mk} = \frac{{V_{m} V_{s,mk} }}{{X_{mk} }}\cos (\theta_{m} - \theta_{c,mk} ) = \frac{{V_{k} V_{s,mk} }}{{X_{mk} }}\cos (\theta_{k} - \theta_{c,mn} ) $$
(55)

With more simplification:

$$ \cos (\theta_{m} - \theta_{c,mn} ) = \frac{{V_{n} }}{{V_{m} }}\cos (\theta_{n} - \theta_{c,mn} ) $$
(56)
$$ \cos (\theta_{m} - \theta_{c,mk} ) = \frac{{V_{k} }}{{V_{m} }}\cos (\theta_{k} - \theta_{c,mk} ) $$
(57)

As for Fig. 3c:

$$ \cos (\theta_{n} - \theta_{c,mn} ) = \frac{{V_{m} \sin \theta_{mn} }}{{\sqrt {V_{n}^{2} + V_{m}^{2} - 2V_{n} V_{m} \cos \theta_{mn} } }} $$
(58)
$$ \cos (\theta_{k} - \theta_{c,mk} ) = \frac{{V_{m} \sin \theta_{mk} }}{{\sqrt {V_{k}^{2} + V_{m}^{2} - 2V_{k} V_{m} \cos \theta_{mk} } }} $$
(59)

Considering the aforementioned equations, ΔPmn and ΔPmk are, respectively, calculated as:

$$ \Delta P_{mn} = \frac{{V_{n} V_{s,mn} }}{{X_{mn} }}*\frac{{V_{m} \sin \theta_{mn} }}{{\sqrt {V_{n}^{2} + V_{m}^{2} - 2V_{n} V_{m} \cos \theta_{mn} } }} $$
(60)
$$ \Delta P_{mk} = \frac{{V_{k} V_{s,mk} }}{{X_{mk} }}*\frac{{V_{m} \sin \theta_{mk} }}{{\sqrt {V_{k}^{2} + V_{m}^{2} - 2V_{k} V_{m} \cos \theta_{mk} } }} $$
(61)

From (49)

$$ \begin{aligned} P_{m} & = P_{mn} + P_{mk} = P_{m0} + \Delta P_{m} = \left( {\frac{{V_{n} V_{m} }}{{X_{mn} }}\sin \theta_{mn} + \frac{{V_{k} V_{m} }}{{X_{mk} }}\sin \theta_{mk} } \right) \\ & \quad + \left( {\frac{{V_{n} V_{m} }}{{X_{mn} }}\sin \theta_{mn} \frac{{V_{s,mn} }}{{\sqrt {V_{n}^{2} + V_{m}^{2} - 2V_{n} V_{m} \cos \theta_{mn} } }} + \frac{{V_{k} V_{m} }}{{X_{mk} }}\sin \theta_{mk} \frac{{V_{s,mk} }}{{\sqrt {V_{k}^{2} + V_{m}^{2} - 2V_{k} V_{m} \cos \theta_{mk} } }}} \right) \\ \end{aligned} $$
(62)

Appendix 3: Three-area hydro–thermal power system Falehi et al. (2016)

KP1 = Kp2 = 120 Hz/p.u MW, R1 = R2 = R3 = R4 = 2.4 Hz/p.u MW, Tg = 0.08 s, TT = 0.3 s, TR = 5 s, TW = 1 s, KP = 1.0, Ki = 5.0, Kd = 4.0, Di = 0.00833 p.u.MW/Hz, Tw = 1.0 s, PR1 = 1800 MW, PR2 = 1200 MW, \( G_{D} = \frac{16.5s + 16.5}{{(1/40)s^{2} + s}} \)

Linearization of three-area hydro–thermal power system

For thermal areas (Falehi 2017):

$$ \Delta f_{i} \left( s \right) = \frac{{K_{pi} }}{{1 + sT_{pi} }}\left[ {\Delta P_{Gi} \left( s \right) - \Delta P_{Di} \left( s \right) - \Delta P_{i} \left( s \right)} \right] $$
(63)
$$ \Delta P_{Gi} \left( s \right) = \frac{{1 + sK_{ri} T_{ri} }}{{T_{ri} }}\Delta P_{Ri} \left( s \right) $$
(64)
$$ \Delta P_{Ri} \left( s \right) = \frac{1}{{1 + sT_{ti} }}\Delta x_{Ei} \left( s \right) $$
(65)
$$ \Delta P_{{{\text{ref}}i}} \left( s \right) = - G_{{{\text{AGC}},i}} (s)\left[ {B_{i} \left( s \right)\Delta f_{i} \left( s \right) + \Delta P_{i} \left( s \right)} \right] $$
(66)
$$ \Delta x_{Ei} \left( s \right) = \frac{1}{{1 + sT_{gi} }}\left[ {\Delta P_{{{\text{ref}}i}} \left( s \right) - \frac{1}{{R_{i} }}\Delta f_{i} \left( s \right)} \right] $$
(67)

where subscript i (i = 1, 2) is defined as every thermal area (Falehi 2017).

For hydro area:

$$ \Delta f_{3} \left( s \right) = \frac{{K_{p3} }}{{1 + sT_{p3} }}\left[ {\Delta P_{G3} \left( s \right) - \Delta P_{D3} \left( s \right) - \Delta P_{3} \left( s \right)} \right] $$
(68)
$$ \Delta x_{E3} \left( s \right) = \frac{{K_{d} .s^{2} + K_{p} .s + K_{i} }}{{K_{d} .s^{2} + \left( {K_{p} + {\raise0.7ex\hbox{$1$} \!\mathord{\left/ {\vphantom {1 {R_{3} }}}\right.\kern-0pt} \!\lower0.7ex\hbox{${R_{3} }$}}} \right).s + K_{i} }}\left[ {\Delta P_{ref3} \left( s \right) - \frac{1}{{R_{3} }}\Delta f_{3} \left( s \right)} \right] $$
(69)
$$ \Delta P_{G3} \left( s \right) = \frac{{1 - sT_{W} }}{{1 + 0.5sT_{W} }}\Delta P_{R3} \left( s \right) $$
(70)
$$ \Delta P_{ref3} \left( s \right) = - G_{AGC,3} (s)\left[ {B_{3} \left( s \right)\Delta f_{3} \left( s \right) + \Delta P_{3} \left( s \right)} \right] $$
(71)

The tie-line power deviation is (Falehi 2017):

$$ \Delta P_{12} \left( s \right) = \frac{{2\pi T_{12} }}{s}\left( {\Delta f_{1} \left( s \right) - \Delta f_{2} \left( s \right)} \right) $$
(72)
$$ \Delta P_{23} \left( s \right) = \frac{{2\pi T_{23} }}{s}\left( {\Delta f_{2} \left( s \right) - \Delta f_{3} \left( s \right)} \right) $$
(73)
$$ \Delta P_{31} \left( s \right) = \frac{{2\pi T_{31} }}{s}\left( {\Delta f_{3} \left( s \right) - \Delta f_{1} \left( s \right)} \right) $$
(74)

Furthermore (Falehi 2017),

$$ \Delta P_{1} \left( s \right) = \Delta P_{12} \left( s \right) + \alpha_{31} \Delta P_{31} \left( s \right) $$
(75)
$$ \Delta P_{2} \left( s \right) = \alpha_{12} \Delta P_{12} \left( s \right) + \Delta P_{23} \left( s \right) $$
(76)
$$ \Delta P_{3} \left( s \right) = \alpha_{23} \Delta P_{23} \left( s \right) + \Delta P_{31} \left( s \right) $$
(77)

Appendix 4: Five-area thermal power system Falehi et al. (2016)

f = 60 Hz; Tgi = 0.08 s; Tri = 10 s; Hi = 5 s; Tti = 0.3 s; Kr = 0.5; Pri = 2000 MW; Tpi = 20 s; Kd = 4.0, Kp = 1.0, Ki = 5.0; Di = 0.1283 p.u.MW/Hz; Kpi = 120 Hz/p.u MW, Tw = 1 s, a12 = a13 = a23 = − 1 (Fig. 10).

Fig. 10
figure 10

a Linearized model of reconstructed three-area hydro–thermal power system with the presence of OANF-based IPFC (Falehi et al. 2016). b Linearized model of reconstructed five-area thermal power system with the presence of OANF-based IPFC (Falehi et al. 2016)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Darvish Falehi, A. An innovative OANF–IPFC based on MOGWO to enhance participation of DFIG-based wind turbine in interconnected reconstructed power system. Soft Comput 23, 12911–12927 (2019). https://doi.org/10.1007/s00500-019-03848-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00500-019-03848-0

Keywords

Navigation