Skip to main content
Log in

SCRM: self-correlated representation model for visual tracking

  • Methodologies and Application
  • Published:
Soft Computing Aims and scope Submit manuscript

Abstract

Sparse representation (SR) as a seminal model for visual tracking explores the relationship between all candidates and the observed templates. Different from SR-based trackers, we propose a self-correlated representation model for robust visual tracking. Firstly, we learn a low-dimensional subspace representation from highly correlated templates to model the object, which aims at eliminating the redundant information and reducing the influence of noisy templates. Then, we represent the subspace by itself to learn the inner underlying features from subspace vectors. To further enhance model’s discriminating power, a new observation model is developed by considering both error distribution and large outliers. Experiments are conducted on some challenging video clips and demonstrate the favorable performance of our tracking system compared to some state-of-the-art representation-based trackers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Abualigah LMQ (2019) Feature selection and enhanced krill herd algorithm for text document clustering. Springer, Berlin

    Book  Google Scholar 

  • Abualigah LM, Khader AT, Hanandeh ES (2018a) A combination of objective functions and hybrid krill herd algorithm for text document clustering analysis. Eng Appl Artif Intell 73:111–125

    Article  Google Scholar 

  • Abualigah LM, Khader AT, Hanandeh ES (2018b) Hybrid clustering analysis using improved krill herd algorithm. Appl Intell 48(11):4047–4071

    Article  Google Scholar 

  • Abualigah LM, Khader AT, Hanandeh ES (2018c) A new feature selection method to improve the document clustering using particle swarm optimization algorithm. J Comput Sci 25:456–466

    Article  Google Scholar 

  • Adam A, Rivlin E, Shimshoni I (2006) Robust fragments-based tracking using the integral histogram. In: IEEE conference on computer vision and pattern recognition, vol 1. IEEE, pp 798–805

  • Avidan S (2007) Ensemble tracking. IEEE Trans Pattern Anal Mach Intell 29(2):261–271

    Article  Google Scholar 

  • Babenko B, Yang MH, Belongie S (2009) Visual tracking with online multiple instance learning. In: IEEE conference on computer vision and pattern recognition. IEEE, pp 983–990

  • Bao C, Wu Y, Ling H, Ji H (2012) Real time robust l1 tracker using accelerated proximal gradient approach. In: IEEE conference on computer vision and pattern recognition. IEEE, pp 1830–1837

  • Chen Zhuoyuan WJ, Ying W (2012) Decomposing and regularizing sparse/nonsparse components for motion field estimation. In: IEEE conference on computer vision and pattern recognition. IEEE, pp 1776–1783

  • Chen D, Yuan Z, Hua G, Wang J, Zheng N (2017) Multi-timescale collaborative tracking. IEEE Trans Pattern Anal Mach Intell 39(1):141–155

    Article  Google Scholar 

  • Collins RT, Liu Y, Leordeanu M (2005) Online selection of discriminative tracking features. IEEE Trans Pattern Anal Mach Intell 27(10):1631–1643

    Article  Google Scholar 

  • Comaniciu D, Ramesh V, Meer P (2000) Real-time tracking of non-rigid objects using mean shift. In: IEEE conference on computer vision and pattern recognition, vol 2. IEEE, pp 142–149

  • Grabner H, Leistner C, Bischof H (2008) Semi-supervised on-line boosting for robust tracking. In: European conference on computer vision. Springer, pp 234–247

  • Hare S, Golodetz S, Saffari A, Vineet V, Cheng MM, Hicks SL, Torr PH (2016) Struck: structured output tracking with kernels. IEEE Trans Pattern Anal Mach Intell 38(10):2096–2109

    Article  Google Scholar 

  • Jia X, Lu H, Yang MH (2012) Visual tracking via adaptive structural local sparse appearance model. In: IEEE conference on computer vision and pattern recognition. IEEE, pp 1822–1829

  • Kwon J, Lee KM (2010) Visual tracking decomposition. In: IEEE conference on computer vision and pattern recognition. IEEE, pp 1269–1276

  • Li H, Shen C, Shi Q (2011) Real-time visual tracking using compressive sensing. In: IEEE conference on computer vision and pattern recognition. IEEE, pp 1305–1312

  • Li G, Peng M, Nai K, Li Z, Li K (2018) Visual tracking via context-aware local sparse appearance model. J Vis Commun Image Represent 56:92–105

    Article  Google Scholar 

  • Liu W, Zha ZJ, Wang Y, Lu K, Tao D (2016) \( p \)-laplacian regularized sparse coding for human activity recognition. IEEE Trans Ind Electron 63(8):5120–5129

    Google Scholar 

  • Mei X, Ling H (2011) Robust visual tracking and vehicle classification via sparse representation. IEEE Trans Pattern Anal Mach Intell 33(11):2259–2272

    Article  Google Scholar 

  • Mei X, Ling H, Wu Y, Blasch E, Bai L (2011) Minimum error bounded efficient l1 tracker with occlusion detection. In: IEEE conference on computer vision and pattern recognition. IEEE, pp 1257–1264

  • Mei X, Hong Z, Prokhorov D, Tao D (2015) Robust multitask multiview tracking in videos. IEEE Trans Neural Netw Learn Syst 26(11):2874–2890

    Article  MathSciNet  Google Scholar 

  • Pernici F, Del Bimbo A (2014) Object tracking by oversampling local features. IEEE Trans Pattern Anal Mach Intell 36(12):2538–2551

    Article  Google Scholar 

  • Rigamonti R, Lepetit V, González G, Türetken E, Benmansour F, Brown M, Fua P (2014) On the relevance of sparsity for image classification. Comput Vis Image Underst 125:115–127

    Article  Google Scholar 

  • Ross DA, Lim J, Lin RS, Yang MH (2008) Incremental learning for robust visual tracking. Int J Comput Vis 77(1–3):125–141

    Article  Google Scholar 

  • Sevilla-Lara L, Learned-Miller E (2012) Distribution fields for tracking. In: IEEE conference on computer vision and pattern recognition. IEEE, pp 1910–1917

  • Sun J, Chen Q, Sun J, Zhang T, Fang W, Wu X (2019) Graph-structured multitask sparsity model for visual tracking. Inf Sci 486:133–147

    Article  Google Scholar 

  • Wright J, Yang AY, Ganesh A, Sastry SS, Ma Y (2009) Robust face recognition via sparse representation. IEEE Trans Pattern Anal Mach Intell 31(2):210–227

    Article  Google Scholar 

  • Wu Y, Lim J, Yang MH (2015) Object tracking benchmark. IEEE Trans Pattern Anal Mach Intell 37(9):1834–1848

    Article  Google Scholar 

  • Xiao Z, Lu H, Wang D (2014) L2-rls-based object tracking. IEEE Trans Circuits Syst Video Technol 24(8):1301–1309

    Article  Google Scholar 

  • Xue W, Xu C, Feng Z (2018) Robust visual tracking via multi-scale spatio-temporal context learning. IEEE Trans Circuits Syst Video Technol 28(10):2849–2860

    Article  Google Scholar 

  • Xu J, Zhang L, Zuo W, Zhang D, Feng X (2015) Patch group based nonlocal self-similarity prior learning for image denoising. In: IEEE international conference on computer vision, pp 244–252

  • Yang M, Wu Y, Hua G (2009) Context-aware visual tracking. IEEE Trans Pattern Anal Mach Intell 31(7):1195–1209

    Article  Google Scholar 

  • Yang X, Wang M, Zhang L, Sun F, Hong R, Qi M (2016) An efficient tracking system by orthogonalized templates. IEEE Trans Ind Electron 63(5):3187–3197

    Article  Google Scholar 

  • Zhang L, Yang M, Feng X (2011) Sparse representation or collaborative representation: which helps face recognition? In: IEEE international conference on computer vision. IEEE, pp 471–478

  • Zhang T, Ghanem B, Liu S, Ahuja N (2013) Robust visual tracking via structured multi-task sparse learning. Int J Comput Vis 101(2):367–383

    Article  MathSciNet  Google Scholar 

  • Zhang K, Zhang L, Yang MH (2014) Fast compressive tracking. IEEE Trans Pattern Anal Mach Intell 36(10):2002–2015

    Article  Google Scholar 

  • Zhang T, Liu S, Ahuja N, Yang MH, Ghanem B (2015) Robust visual tracking via consistent low-rank sparse learning. Int J Comput Vis 111(2):171–190

    Article  Google Scholar 

  • Zhang L, Lu H, Du D, Liu L (2016) Sparse hashing tracking. IEEE Trans Image Process 25(2):840–849

    Article  MathSciNet  Google Scholar 

  • Zhou Y, Han J, Yuan X, Wei Z, Hong R (2017) Inverse sparse group lasso model for robust object tracking. IEEE Trans Multimed 19(8):1798–1810

    Article  Google Scholar 

  • Zhu P, Zuo W, Zhang L, Hu Q, Shiu SC (2015) Unsupervised feature selection by regularized self-representation. Pattern Recognit 48(2):438–446

    Article  Google Scholar 

  • Zhu P, Zhang L, Zuo W, Feng X, Hu Q (2016) A self-representation induced classifier. In: International joint conference on artificial intelligence. AAAI Press, pp 2442–2448

Download references

Acknowledgements

The authors would like to thank the editor and the anonymous reviewers for their valuable comments and constructive suggestions. This work is supported by the Scientific Research Foundation of Graduate School of Southeast University (No. YBJJ1768), the Postgraduate Research & Practice Innovation Program of Jiangsu Province (No. KYCX17_0101), the National Natural Science Foundation of China (No. 61871123), Key Research and Development Program in Jiangsu Province (No. BE2016739) and a Project Funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaobo Lu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest regarding the publication of this paper.

Ethical standard

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Communicated by V. Loia.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiang, S., Lu, X. & Cheng, F. SCRM: self-correlated representation model for visual tracking. Soft Comput 24, 2187–2199 (2020). https://doi.org/10.1007/s00500-019-04052-w

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00500-019-04052-w

Keywords

Navigation