Skip to main content

Advertisement

Log in

Power-law fitness scaling on multi-objective evolutionary algorithms: interpretations of experimental results

  • Methodologies and Application
  • Published:
Soft Computing Aims and scope Submit manuscript

Abstract

The effect of power-law fitness scaling method on the convergence and distribution of MOEAs is investigated in a systematic fashion. The proposed method is named as gamma (γ) correction-based fitness scaling (GCFS). What scaling does is that the selection pressure of a population can be efficiently regulated. Hence, fit and unfit individuals may be separated well in fitness-wise before going to the selection mechanism. It is then applied to Strength Pareto Evolutionary Algorithm 2 (SPEA2) and Domination Power of an individual Genetic Algorithm (DOPGA). Firstly, the effectiveness of GCFS is tested by 11 static gamma values (including 0.5, 1, 2, …, 9, 10) on nine well-known benchmarks. Simulated study safely states that SPEA2 and DOPGA may perform generally better with the square (γ = 2) and the cubic (γ = 3) of original fitness value, respectively. Secondly, an adaptive version of GCFS is proposed based on statistical merits (standard deviation and mean of fitness values) and implemented to the selected MOEAs. Generally speaking, fitness scaling significantly improves the convergence properties of MOEAs without extra computational burdens. It is observed that the convergence ability of existing MOEAs with fitness scaling (static or adaptive) can be improved. Simulated results also show that GCFS is only effective when fitness proportional selection methods (such as stochastic universal sampling—SUS) are used. GCFS is not effective when tournament selection is used.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Coello CAC (1999) A comprehensive survey of evolutionary-based multiobjective optimization techniques. Knowl Inf Syst 1(3):269–308

    Article  Google Scholar 

  • Coello CAC, Lamont GB, Veldhuizen DA (2007) Evolutionary algorithms for solving multi-objective problems, 2nd edn. Springer, New York

    MATH  Google Scholar 

  • Deb K (2001) Multiobjective optimization using evolutionary algorithms. Wiley, Chichester

    MATH  Google Scholar 

  • Deb K, Pratap A, Agarwal S, Meyarivan T (2002) A fast and elitist multi-objective genetic algorithm: NSGA-II. IEEE Trans Evol Comput 6:182–197

    Article  Google Scholar 

  • Dorigo M, Stutzle T (2004) Ant colony optimization. MIT Press, Cambridge

    Book  Google Scholar 

  • Eberhart R, Kennedy J (1995) Particle swarm optimization. In: Proceedings of the IEEE international conference on neural networks, vol 4, pp 1942–1948

  • Ergul EU, Eminoglu I (2014) DOPGA: a new fitness assignment scheme for multi-objective evolutionary algorithms. Int J Syst Sci 45(3):407–426

    Article  Google Scholar 

  • Fonseca CM, Fleming PJ (1993) Genetic algorithms for multi-objective optimization: formulation, discussion and generalization. In: Proceedings of the fifth international conference on genetic algorithms, pp 416–423

  • Gandomi AH, Alavi AH (2012) Krill herd: a new bio-inspired optimization algorithm. Commun Nonlinear Sci Numer Simul 17(2):4831–4845

    Article  MathSciNet  Google Scholar 

  • Gen M, Liu B, Ida K (1996) Evolution program for deterministic and stochastic optimizations. Eur J Oper Res 94(3):618–625

    Article  Google Scholar 

  • Ghosh A, Dehuri S (2005) Evolutionary algorithms for multi-criterion optimization: a survey. Int J Comput Inf Sci 2(1):38

    Google Scholar 

  • Gillies AM (1985) Machine learning procedures for generating image domain feature detectors. Dissertation, University of Michigan, Ann Arbor

  • Goldberg DE (1989) Genetic algorithms in search, optimization and machine learning. Addison-Wesley Pub, Reading

    MATH  Google Scholar 

  • Gonzales RC, Woods RE (2008) Digital image processing, 3rd edn. Pearson Prentice Hall, Englewood Cliffs

    Google Scholar 

  • Hao GS, Chen YY, Wei KX, Gong G, Hu XT (2010) Parameter selection of fitness scaling in genetic algorithm and its application. In: Control and decision conference (CDCC 2010), pp 2475–2480

  • Hao GS, Lim MH, Ong YS, Huang H, Wang GG (2019) Domination landscape in evolutionary algorithms and its applications. Soft Comput 23:3563. https://doi.org/10.1007/s00500-018-3206-x

    Article  MATH  Google Scholar 

  • Hill S, Newell J, O’Riordan C (2004) Analysing the effects of combining fitness scaling and inversion in genetic algorithms. In: Proceedings of the 16th IEEE international conference on tools with artificial intelligence (ICTAI 2014), pp 380–387

  • Holland J (1975) Adaptation in natural and artificial systems. University of Michigan Press, Ann Arbor

    Google Scholar 

  • Hopfield JJ (1982) Neural networks and physical systems with emergent collective computational abilities. Proc Natl Acad Sci 79:2554–2558

    Article  MathSciNet  Google Scholar 

  • Hopgood AA (2001) Intelligent systems for engineers and scientists, 2nd edn. CRC Press, Boca Raton

    Google Scholar 

  • Hopgood AA, Mierzejewska A (2009) Transform ranking: a new method of fitness scaling in genetic algorithms. In: Bramer M, Petridis M, Coenen F (eds) Research and development in intelligent systems XXV. SGAI 2008. Springer, London

    Google Scholar 

  • Karaboga D, Basturk B (2007) A powerful and efficient algorithm for numerical function optimization: artificial bee colony (ABC) algorithm. J Global Optim 39(3):459–471

    Article  MathSciNet  Google Scholar 

  • Kirkpatrick S, Gelatt CD, Vecchi MP (1983) Optimization by simulated annealing. Science 220(4598):671–680

    Article  MathSciNet  Google Scholar 

  • Kreinovich V, Quintana C, Fuentes O (1993) Genetic algorithms: what fitness scaling is optimal? Cybern Syst 24:9–26

    Article  MathSciNet  Google Scholar 

  • Leclerc F, Potvin JY (1995) A fitness scaling method based on a span measure. In: IEEE international conference on evolutionary algorithms, vol 2, pp 561–565

  • Michalewicz Z (1994) Genetic algorithms + data structures = evolution programs. Springer-Verlag, New York

    Book  Google Scholar 

  • Sadjadi F (2004) Comparison of fitness scaling functions in genetic algorithms with applications to optical processing. In: Javidi B, Psaltis D (eds), Optical information systems II, proceedings of SPIE, 5557, pp 356–364

  • Storn R, Price K (1997) Differential evolution–a simple and efficient heuristic for global optimization over continuous spaces. J Global Optim 11(4):341–359

    Article  MathSciNet  Google Scholar 

  • Surajudeen-Bakinde NT, Zhu X, Gao J, Nandi AK (2009) Effects of fitness scaling and adaptive parameters on genetic algorithm based equalization for DS-UWB systems. In: International conference on computers and devices for communication, pp 1–4

  • Wang GG, Tan Y (2017) Improving metaheuristic algorithms with information feedback models. IEEE Trans Cybern 99:1–14

    Google Scholar 

  • Wang GG, Guo L, Gandomi AH, Hao G-S, Wang H (2014a) Chaotic krill herd algorithm. Inf Sci 274:17–34

    Article  MathSciNet  Google Scholar 

  • Wang GG, Gandomi AH, Alavi AH (2014b) Stud krill herd algorithm. Neurocomputing 128:363–370

    Article  Google Scholar 

  • Wang GG, Deb S, Coelho LDS (2015) Earthworm optimization algorithm: a bio-inspired metaheuristic algorithm for global optimization problems. Int J Bio-Inspired Comput 7:1–23

    Article  Google Scholar 

  • Wang GG, Gandomi AH, Zhao X, Chu HE (2016) Hybridizing harmony search algorithm with cuckoo search for global numerical optimization. Soft Comput 20(1):273–285

    Article  Google Scholar 

  • Wang GG, Deb S, Gao X-Z, Coelho LDS (2017) A new metaheuristic optimisation algorithm motivated by elephant herding behaviour. Int. J. Bio Inspired Comput. 8(6):394–409

    Article  Google Scholar 

  • Yang X-S, Deb S (2009) Cuckoo search via Lévy flights. In: Proceedings of world congress nature and biologically inspired computing (NaBIC), Coimbatore, India, pp 210–214

  • Zhang Q, Liu W, Li H (2009) The performance of a new version of MOEA/D on CEC09 unconstrained MOP test instances. In: CEC’09 Proceedings of the eleventh conference on congress on evolutionary computation, pp 203–208

  • Zitzler E (1999) Evolutionary algorithms for multiobjective optimization: methods and applications. Dissertation, Swiss Federal Institute of Technology, Switzerland

  • Zitzler E, Thiele L (1999) Multiobjective evolutionary algorithms: a comparative case study and the strength pareto approach. IEEE Trans Evol Comput 3(4):257–271

    Article  Google Scholar 

  • Zitzler E, Laumanns M, Thiele L (2001) SPEA2: improving the strength pareto evolutionary algorithm. TIK-report 103, Swiss Federal Institute of Technology, Switzerland

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Engin Ufuk Ergul.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Communicated by V. Loia.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix: test problems, n is the number of decision variables

Appendix: test problems, n is the number of decision variables

Problem

n

Variable bounds

Objective functions

Comments

ZDT1

30

[0,1]n

\( \begin{aligned} f_{1} (x) = x_{1} ,\quad f_{2} (x) = g(x)\left[ { \, 1 - \sqrt {x_{1} /g(x)} } \right] \hfill \\ g(x) = 1 + 9{{\left( {\sum\limits_{i = 2}^{n} {x_{i} } } \right)} \mathord{\left/ {\vphantom {{\left( {\sum\limits_{i = 2}^{n} {x_{i} } } \right)} {\left( {n - 1} \right)}}} \right. \kern-0pt} {\left( {n - 1} \right)}} \hfill \\ \end{aligned} \)

Convex

ZDT2

30

[0,1]n

\( \begin{aligned} f_{1} (x) = x_{1} ,\quad \, f_{2} (x) = g(x)\left[ { \, 1 - (x_{1} /g(x))^{2} } \right] \hfill \\ g (x )\;{\text{is}}\;{\text{the}}\;{\text{same}}\;{\text{as}}\;{\text{those}}\;{\text{of}}\;{\text{ZDT1}} \hfill \\ \end{aligned} \)

Non-convex

ZDT3

30

[0,1]n

\( \begin{aligned} f_{1} (x) = x_{1} ,\quad \, f_{2} (x) = g(x)\left[ {1 - \sqrt {x_{1} /g(x)} - \frac{{x_{1} }}{g(x)}\sin (10\pi x_{1} )} \right] \hfill \\ g (x )\;{\text{is}}\;{\text{the}}\;{\text{same}}\;{\text{as}}\;{\text{those}}\;{\text{of}}\;{\text{ZDT1}} \hfill \\ \end{aligned} \)

Convex, disconnected

ZDT4

10

[0,1] × [-5,5]n−1

\( \begin{aligned} f_{1} (x) = x_{1} ,\quad f_{2} (x) = g(x)\left[ { \, 1 - \sqrt {x_{1} /g(x)} } \right] \hfill \\ g(x) = 1 + 10(n - 1) + \sum\limits_{i = 2}^{n} {\left[ {x_{i}^{2} - 10\cos (4\pi x_{i} )} \right]} \hfill \\ \end{aligned} \)

Convex, multifrontal

ZDT6

10

[0,1]n

\( \begin{aligned} f_{1} (x) = 1 - \exp ( - 4x_{1} )\sin^{6} (6\pi x_{1} ) ,\quad f_{2} (x) = g(x)\left[ { \, 1 - (f_{1} (x) /g(x))^{2} } \right] \hfill \\ g(x) = 1 + 9\left[ {{{\left( {\sum\limits_{i = 2}^{n} {x_{i} } } \right)} \mathord{\left/ {\vphantom {{\left( {\sum\limits_{i = 2}^{n} {x_{i} } } \right)} {\left( {n - 1} \right)}}} \right. \kern-0pt} {\left( {n - 1} \right)}}} \right]^{0.25} \hfill \\ \end{aligned} \)

Non-convex, non-uniformly spaced

UF1

30

[0,1] × [-1,1]n−1

\( \begin{aligned} f_{1} = x_{1} + \frac{2}{{\left| {J_{1} } \right|}}\sum\limits_{{j \in J_{1} }} {\left[ {x_{j} - \sin \left( {6\pi x_{1} + \frac{j\pi }{n}} \right)} \right]}^{2} \hfill \\ f_{2} = 1 - \sqrt {x_{1} } + \frac{2}{{\left| {J_{2} } \right|}}\sum\limits_{{j \in J_{2} }} {\left[ {x_{j} - \sin \left( {6\pi x_{1} + \frac{j\pi }{n}} \right)} \right]}^{2} \hfill \\ {\text{where }}J_{1} = \left\{ {j|j\;{\text{is}}\;{\text{odd}}\;{\text{and}}\;2 \le j \le n} \right\}{\text{ and}} \hfill \\ \, J_{2} = \left\{ {j|j\;{\text{is}}\;{\text{even}}\;{\text{and}}\;2 \le j \le n} \right\} \hfill \\ \end{aligned} \)

Convex, the Pareto set (PS) is a nonlinear curve

UF2

30

[0,1] × [-1,1]n−1

\( \begin{aligned} f_{1} = x_{1} + \frac{2}{{\left| {J_{1} } \right|}}\sum\limits_{{j \in J_{1} }} {y_{j}^{2} } ,\quad f_{2} = 1 - \sqrt {x_{1} } + \frac{2}{{\left| {J_{2} } \right|}}\sum\limits_{{j \in J_{2} }} {y_{j}^{2} } \, \hfill \\ { (}J_{1} \;{\text{and}}\;J_{2} \;{\text{are}}\;{\text{the}}\;{\text{same}}\;{\text{as}}\;{\text{those}}\;{\text{of}}\;{\text{UF1)}} \hfill \\ y_{j} = \left\{ \begin{aligned} x_{j} - \left[ {0.3x_{1}^{2} \cos \left( {24\pi x_{1} + \frac{4j\pi }{n}} \right) + 0.6x_{1} } \right]\cos \left( {6\pi x_{1} + \frac{j\pi }{n}} \right) \, j \in J_{1} \hfill \\ x_{j} - \left[ {0.3x_{1}^{2} \cos \left( {24\pi x_{1} + \frac{4j\pi }{n}} \right) + 0.6x_{1} } \right]\sin \left( {6\pi x_{1} + \frac{j\pi }{n}} \right) \, j \in J_{2} \hfill \\ \end{aligned} \right. \hfill \\ \end{aligned} \)

Convex, the Pareto set (PS) is a nonlinear curve

UF3

30

[0,1]n

\( \begin{aligned} f_{1} = x_{1} + \frac{2}{{\left| {J_{1} } \right|}}\left( {4\sum\limits_{{j \in J_{1} }} {y_{j}^{2} - 2\prod\limits_{{j \in J_{1} }} {\cos \left( {\frac{{20y_{j} \pi }}{\sqrt j }} \right) + 2} } } \right) \hfill \\ f_{2} = 1 - \sqrt {x_{1} } + \frac{2}{{\left| {J_{2} } \right|}}\left( {4\sum\limits_{{j \in J_{2} }} {y_{j}^{2} - 2\prod\limits_{{j \in J_{2} }} {\cos \left( {\frac{{20y_{j} \pi }}{\sqrt j }} \right) + 2} } } \right) \hfill \\ y_{j} = x_{j} - x_{1}^{{0.5\left( {1.0 + \frac{3(j - 2)}{n - 2}} \right)}} ,\quad j = 2, \ldots ,n \hfill \\ (J_{1} \;{\text{and}}\;J_{2} \;{\text{are}}\;{\text{the}}\;{\text{same}}\;{\text{as}}\;{\text{those}}\;{\text{of}}\;{\text{UF1)}} \hfill \\ \end{aligned} \)

Convex, the Pareto set (PS) is a nonlinear curve

UF4

30

[0,1] × [-2,2]n−1

\( \begin{aligned} f_{1} = x_{1} + \frac{2}{{\left| {J_{1} } \right|}}\sum\limits_{{j \in J_{1} }} {h(y{}_{j})} \hfill \\ f_{2} = 1 - x_{1}^{2} + \frac{2}{{\left| {J_{2} } \right|}}\sum\limits_{{j \in J_{2} }} {h(y{}_{j})} \, \hfill \\ y_{j} = x_{j} - \sin \left( {6\pi x_{1} + \frac{j\pi }{n}} \right)\quad j = 2, \ldots ,n \hfill \\ h(t) = \frac{\left| t \right|}{{1 + e^{2\left| t \right|} }}\quad (J_{1} \;{\text{and}}\;J_{2} \;{\text{are}}\;{\text{the}}\;{\text{same}}\;{\text{as}}\;{\text{those}}\;{\text{of}}\;{\text{UF1)}} \hfill \\ \end{aligned} \)

Non-convex, the Pareto set (PS) is a nonlinear curve

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ergul, E.U., Eminoglu, I. Power-law fitness scaling on multi-objective evolutionary algorithms: interpretations of experimental results. Soft Comput 24, 3893–3907 (2020). https://doi.org/10.1007/s00500-019-04242-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00500-019-04242-6

Keywords

Navigation