Skip to main content
Log in

Risk analysis via Łukasiewicz logic

  • Focus
  • Published:
Soft Computing Aims and scope Submit manuscript

Abstract

In this paper, we apply logical methods to risk analysis. We study generalized events, i.e. not yes-no events but continuous ones. We define on this class of events a risk function and a measure over it to analyse risk in this context. We use Riesz MV-algebras as algebraic structures and their associated logic in support of our research, thanks to their relations with other applications. Moreover, we investigate on decidability of consequence problem for our class of risk.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abad P, Benito S, López C (2014) A comprehensive review of value at risk methodologies. Span Rev Financ Econ 12(1):15–32

    Google Scholar 

  • Angelini E, di Tollo G, Roli A (2008) A neural network approach for credit risk evaluation. Q Rev Econ Financ 48(4):733–755

    Google Scholar 

  • Artzner P, Delbaen F, Eber JM, Heath D (1999) Coherent measures of risk. Math Financ 9(3):203–228

    MathSciNet  MATH  Google Scholar 

  • Artzner P, Delbaen F, Eber JM, Heath D, Ku H (2007) Coherent multiperiod risk adjusted values and Bellman’s principle. Ann Oper Res 152(1):5–22

    MathSciNet  MATH  Google Scholar 

  • Atiya AF (2001) Bankruptcy prediction for credit risk using neural networks: a survey and new results. IEEE Trans Neural Netw 12(4):929–935

    Google Scholar 

  • Baesens B, Setiono R, Mues C, Vanthienen J (2003) Using neural network rule extraction and decision tables for credit-risk evaluation. Manag Sci 49(3):312–329

    MATH  Google Scholar 

  • Bernard C, Rüschendorf L, Vanduffel S (2017) Value-at-risk bounds with variance constraints. J Risk Insur 84(3):923–959

    Google Scholar 

  • Bernstein PL (1996) Against the gods: the remarkable story of risk. Wiley, New York

    Google Scholar 

  • Bühlmann H (2007) Mathematical methods in risk theory, vol 172. Springer, Berlin

    MATH  Google Scholar 

  • Cerreia-Vioglio S, Maccheroni F, Marinacci M, Montrucchio L (2011) Risk measures: rationality and diversification. Math Financ 21(4):743–774

    MathSciNet  MATH  Google Scholar 

  • Cerreia-Vioglio S, Maccheroni F, Marinacci M, Rustichini A (2014) Niveloids and their extensions: risk measures on small domains. J Math Anal Appl 413(1):343–360

    MathSciNet  MATH  Google Scholar 

  • Cignoli RL, d’Ottaviano IM, Mundici D (2013) Algebraic foundations of many-valued reasoning, vol 7. Springer, Berlin

    MATH  Google Scholar 

  • Di Nola A (1993) Mv algebras in the treatment of uncertainty. Logic fuzzy. Springer, Berlin, pp 123–131

    Google Scholar 

  • Di Nola A, Gerla B, Leustean I (2013) Adding real coefficients to łukasiewicz logic: an application to neural networks. Fuzzy logic and applications. Springer, Berlin, pp 77–85

    MATH  Google Scholar 

  • Di Nola A, Lenzi G, Vitale G (2016) Łukasiewicz equivalent neural networks. Advances in neural networks. Springer, Berlin, pp 161–168

    Google Scholar 

  • Di Nola A, Lenzi G, Vitale G (2017) On mv-algebras of non-linear functions. Categ General Algebr Struct Appl 6:107–120

    MathSciNet  MATH  Google Scholar 

  • Di Nola A, Lenzi G, Vitale G (2017) Riesz-mcnaughton functions and riesz mv-algebras of nonlinear functions. Fuzzy Sets Syst 311:1–14

    MathSciNet  MATH  Google Scholar 

  • Di Nola A, Leustean I (2011) Riesz mv-algebras and their logic. In: Proceedings of the 7th conference of the European society for fuzzy logic and technology, Atlantis Press, pp 140–145

  • Di Nola A, Leuştean I (2014) Łukasiewicz logic and riesz spaces. Soft Comput 18(12):2349–2363

    MATH  Google Scholar 

  • Di Nola A, Vitale G (2018) Łukasiewicz logic and artificial neural networks. Beyond traditional probabilistic data processing techniques: interval, fuzzy, etc. Methods and their applications. Springer, Berlin

    Google Scholar 

  • Gerber HU (1979) An introduction to mathematical risk theory. 517/G36i

  • Grandell J (2012) Aspects of risk theory. Springer, Berlin

    MATH  Google Scholar 

  • Kahneman D, Tversky A (2013) Prospect theory: an analysis of decision under risk. Handbook of the fundamentals of financial decision making: part I. World Scientific, Singapore, pp 99–127

    Google Scholar 

  • Kang Y, Batta R, Kwon C (2014) Value-at-risk model for hazardous material transportation. Ann Oper Res 222(1):361–387

    MathSciNet  MATH  Google Scholar 

  • Klibanoff P, Marinacci M, Mukerji S (2005) A smooth model of decision making under ambiguity. Econometrica 73(6):1849–1892

    MathSciNet  MATH  Google Scholar 

  • Lapuerta P, Azen SP, LaBree L (1995) Use of neural networks in predicting the risk of coronary artery disease. Comput Biomed Res 28(1):38–52

    Google Scholar 

  • Liu Y, Ralescu DA (2017) Value-at-risk in uncertain random risk analysis. Inf Sci 391:1–8

    MathSciNet  MATH  Google Scholar 

  • Mundici D (2011) Advanced Łukasiewicz calculus and MV-algebras. Springer, Netherlands

    MATH  Google Scholar 

  • Petturiti D, Vantaggi B (2019) Conditional submodular choquet expected values and conditional coherent risk measures. Int J Approx Reason 44:358–365

    MathSciNet  MATH  Google Scholar 

  • Soleimani H, Govindan K (2014) Reverse logistics network design and planning utilizing conditional value at risk. Eur J Oper Res 237(2):487–497

    MathSciNet  MATH  Google Scholar 

  • Trippi RR, Turban E (1992) Neural networks in finance and investing: using artificial intelligence to improve real world performance. McGraw-Hill Inc, New York

    Google Scholar 

  • Tulli V, Weinrich G (2015) Using value-at-risk to reconcile limited liability and the moral-hazard problem. Decis Econ Financ 38(1):93–118

    MathSciNet  MATH  Google Scholar 

  • Vicig P (2008) Financial risk measurement with imprecise probabilities. Int J Approxim Reason 49(1):159–174

    MathSciNet  MATH  Google Scholar 

  • West D (2000) Neural network credit scoring models. Comput Oper Res 27(11–12):1131–1152

    MATH  Google Scholar 

  • Wipplinger E (2007) Philippe jorion: value at risk-the new benchmark for managing financial risk. Financ Mark Portf Manag 21(3):397

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gaetano Vitale.

Ethics declarations

Conflict of interest

Authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Communicated by M. Squillante.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vitale, G. Risk analysis via Łukasiewicz logic. Soft Comput 24, 13651–13655 (2020). https://doi.org/10.1007/s00500-019-04440-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00500-019-04440-2

Keywords

Navigation