Abstract
According to the nickel foam surface defect images with the typical characteristics of complex geometry and texture distribution, a nickel foam surface defect detection method based on spatial-frequency multi-scale block local binary pattern is proposed. First, nonsubsampled contourlet is used to carry out foam nickel image multi-scale decomposition, and therefore, low-frequency sub-band images and high-frequency sub-band images are obtained. The multi-scale block local binary pattern is then used to extract the feature histogram vectors of each block region of low- and high-frequency sub-bands, and the histogram feature vectors of the whole image after cascade are formed. The kernel principal component analysis and support vector machine are adopted to reduce the dimension of the feature histogram vectors and used for the defect classification. Experimental results show that the proposed method of feature extraction can extract more detailed texture information, and the average recognition rate reaches to 90%, which meets an enterprise’s needs.






Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
Aghdam SR, Amid E, Imani MF (2012) A fast method of steel surface defect detection using decision trees applied to LBP based features. In: 2012 7th IEEE conference on industrial electronics and applications (ICIEA). IEEE, Piscataway, p 1447
Chang X, Yang Y (2014) Semi-supervised feature analysis by mining correlations among multiple tasks. IEEE Trans Neural Netw Learn Syst 28(10):2294–2305
Chang X, Yu YL, Yang Y et al (2016) Semantic pooling for complex event analysis in untrimmed videos. IEEE Trans Softw Eng 39(8):1617–1632
Chang X, Ma Z, Lin M et al (2017a) Feature interaction augmented sparse learning for fast kinect motion detection. IEEE Trans Image Process 26(8):3911–3920
Chang X, Ma Z, Yang Y et al (2017b) Bi-level semantic representation analysis for multimedia event detection. IEEE Trans Cybern 47(5):1180–1197
Chang CY, Chang CW, Kathiravan S et al (2017c) DAG-SVM based infant cry classification system using sequential forward floating feature selection. Multidimens Syst Signal Process 28(3):961–976
Chinese State Council (2012) Energy saving and new energy automobile industry development planning (2012–2020). http://www.nea.gov.cn/2012-07/10/c_131705726.htm
Cunha AL, Zhou JP, Do MN (2005) Nonsubsampled contourlet transform: filter design and applications in denoising. In: Proceedings of IEEE conference on Image Processing, Genova, Italy, pp 749–752
Dai C, Wang D, Hu X et al (2003) Production technology of continuous nickel foam. Chin J Nonferrous Met 13(1):1–14
Deotale NT, Sarode TK (2019) Fabric defect detection adopting combined GLCM, Gabor wavelet features and random decision forest. 3D Res 10(1):5
He Y, Sang N, Gao C (2013) Multi-structure local binary patterns for texture classification. Pattern Anal Appl 16(4):595–607
Kumar A, Pang G (2002) Defect detection in textured materials using Gabor filters. IEEE Trans Ind Appl 38(2):425–440
Li J, Yang C, Zhu H (2013) Improved image enhancement method for flotation froth image based on parameter extraction. J Cent South Univ Technol 20(6):1602–1609
Li Z, Nie F, Chang X et al (2017) Beyond trace ratio: weighted harmonic mean of trace ratios for multiclass discriminant analysis. IEEE Trans Knowl Data Eng 29(10):2100–2110
Li Y, Zhang D, Lee D-J (2019) Automatic fabric defect detection with a wide and compact network. Neurocomputing 329(15):329–338
Mansano M, Pavesi L, Oliveira LS et al (2011) Inspection of metallic surfaces using local binary patterns. In: IECON 2011-37th annual conference on IEEE industrial electronics society. IEEE, Piscataway, p 2227
Ojala T, Pietikinen M, Maenpaa T (2002) Multiresolution gray-scale and rotation invariant texture classification with local binary pattern. IEEE Trans Pattern Anal Mach Intell 24(7):971–987
Singh A, Dutta MK, Partha Sarathi M et al (2016) Image processing based automatic diagnosis of glaucoma using wavelet features of segmented optic disc from fundus image. Comput Methods Programs Biomed 124:108–120
Tan XY, Triggs B (2007) Fusing Gabor and LBP feature sets for kernel-based face recognition. In: Proceedings of the international workshop on analysis and modeling of faces and gestures. Springer, Berlin, pp 235–249
Tang B, Kong JY, Wu SQ (2017) Review of surface defect detection based on machine vision. J Image Graph 22(12):1640–1663
Technical Committee of the national standard for Nonferrous Metals (2006) GB/T20251-2006 foam nickel for battery. Standards Press of China, Beijing
Tian S, Xu K, Guo H (2016) Application of local binary patterns to surface defect recognition of continuous casting slabs. Chin J Eng 12:73–78
Wu J, Guo S, Li J et al (2016) Big data meet green challenges: big data toward green applications. IEEE Syst J 10(3):888–900
Wu J, Guo S, Huang H et al (2018) Information and communications technologies for sustainable development goals: state-of-the-art, needs and perspectives. IEEE Commun Surv Tutor 20(3):2389–2406
Xie X (2008) A review of recent advances in surface defect detection using texture analysis techniques. Electron Lett Comput Vis Image Anal 7(3):1–22
Xu Y, Yong Q, Yang F et al (2018) DC cable feature extraction based on the PD image in the non-subsampled contourlet transform domain. IEEE Trans Dielectr Electr Insul 25(2):533–540
Yapi D, Allili MS, Baaziz N (2017) Automatic fabric defect detection using learning-based local textural distributions in the contourlet domain. IEEE Trans Autom Sci Eng 99:1–13
Acknowledgements
The author would like to thank all of the anonymous reviewers for their valuable comments and thoughtful suggestions, which improved the quality of the presented work. This work is partially supported by the National Natural Science Foundation of China (Grant Nos. 61703157 and 61403136), the Hunan Province Natural Science Foundation, China (Grant No. 2019JJ50402), the Foundation of Hunan Educational Committee, China (Grant No. 18A360), and PhD research startup foundation of Hunan University of Arts and Science (16BSQD48).
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Conflict of interest
The authors certify that there is no conflict of interest with any individual/organization for the present work.
Additional information
Communicated by B. B. Gupta.
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Cao, Bf., Li, Jq. & Qiao, Ns. Nickel foam surface defect detection based on spatial-frequency multi-scale MB-LBP. Soft Comput 24, 5949–5957 (2020). https://doi.org/10.1007/s00500-019-04513-2
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00500-019-04513-2