Abstract
In order to solve the safety problem of the construction industry, the construction safety prediction model based on the optimized BP neural network algorithm is designed in this study. First, the characteristics of the construction industry were analyzed. As a labor-intensive industry, the construction industry is characterized by numerous factors such as large investment, long construction period and complicated construction environment. Due to the increasingly serious security problem, widespread concern over such problem has been aroused in society. Second, the problem of building construction safety management was summarized, six influencing factors were explored and a building construction safety prediction model based on rough set-genetic-BP neural network was established. Finally, the model was validated by a combination of multiparty consultation, empirical analysis and model comparison. The results showed that the model accurately predicted the risk factors during the construction process and effectively reduced casualties. Therefore, the model is feasible, effective and accurate.




Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
Bui DT, Tuan TA, Klempe H et al (2016) Spatial prediction models for shallow landslide hazards: a comparative assessment of the efficacy of support vector machines, artificial neural networks, kernel logistic regression, and logistic model tree. Landslides 13(2):361–378
Chatterjee S, Sarkar S, Hore S, Dey N, Ashour AS, Balas VE (2017) Particle swarm optimization trained neural network for structural failure prediction of multistoried RC buildings. Neural Comput Appl 28(8):2005–2016
Chen LF, Tsai CT (2016) Data mining framework based on rough set theory to improve location selection decisions: a case study of a restaurant chain. Tour Manag 53:197–206
Dutta S, Ghatak S, Dey R, Das AK, Ghosh S (2018) Attribute selection for improving spam classification in online social networks: a rough set theory-based approach. Soc Netw Anal Min 8(1):7
Gholizadeh S (2015) Performance-based optimum seismic design of steel structures by a modified firefly algorithm and a new neural network. Adv Eng Softw 81:50–65
Gordan B, Armaghani DJ, Hajihassani M et al (2016) Prediction of seismic slope stability through combination of particle swarm optimization and neural network. Eng Comput 32(1):85–97
Hajihassani M, Armaghani DJ, Marto A et al (2015a) Ground vibration prediction in quarry blasting through an artificial neural network optimized by imperialist competitive algorithm. Bull Eng Geol Env 74(3):873–886
Hajihassani M, Armaghani DJ, Monjezi M et al (2015b) Blast-induced air and ground vibration prediction: a particle swarm optimization-based artificial neural network approach. Environ Earth Sci 74(4):2799–2817
Hu R, Wen S, Zeng Z, Huang T (2017) A short-term power load forecasting model based on the generalized regression neural network with decreasing step fruit fly optimization algorithm. Neurocomputing 221:24–31
Jia X, Shang L, Zhou B, Yao Y (2016) Generalized attribute reduct in rough set theory. Knowl Based Syst 91:204–218
Kuang Y, Singh R, Singh S, Singh SP (2017) A novel macroeconomic forecasting model based on revised multimedia assisted BP neural network model and ant Colony algorithm. Multimedia Tools Appl 76(18):18749–18770
Kusi-Sarpong S, Bai C, Sarkis J, Wang X (2015) Green supply chain practices evaluation in the mining industry using a joint rough sets and fuzzy TOPSIS methodology. Resour Policy 46:86–100
Leu SS, Liu CM (2016) Using principal component analysis with a back-propagation neural network to predict industrial building construction duration. J Mar Sci Technol 24(2):82–90
Li T, Ruan D, Shen Y, Hermans E, Wets G (2016) A new weighting approach based on rough set theory and granular computing for road safety indicator analysis. Comput Intell 32(4):517–534
Liou JJ, Chuang YC, Hsu CC (2016) Improving airline service quality based on rough set theory and flow graphs. J Ind Prod Eng 33(2):123–133
Liu H, Tian H, Li Y et al (2015) Comparison of four Adaboost algorithm based artificial neural networks in wind speed predictions. Energy Convers Manag 92:67–81
Liu B, Huo T, Liang Y, Sun Y, Hu X (2016) Key factors of project characteristics affecting project delivery system decision making in the Chinese construction industry: case study using Chinese data based on rough set theory. J Prof Issues Eng Educ Pract 142(4):05016003
Meng A, Ge J, Yin H et al (2016) Wind speed forecasting based on wavelet packet decomposition and artificial neural networks trained by crisscross optimization algorithm. Energy Convers Manag 114:75–88
Roy SS, Viswanatham VM, Krishna PV (2016) Spam detection using hybrid model of rough set and decorate ensemble. Int J Comput Syst Eng 2(3):139–147
Saghatforoush A, Monjezi M, Faradonbeh RS et al (2016) Combination of neural network and ant colony optimization algorithms for prediction and optimization of flyrock and back-break induced by blasting. Eng Comput 32(2):255–266
Wang Q, Kim M, Shi Y et al (2015) Predict brain MR image registration via sparse learning of appearance and transformation. Med Image Anal 20(1):61–75
Waziri BS, Bala K, Bustani SA (2017) Artificial neural networks in construction engineering and management. Int J Arch Eng Constr 6(1):50–60
Ye H, Ren Q, Hu X, Lin T, Shi L, Zhang G, Li X (2018) Modeling energy-related CO 2 emissions from office buildings using general regression neural network. Resour Conserv Recycl 129:168–174
Yi W, Chan APC, Wang X et al (2016) Development of an early-warning system for site work in hot and humid environments: a case study. Autom Constr 62:101–113
Yu W, Li B, Jia H et al (2015) Application of multi-objective genetic algorithm to optimize energy efficiency and thermal comfort in building design. Energy Build 88:135–143
Zhang L, Wu X, Zhu H, AbouRizk SM (2017) Perceiving safety risk of buildings adjacent to tunneling excavation: an information fusion approach. Autom Constr 73:88–101
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Conflict of interest
The authors declare that they have no conflict of interest.
Human and animal rights
This article does not contain any studies with human participants or animals performed by any of the authors.
Informed consent
Informed consent was obtained from all individual participants included in the study.
Additional information
Communicated by Mu-Yen Chen.
Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Shen, T., Nagai, Y. & Gao, C. Design of building construction safety prediction model based on optimized BP neural network algorithm. Soft Comput 24, 7839–7850 (2020). https://doi.org/10.1007/s00500-019-03917-4
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00500-019-03917-4