Skip to main content
Log in

Algebraic and Shannon entropies of commutative hypergroups and their connection with information and permutation entropies and with calculation of entropy for chemical algebras

  • Foundations
  • Published:
Soft Computing Aims and scope Submit manuscript

Abstract

Studying the evolution of a system and dealing with its complexity are key issues in analyzing and predicting its future behavior. In this respect, the uncertainty problem for a wide variety of mathematical structures such as hyper MV–algebras and stochastic processes (information sources) that provide models for varied systems has been studied. This paper presents the algebraic and Shannon entropies for hypergroupoids and commutative hypergroups, respectively, and studies their fundamental properties. These notions are established in a way that they are technically feasible to be adapted to other algebraic hyperstructures. Moreover, it is investigated that how these two types of entropies are connected for the case of commutative hypergroups. In addition, conditions under which the algebraic entropy is connected with the information and permutation entropies are detected. In the end, the algebraic entropy is calculated for some hypergroupoids and chemical algebras.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Akram M, Dudek WA (2013) Intuitionistic fuzzy hypergraphs with applications. Inf Sci 218:182–193

    Article  MathSciNet  MATH  Google Scholar 

  • Ameri R (2003) Topological (transposition) hypergroups. Ital J Pure Appl Math 13:181–186

    MathSciNet  MATH  Google Scholar 

  • Amigó JM (2010) Permutation complexity in dynamical systems: ordinal patterns, permutation entropy and all that. Springer, Berlin

    Book  MATH  Google Scholar 

  • Amigo JM, Kennel MB (2007) Topological permutation entropy. Physica D 231:137–142

    Article  MathSciNet  MATH  Google Scholar 

  • Angeli D, Leenheer PD, Sontag E (2007) A petri net approach to persistence analysis in chemical reaction networks. In: Queinnec I, Tarbouriech S, Garcia G, Niculescu SI (eds) Biology and control theory: current challenges, vol 357. Lecture notes in control and information sciences. Springer, Berlin, pp 181–216

    Chapter  Google Scholar 

  • Bandt C, Pompe B (2002) Permutation entropy: a natural complexity measure for time series. Phys Rev Lett 88(17):174102

    Article  Google Scholar 

  • Barreira L, Valls C (2013) Dynamical systems: an introduction. Springer, London

    Book  MATH  Google Scholar 

  • Brown RJ (1971) Entropy for group endomorphisms and homogeneous spaces. Trans Am Math Soc 153:401–414

    Article  MathSciNet  Google Scholar 

  • Bunimovich LA, Demers MF (2005) Deterministic models of the simplest chemical reactions. J Stat Phys 120(1–2):239–252

    Article  MathSciNet  MATH  Google Scholar 

  • Connes A, Consani C (2011) Characteristic 1, entropy and the absolute point. Noncommutative geometry, arithmetic, and related topics. In: Proceedings of the twenty-first meeting of the Japan-U.S. Mathematics Institute, pp 75–139

  • Corda C, FatehiNia M, Molaei MR, Sayyari Y (2018) Entropy of iterated function systems and their relations with black holes and Bohr-like black holes entropies. Entropy 20(1):56

    Article  MathSciNet  Google Scholar 

  • Corsini P, Leoreanu V (2003) Applications of hyperstructure theory. Advances in mathematics. Springer, Boston

    Book  MATH  Google Scholar 

  • Davvaz B, Dehgan-nezad A (2003) Chemical examples in hypergroups. Ratio Matematica 14:71–74

    Google Scholar 

  • Davvaz B, Dehghan Nezhad A, Benvidi A (2012) Chemical hyperalgebra: dismutation reactions. MATCH Commun Math Comput Chem 67:55–63

    MathSciNet  Google Scholar 

  • Davvaz B, Leoreanu-Fotea V (2007) Hyperring theory and applications. International Academic Press, Cambridge

    MATH  Google Scholar 

  • Davvaz B, Santilli RM, Vougiouklis T (2011) Studies of multi-valued hyperstructures for the characterization of matter-antimatter systems and their extension. In: Proceedings of the third international conference on lie-admissible treatment of irreversible processes (ICLATIP-3), Nepal, pp 45–57

  • Dehghan Nezhad A, Moosavi Nejad SM, Nadjafikhah M, Davvaz B (2012) A physical example of algebraic hyperstructures: Leptons. Indian J Phys 86(11):1027–1032

    Article  Google Scholar 

  • Dikranjan D, Bruno AG (2016) Entropy on abelian groups. Adv Math 298:612–653

    Article  MathSciNet  MATH  Google Scholar 

  • Dikranjan D, Bruno AG (2012) The connection between topological and algebraic entropy. Topol Appl 159:2980–2989

    Article  MathSciNet  MATH  Google Scholar 

  • Dikranjan D, Sanchis M, Virili S (2012) New and old facts about entropy in uniform spaces and topological groups. Topol Appl 159:1916–1942

    Article  MathSciNet  MATH  Google Scholar 

  • Dudek WA, Davvaz B, Jun YB (2005) On intuitionistic fuzzy sub-hyperquasigroups of hyperquasigroups. Inf Sci 170(2–4):251–262

    Article  MathSciNet  MATH  Google Scholar 

  • Dvurečenskij A, Hyčko M (2017) Hyper effect algebras. Fuzzy Sets Syst 326:34–51

    Article  MathSciNet  MATH  Google Scholar 

  • Ebrahimi M, Mehrpooya A (2014) An application of geometry in algebra: uncertainty of hyper \(MV\)–algebras. In: Proceedings of the 7th seminar on geometry & topology, Tehran, pp 529–534

  • Gray RM (1990) Entropy and information theory. Springer, New York

    Book  MATH  Google Scholar 

  • Heidari D, Davvaz B, Modarres SMS (2014) Topological hypergroups in the sense of Marty. Commun Algebra 42(11):4712–4721

    Article  MathSciNet  MATH  Google Scholar 

  • Heyer H, Hošková-Mayerová Š (2014) An imprimitivity theorem for representations of a semi-direct product hypergroup. J Lie Theory 24:159–178

    MathSciNet  MATH  Google Scholar 

  • Hošková-Mayerová Š (2012) Topological hypergroupoids. Comput Math Appl 64(9):2845–2849

    Article  MathSciNet  MATH  Google Scholar 

  • Hošková-Mayerová Š, Antampoufis N (2017) A brief survey on the two different approaches of fundamental equivalence relations on hyperstructures. Ratio Mathematica 33:47–60

    Google Scholar 

  • Karimian M, Davvaz B (2006) On the \(\gamma \)-cyclic hypergroups. Commun Algebra 34:4579–4589

    Article  MathSciNet  MATH  Google Scholar 

  • Mehrpooya A, Ebrahimi M, Davvaz B (2016) The entropy of semi-independent hyper \(MV\)-algebra dynamical systems. Soft Comput 20(4):1263–1276

    Article  MATH  Google Scholar 

  • Mehrpooya A, Ebrahimi M, Davvaz B (2017) Two dissimilar approaches to dynamical systems on hyper \(MV\)-algebras and their information entropy. Eur Phys J Plus 132:379

    Article  Google Scholar 

  • Molaei MR (2012) Asymptotic dynamics via a time set without any order. J Dyn Syst Geom Theor 10(1):91–98

    MathSciNet  MATH  Google Scholar 

  • Molaei MR (2003) Generalized dynamical systems. Pure Math Appl 14(1–2):117–120

    MathSciNet  MATH  Google Scholar 

  • Molaei MR, Iranmanesh F (2004) Conjugacy in hyper semi-dynamical systems. Gen Math 12(4):11–16

    MathSciNet  MATH  Google Scholar 

  • Riečan B (2005) Kolmogorov-Sinai entropy on \(MV\)-algebras. Int J Theor Phys 44(7):1041–1052

    Article  MATH  Google Scholar 

  • Salce L, Virili S (2016) The addition theorem for algebraic entropies induced by non-discrete length functions. Forum Math 28(6):1143–1157

    Article  MathSciNet  MATH  Google Scholar 

  • Sayyari Y, Molaei MR, Moghayer SM (2014) Entropy of continuous maps on quasi-metric spaces. Preprint arXiv:1403.2106

  • Stefu M, Bolboaca SD, Balan M, Jantschi L (2008) Molecular hyperstructures with high symmetry. Bull UASVM Hortic 65:2

    Google Scholar 

  • Tărnăuceanu M (2003) Special classes of hypergroup representations. Ital J Pure Appl Math 14:9–20

    MathSciNet  MATH  Google Scholar 

  • Vougiouklis T (2014) Enlarged fundamentally very thin \(H_v\)-structures. Algebraic Struct Appl 1(1):11–20

    Google Scholar 

  • Virili S (2012) Entropy for endomorphisms of LCA groups. Topol Appl 159(9):2546–2556

    Article  MathSciNet  MATH  Google Scholar 

  • Walters P (1982) An introduction to ergodic theory. Springer, New York

    Book  MATH  Google Scholar 

  • Wang Y (2015) Formal cognitive models of data, information, knowledge, and intelligence. WSEAS Trans Comput 14:770–781

    Google Scholar 

  • Wang Y (2012) In search of denotational mathematics: novel mathematical means for contemporary intelligence, brain, and knowledge sciences. J Adv Math Appl 1:4–25

    Article  Google Scholar 

  • Xina X, Hea P, Fuc Y (2016) States on hyper \(MV\)-algebras. J Intell Fuzzy Syst 31:1299–1309

    Article  Google Scholar 

  • Zhan J, Davvaz B, Shum KP (2008) A new view of fuzzy hypernear-rings. Inf Sci 178(2):425–438

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Adel Mehrpooya or MohammadReza Molaei.

Ethics declarations

Conflict of interest

All authors declare that they have no conflict of interest.

Additional information

Communicated by A. Di Nola.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mehrpooya, A., Sayyari, Y. & Molaei, M. Algebraic and Shannon entropies of commutative hypergroups and their connection with information and permutation entropies and with calculation of entropy for chemical algebras. Soft Comput 23, 13035–13053 (2019). https://doi.org/10.1007/s00500-019-04314-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00500-019-04314-7

Keywords

Navigation