Skip to main content
Log in

Linking granular computing, big data and decision making: a case study in urban path planning

  • Methodologies and Application
  • Published:
Soft Computing Aims and scope Submit manuscript

Abstract

Granular computing, an emerging information processing paradigm transforming complex data into information granules at different scales so that different features and regularities can be revealed, offers an essential linkage between big data and decision making. By using innovative technologies of granular computing that transforms big data collections into information granules, we would be at position of recognizing and exploiting the meaningful pieces of knowledge present in data, and produce sound, and practically supported decisions. In this study, we first summarize a general scheme of big data–granular computing–decision making and then present a case study where we detect the important traffic event information by collecting and analyzing social media data, and transform them into probabilistic information granules that can be used for urban routing navigation. We propose a robust fastest path optimization model to incorporate the impact of traffic events and generate the optimal routing strategy. Real-life experiments are carried out in regional Chaoyang District, Beijing, as well as the backbone roadway network of Beijing, which illustrate the effectiveness of our proposed big data-driven decision-making method. Our study provides new evidence demonstrating that big data can be efficiently used to enhance decisions and granular computing with this regard. The concept of the proposed scheme can be easily extended for decision-making modeling in other domains.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Notes

  1. Decisive action: How businesses make decisions and how they could do it better, The Economist Intelligence Unit, 2014. http://www.datascienceassn.org/.

  2. http://open.weibo.com/.

  3. http://ictclas.nlpir.org/.

  4. http://news.baidu.com.

  5. http://www.datatang.com/data/15775.

  6. http://www.keenage.com/.

  7. http://open.weibo.com/.

References

  • Adacher L, Oliva G, Pascucci F (2014) Decentralized route guidance architectures with user preferences in urban transportation networks. Procedia Soc Behav Sci 111:1054–1062

    Article  Google Scholar 

  • Ahuja RK, Mehlhorn K, Orlin J, Tarjan RE (1990) Faster algorithms for the shortest path problem. J ACM (JACM) 37(2):213–223

    Article  MathSciNet  MATH  Google Scholar 

  • Bando M, Hasebe K, Nakayama A, Shibata A, Sugiyama Y (1995) Dynamical model of traffic congestion and numerical simulation. Phys Rev E 51(2):1035

    Article  Google Scholar 

  • Bargiela A, Pedrycz W (2003) Granular computing: an introduction. Kluwer Academic Publishers, Boston

    Book  MATH  Google Scholar 

  • Bargiela A, Pedrycz W (2008) Toward a theory of granular computing for human-centered information processing. IEEE Trans Fuzzy Syst 16(2):320–330

    Article  Google Scholar 

  • Bertsimas D, Sim M (2003) Robust discrete optimization and network flows. Math Program 98(1–3):49–71

    Article  MathSciNet  MATH  Google Scholar 

  • Beyer MA, Laney D (2012) The importance of “big data”: a definition. Gartner, Stamford

    Google Scholar 

  • Chen YL, Chin YH (1990) The quickest path problem. Comput Oper Res 17(2):153–161

    Article  MathSciNet  MATH  Google Scholar 

  • Dijkstra EW (1959) A note on two problems in connexion with graphs. Numerische mathematik 1(1):269–271

    Article  MathSciNet  MATH  Google Scholar 

  • Du J, Li X, Yu L, Dan R, Zhou J (2017) Multi-depot vehicle routing problem for hazardous materials transportation: a fuzzy bilevel programming. Inf Sci 399:201–218

    Article  Google Scholar 

  • Einav L, Levin J (2014) Economics in the age of big data. Science 346(6210):1243089

    Article  Google Scholar 

  • Endarnoto SK, Pradipta S, Nugroho AS, Purnama J (2011) Traffic condition information extraction and visualization from social media twitter for android mobile application. In: 2011 International conference on electrical engineering and informatics (ICEEI). IEEE, pp 1–4

  • Fu K, Nune R, Tao JX (2015) Social media data analysis for traffic incident detection and management. Transport Res. Board 94th annual meeting 15-4022

  • Gao S, Yang JA, Yan B, Hu Y, Janowicz K, McKenzie G (2014) Detecting origin-destination mobility flows from geotagged Tweets in greater Los Angeles area. In: Eighth international conference on geographic information science (GIScience’14)

  • Ichoua S, Gendreau M, Potvin JY (2003) Vehicle dispatching with time-dependent travel times. Eur J Oper Res 144(2):379–396

    Article  MATH  Google Scholar 

  • Jair J, Paternina-Arboleda CD, Cantillo V, MontoyaTorres JR (2013) A two-pheromone trail ant colony system-tabu search approach for the heterogeneous vehicle routing problem with time windows and multiple products. J Heuristics 19(2):233–252

    Article  Google Scholar 

  • LaValle S, Lesser E, Shockley R, Hopkins MS, Kruschwitz N (2011) Big data, analytics and the path from insights to value. MIT Sloan Manag Rev 52(2):21

    Google Scholar 

  • Lee JH, Gao S, Goulias KG (2015) Can Twitter data be used to validate travel demand models. In: 14th International conference on travel behaviour research, Windsor, UK

  • Li ZH, Yin SC, Ye T, Li L, Zhao ZQ, Ji Y (2008) Urban traffic flow volume modeling for Beijing using a mixedflow model. J Transp Syst Eng Inf Technol 8(3):111–114

    Google Scholar 

  • Li X, Zhou JD, Zhao XD (2016) Travel itinerary problem. Transp Res Part B Methodol 91:332–343

    Article  Google Scholar 

  • Li Y, Courcoubetis CA, Duan L (2017) Dynamic routing for social information sharing. IEEE J Sel Areas Commun 35(3):571–585

    Article  Google Scholar 

  • Mai E, Hranac R (2013) Twitter interactions as a data source for transportation incidents. In: Proceedings of transportation research board 92nd annual meeting 13-1636

  • Majid A, Chen L, Chen G, Mirza HT, Hussain I, Woodward J (2013) A context-aware personalized travel recommendation system based on geotagged social media data mining. Int J Geogr Inf Sci 27(4):662–684

    Article  Google Scholar 

  • McAfee A, Brynjolfsson E, Davenport TH, Patil DJ, Barton D (2012) Big data: the management revolution. Harv Bus Rev 90(10):60–68

    Google Scholar 

  • Meyer U, Sanders P (2003) \(\varDelta \)-stepping: a parallelizable shortest path algorithm. J Algorithms 49(1):114–152

    Article  MathSciNet  MATH  Google Scholar 

  • Nagatani T (1999) Stabilization and enhancement of traffic flow by the next-nearest-neighbor interaction. Phys Rev E 60(6):6395

    Article  Google Scholar 

  • Pang GKH, Takahashi K, Yokota T, Takenaga H (1999) Adaptive route selection for dynamic route guidance. IEEE Trans Veh Technol 48(6):20282041

    Article  Google Scholar 

  • Pedrycz W (2014) Allocation of information granularity in optimization and decision-making models: towards building the foundations of granular computing. Eur J Oper Res 232(1):137–145

    Article  Google Scholar 

  • Pedrycz W, Song M (2012) Granular fuzzy models: a study in knowledge management in fuzzy modeling. Int J Approx Reason 53(7):10611079

    Article  MathSciNet  Google Scholar 

  • Pedrycz W, Skowron A, Kreinovich V (2008) Handbook of granular computing. Wiley, Chichester

    Book  Google Scholar 

  • Regalado A (2014) The power to decide: What’s the point of all that data, anyway? It’s to make decisions. MIT Technology Review, pp 61–62. Available at: https://www.technologyreview.com/s/523646/the-power-to-decide/

  • Reddy S, Mun M, Burke J, Estrin D, Hansen M, Srivastava M (2010) Using mobile phones to determine transportation modes. ACM Trans Sens Netw (TOSN) 6(2):13

    Google Scholar 

  • Singh A, Shukla N, Mishra N (2018) Social media data analytics to improve supply chain management in food industries. Transp Res Part E Log Transp Rev 114:398–415

    Article  Google Scholar 

  • Sun S, Zhang C, Yu G (2006) A Bayesian network approach to traffic flow forecasting. IEEE Trans Intell Transp Syst 7(1):124–132

    Article  Google Scholar 

  • Tsai CY, Chung SH (2012) A personalized route recommendation service for theme parks using RFID information and tourist behavior. Decis Support Syst 52(2):514–527

    Article  Google Scholar 

  • Wang S, Pedrycz W (2015) Robust granular optimization: a structured approach for optimization under integrated uncertainty. IEEE Trans Fuzzy Syst 23(5):1372–1386

    Article  Google Scholar 

  • Wang S, Watada J, Pedrycz W (2014) Granular robust mean-CVaR feedstock flow planning for waste-to-energy systems under integrated uncertainty. IEEE Trans Cybern 44(10):1846–1857

    Article  Google Scholar 

  • Wang S, He L, Stenneth L, Yu PS, Li Z (2015) Citywide traffic congestion estimation with social media. In: Proceedings of the 23rd SIGSPATIAL international conference on advances in geographic information systems. ACM, p 34

  • Wanichayapong N, Pruthipunyaskul W, Pattara-Atikom W, Chaovalit P (2011) Social-based traffic information extraction and classification. In: The 11th international conference on ITS telecommunications (ITST). IEEE, p 107112

  • Wibisono A, Sina I, Ihsannuddin MA, Hafizh A, Hardjono B, Nurhadiyatna A, Jatmiko W (2012) Traffic intelligent system architecture based on social media information. In: 2012 International conference on advanced computer science and information systems (ICACSIS). IEEE, pp 25–30

  • Xu Z, Mei L, Choo KKR, Lv Z, Hu C, Luo X, Liu Y (2018) Mobile crowd sensing of human-like intelligence using social sensors: a survey. Neurocomputing 279:3–10

    Article  Google Scholar 

  • Yao Y (2009) Interpreting concept learning in cognitive informatics and granular computing. IEEE Trans Syst Man Cybern Part B (Cybern) 39(4):855–866

    Article  Google Scholar 

  • Yao JT, Vasilakos AV, Pedrycz W (2013) Granular computing: perspectives and challenges. IEEE Trans Cybern 43(6):1977–1989

    Article  Google Scholar 

  • Zhang J, Wang FY, Wang K, Lin WH, Xu X, Chen C (2011) Data-driven intelligent transportation systems: a survey. IEEE Trans Intell Transp Syst 12(4):1624–1639

    Article  Google Scholar 

  • Zhang Z, He Q, Gao J, Ni M (2018) A deep learning approach for detecting traffic accidents from social media data. Transp Res Part C Emerg Technol 86:580–596

    Article  Google Scholar 

  • Zheng X, Chen W, Wang P, Shen D, Chen S, Wang X, Yang L (2016) Big data for social transportation. IEEE Trans Intell Transp Syst 17(3):620–630

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Nos. 71722007, 71931001), and the Funds for First-class Discipline Construction in China (XK1802-5).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiang Li.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants performed by any of the authors. This article does not contain any studies with animals performed by any of the authors. This article does not contain any studies with human participants or animals performed by any of the authors.

Informed consent

There is no individual participant included in the study.

Additional information

Communicated by V. Loia.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, X., Zhou, J. & Pedrycz, W. Linking granular computing, big data and decision making: a case study in urban path planning. Soft Comput 24, 7435–7450 (2020). https://doi.org/10.1007/s00500-019-04369-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00500-019-04369-6

Keywords

Navigation