Skip to main content
Log in

Pricing mode selection for the online short video platform

  • Methodologies and Application
  • Published:
Soft Computing Aims and scope Submit manuscript

Abstract

Online short video platform usually adopts advertising mode and mixed mode as the pricing mode. How to choose the optimal pricing mode for the online short video platform is a topic worthy of our attention. This paper discusses the pricing mode that should be adopted by the online short video platform and investigates the effects of the viewer’s nuisance cost and cross-network externality intensity on the pricing mode selection of short video platform. The results show that, when the viewer’s nuisance cost is low and the intensity of cross-network externality is high, the platform should choose the advertising mode; otherwise, it should choose the mixed mode; when the cost is high and the intensity is low, the advertising price under the advertising mode is higher than that under the mixed mode; otherwise, the advertising price under the advertising mode is lower than that under the mixed mode; when the cost is relatively low and regardless of the intensity, the payment cost under the mixed mode is higher than that under the advertising mode; otherwise, the payment cost under the mixed mode is lower than that under the mixed mode. Importantly, we also find that, under certain conditions, interests of online short video platform and video content providers may be inconsistent.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Notes

  1. https://www.theverge.com/2020/10/22/21529497/tiktok-content-violation-which-policy-community-guidelines-update. Accessed on October 22, 2020.

  2. https://www.theverge.com/2018/10/9/17954658/instagram-ai-machine-learning-detect-filter-bullying-comments-captions-photos. Accessed on October 9, 2018.

References

  • Alaei S, Makhdoumi A, Malekian A, Pekeč S (2020) Revenue-sharing allocation strategies for two-sided media platforms: pro-rata versus user-centric. http://dx.doi.org/10.2139/ssrn.3645521

  • Anderson JrEG, Parker GG, Tan B (2014) Platform performance investment in the presence of network externalities. Inform Syst Res 25(1):152–172

    Article  Google Scholar 

  • Armstong M (2006) Competition in two-sided markets. RAND J Econ 37(3):668–691

    Article  Google Scholar 

  • Armstrong M, Wright J (2007) Two-sided markets, competitive bottlenecks and exclusive contracts. Econ Theor 32(2):353–380

    Article  MathSciNet  Google Scholar 

  • Asdemir K, Kumar N, Jacob VS (2012) Pricing models for online advertising: CPM vs. CPC. Inform Syst Res 23(3):804–822

    Article  Google Scholar 

  • Carroni E, Paolini D (2017) Content acquisition by streaming platforms: premium vs. freemium. CORE Discussion Papers

  • Casadesus-Masanell R, Zhu F (2010) Strategies to fight ad-sponsored rivals. Manage Sci 9(56):1484–1499

    Article  Google Scholar 

  • Cheng X, Mu L, Sun Y, Bian Y (2018) Optimal pricing decisions for the online video platform under customer choice. Asia Pac J Oper Res. https://doi.org/10.1142/S0217595918500021

    Article  MathSciNet  MATH  Google Scholar 

  • Choi JP (2006) Broadcast competition and advertising with free entry: Subscription versus free-to-air. Inf Econ Policy 18(2):181–196

    Article  Google Scholar 

  • CNNIC (2020) “The 46th China statistical report on the internet development” (In Chinese), 19 September, available at: http://www.cnnic.cn/gywm/xwzx/rdxw/202009/W020200929343125745019.pdf

  • D’Annunzio A (2017) Vertical integration in the TV market: Exclusive provision and program quality. Int J Ind Organ 53:114–144

    Article  Google Scholar 

  • Dietl H, Lang M, Lin P (2013) Advertising pricing models in media markets: Lump-sum versus per-consumer charges. Inf Econ Policy 25(4):257–271

    Article  Google Scholar 

  • Dou GW, Lin XD, Xu XP (2018) Value-added service investment strategy of a two-sided platform with the negative intra-group network externality. Kybernetes 47(5):937–956

    Article  Google Scholar 

  • Fan M, Kumar S, Whinston AB (2007) Selling or advertising: Strategies for providing digital media online. J Manage Inform Syst 24(3):143–166

    Article  Google Scholar 

  • Feng H, Li M, Chen F (2014) Chaotic dynamics in the software market with network externalities. Soft Comput 18(3):509–519

    Article  MathSciNet  Google Scholar 

  • Hagiu A, Spulber D (2013) First-party content and coordination in two-sided markets. Manage Sci 59(4):933–949

    Article  Google Scholar 

  • iiMedia Research (2017) “China short video market research report” (In Chinese), 12 September, available at: https://www.iimedia.cn/c400/56105.html

  • Kim Y, Mo J (2019) Pricing of digital video supply chain: Free versus paid service on the direct distribution channel. Sustainability 11(1):46. https://doi.org/10.3390/su11010046

    Article  Google Scholar 

  • Li S, Luo Q, Qiu L, Bandyopadhyay S (2020) Optimal pricing model of digital music: Subscription, ownership or mixed? Prod Oper Manag 29(3):688–704

    Article  Google Scholar 

  • Lin M, Ke XQ, Whinston AB (2012) Vertical differentiation and a comparison of online advertising models. J Manage Inform Syst 29(1):195–236

    Article  Google Scholar 

  • Mussa M, Rosen S (1978) Monopoly and product quality. J Econ Theory 18(2):301–317

    Article  MathSciNet  Google Scholar 

  • Parker GG, Van Alstyne MW (2005) Two-sided network effects: A theory of information product design. Manage Sci 51(10):1494–1504

    Article  Google Scholar 

  • Peitz M, Valletti TM (2008) Content and advertising in the media: Pay-tv versus free-to-air. Int J Ind Organ 26(4):949–965

    Article  Google Scholar 

  • Prasad A, Mahajan V, Bronnenberg B (2003) Advertising versus pay-per-view in electronic media. Int J Res Mark 20(1):13–30

    Article  Google Scholar 

  • Reisinger M (2012) Platform competition for advertisers and users in media markets. Int J Ind Organ 30(2):243–252

    Article  MathSciNet  Google Scholar 

  • Rochet JC, Tirole J (2003) Platform competition in two-sided markets. J Eur Econ Assoc 1(4):990–1029

    Article  Google Scholar 

  • Statista (2019) Revenue from short videos online in China 2016–2011. Available at: https://www.statista.com/statistics/874562/china-short-video-market-size/. Accessed 23 Sept

  • Statista (2020) Number of short video users in China 2018–2020. Available at: https://www.statista.com/statistics/1005629/china-short-video-user-number/. Accessed 15 May

  • Tag J (2009) Paying to remove advertisements. Inf Econ Policy 21(4):245–252

    Article  Google Scholar 

  • Thomes TP (2013) An economic analysis of online streaming music services. Inf Econ Policy 25(2):81–91

    Article  Google Scholar 

  • Xie XZ, Tsai NC, Xu SQ, Zhang BY (2019) Does customer co-creation value lead to electronic word-of-mouth? An empirical study on the short-video platform industry. Soc Sci J 56(3):401–416

    Article  Google Scholar 

  • Xu S, Ling L (2020) Which is the optimal commercial mode for a video site: Paid, free or hybrid? Asia. Pac J Oper Res. https://doi.org/10.1142/S0217595920500220

    Article  MATH  Google Scholar 

  • Yang N, Cao SX, Liang Y, Liu ZZ (2016) Recommendation engine for online short video. Applied Computing and Information Technology/ Intl Conf on Computational Science/intelligence and Applied Informatics/ Intl Conf on Big Data, Cloud Computing, Data Science & Engineering, pp 357–362

  • Zennyo Y (2020) Freemium competition among ad-sponsored platforms. Inf Econ Policy. https://doi-org-s.webvpn.neu.edu.cn/10.1016/j.infoecopol.2019.100848

Download references

Funding

This work was partly supported by the National Science Foundation of China (grant numbers 72031002 and 71772034), the Ministry of Education of Humanities and Social Sciences Project (grant number 17YJC630162) and the 111 Project (grant number B16009).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhi-Ping Fan.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This work does not contain any studies with human participants or animals performed by any of the authors.

Informed consent

Informed consent was obtained from all individual participants included in the study.

Additional information

Communicated by V. Loia.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

Proof of Lemma 1

The first-order condition of Eq. (6a) with respect to \( p_{s}^{A} \) is \( \frac{{\partial \Pi^ {A} (p_{a}^{A} ,p_{s}^{A} )}}{{\partial {\kern 1pt} p_{s}^{A} }} = - \frac{{\alpha {\kern 1pt} N(v + \lambda {\kern 1pt} N)}}{{v + \gamma {\kern 1pt} (\beta - p_{a}^{A} )}} \), obviously, \( \frac{{\partial \Pi^{A} (p_{a}^{A} ,p_{s}^{A} )}}{{\partial {\kern 1pt} p_{s}^{A} }} < 0 \), i.e., \( \Pi^{A} \) is the decreasing function of \( p_{s}^{A} \), so we can obtain the optimal solution of model (6) at the boundary of \( p_{s}^{A} \). By Eq. (6b), let \( p_{s}^{A} {\kern 1pt} \alpha \frac{{v + \lambda {\kern 1pt} N}}{{v + \gamma {\kern 1pt} (\beta - p_{a}^{A} )}} - c_{s} = 0 \),

$$ p_{s}^{*} = \frac{{c_{s} \left[{v + \gamma {\kern 1pt} {\kern 1pt} (\beta - p_{a}^{A} )} \right]}}{{\alpha (v + \lambda {\kern 1pt} N)}} . $$
(A.1)

Substituting Eq. (A.1) into Eq. (6a), we obtain

$$ \Pi^{A} (p_{a}^{A} ) = \frac{{p_{a}^{A} (\beta - p_{a}^{A} )(v + \lambda {\kern 1pt} N)^{2} }}{{\left[{v + \gamma {\kern 1pt} {\kern 1pt} (\beta - p_{a}^{A} )} \right]{\kern 1pt}^{2} }} - N{\kern 1pt} c_{s} . $$
(A.2)

The first-order condition of Eq. (A.2) with respect to \( p_{a}^{A} \)is \( \frac{{\partial \Pi^{A} }}{{\partial {\kern 1pt} p_{a}^{A} }} = \frac{{(v + \lambda {\kern 1pt} N)^{2} (\beta {\kern 1pt} v - 2p_{a}^{A} {\kern 1pt} v + \beta^{2} \gamma - \beta {\kern 1pt} \gamma {\kern 1pt} p_{a}^{A} )}}{{(v + \beta {\kern 1pt} \gamma - \gamma {\kern 1pt} p_{a}^{A} )^{3} }} \); furthermore, the second-order condition of Eq. (A.2) with \( p_{a}^{A} \) is

$$ \frac{{\partial^{2} \Pi^{A} }}{{\partial (p_{a}^{A} )^{2} }} = - \frac{{2(v + \lambda N)^{2} (v^{2} - \beta^{2} \gamma^{2} + 2\gamma p_{a}^{A} v + \beta \gamma^{2} p_{a}^{A} )}}{{(v + \beta \gamma - \gamma p_{a}^{A} )^{4} }} . $$
(A.3)

Let \( \frac{{\partial \Pi^{A} }}{{\partial p_{a}^{A} }} = 0 \), we can obtain \( p_{a}^{A*} = \frac{{\beta {\kern 1pt} (v + \beta {\kern 1pt} \gamma )}}{{2v + \beta {\kern 1pt} \gamma }} \). Substituting \( p_{a}^{A*} \) into Eq. (A.3), we can obtain \( \frac{{\partial^{2} \Pi^{A} }}{{\partial (p_{a}^{A} )^{2} }} = - \frac{{(2v + \beta {\kern 1pt} \gamma )^{4} (v + \lambda {\kern 1pt} N)^{2} }}{{8v^{3} (v + \beta {\kern 1pt} \gamma )^{3} }} \), obviously, \( \frac{{\partial^{2} \Pi^{A} }}{{\partial (p_{a}^{A} )^{2} }} < 0 \). Therefore, \( p_{a}^{A*} \) is the optimal solution of model (6).

Furthermore, substituting \( p_{a}^{A*} \) into Eq. (A.1), we can obtain \( p_{s}^{A*} = \frac{{2c_{s} v{\kern 1pt} (v + \beta {\kern 1pt} \gamma )}}{{\alpha (2v + \beta {\kern 1pt} \gamma )(v + \lambda {\kern 1pt} N)}} \).

Therefore, Lemma 1 holds.

Proof of Corollary 1

(i) The first-order conditions of Eq. (9) with respect to \( N \), \( \gamma \), \( \beta \) and \( \lambda \) are \( \frac{{\partial n_{u}^{A*} }}{\partial N} = \frac{{\lambda {\kern 1pt} {\kern 1pt} (2v + \beta {\kern 1pt} \gamma )}}{{2v(v + \beta {\kern 1pt} \gamma )}} \),\( \frac{{\partial n_{u}^{A*} }}{\partial \gamma } = - \frac{{\beta (v + \lambda {\kern 1pt} N)}}{{2(v + \beta {\kern 1pt} \gamma )^{2} }} \), \( \frac{{\partial n_{u}^{A*} }}{\partial \beta } = - \frac{{\gamma {\kern 1pt} (v + \lambda {\kern 1pt} N)}}{{2(v + \beta {\kern 1pt} \gamma )^{2} }} \), \( \frac{{\partial n_{u}^{A*} }}{\partial \lambda } = \frac{{N(2v + \beta {\kern 1pt} \gamma )}}{{2v{\kern 1pt} (v + \beta {\kern 1pt} \gamma )}} \), respectively. Obviously, we know \( \frac{{\partial n_{u}^{A*} }}{\partial N} > 0 \), \( \frac{{\partial n_{u}^{A*} }}{\partial \gamma } < 0 \), \( \frac{{\partial n_{u}^{A*} }}{\partial \beta } < 0 \), \( \frac{{\partial n_{u}^{A*} }}{\partial \lambda } > 0 \).

(ii) The first-order conditions of Eq. (10) with respect to \( N \), \( \gamma \), \( \beta \) and \( \lambda \) are \( \frac{{\partial n_{a}^{A*} }}{\partial N} = \frac{{\lambda {\kern 1pt} \beta }}{{2{\kern 1pt} (v + \beta {\kern 1pt} \gamma )}} \), \( \frac{{\partial n_{a}^{A*} }}{\partial \gamma } = - \frac{{\beta^{2} (v + \lambda {\kern 1pt} N)}}{{2(v + \beta {\kern 1pt} \gamma )^{2} }} \), \( \frac{{\partial n_{a}^{A*} }}{\partial \beta } = \frac{{v{\kern 1pt} {\kern 1pt} (v + \lambda {\kern 1pt} N)}}{{2(v + \beta {\kern 1pt} \gamma )^{2} }} \), \( \frac{{\partial n_{a}^{A*} }}{\partial \lambda } = \frac{{\beta {\kern 1pt} N}}{{2(v + \beta {\kern 1pt} \gamma )}} \), respectively. Obviously, we know \( \frac{{\partial n_{a}^{A*} }}{\partial N} > 0 \), \( \frac{{\partial n_{a}^{A*} }}{\partial \gamma } < 0 \), \( \frac{{\partial n_{a}^{A*} }}{\partial \beta } > 0 \), \( \frac{{\partial n_{a}^{A*} }}{\partial \lambda } > 0 \).

Therefore, Corollary 1 holds.

Proof of Corollary 2

(i) The first-order conditions of Eq. (7) with respect to \( \gamma \) and \( \beta \) are \( \frac{{\partial p_{a}^{A*} }}{\partial \gamma } = \frac{{\beta^{2} v}}{{(2v + \beta {\kern 1pt} \gamma )^{2} }} \), \( \frac{{\partial p_{a}^{A*} }}{\partial \beta } = \frac{{\beta^{2} \gamma^{2} + 2v^{2} + 4\beta {\kern 1pt} \gamma {\kern 1pt} {\kern 1pt} v}}{{(2v + \beta {\kern 1pt} \gamma )^{2} }} \), respectively. Obviously, \( \beta \gamma \frac{{\partial p_{a}^{A*} }}{\partial \gamma } > 0 \), \( \frac{{\partial p_{a}^{A*} }}{\partial \beta } > 0 \).

(ii) The first-order conditions of Eq. (8) with respect to\( N \), γ, β and \( \lambda \) are \( \frac{{\partial p_{s}^{A*} }}{\partial N} = - \frac{{2\lambda {\kern 1pt} c_{s} v(v + \beta {\kern 1pt} \gamma )}}{{\alpha (2{\kern 1pt} {\kern 1pt} v + \beta {\kern 1pt} \gamma )(v + \lambda {\kern 1pt} N)}} \), \( \frac{{\partial p_{s}^{A*} }}{\partial \gamma } = \frac{{2\beta {\kern 1pt} c_{s} v^{2} }}{{\alpha (2v + \beta {\kern 1pt} \gamma )^{2} (v + \lambda {\kern 1pt} N)}} \), \( \frac{{\partial p_{s}^{A*} }}{\partial \beta } = \frac{{2{\kern 1pt} c_{s} {\kern 1pt} \gamma {\kern 1pt} {\kern 1pt} v^{2} }}{{\alpha (2v + \beta {\kern 1pt} \gamma )^{2} (v + \lambda {\kern 1pt} N)}} \), \( \frac{{\partial p_{s}^{A*} }}{\partial \lambda } = - \frac{{2c_{s} v{\kern 1pt} N(v + \beta {\kern 1pt} {\kern 1pt} \gamma )}}{{\alpha (2v + \beta {\kern 1pt} \gamma )(v + \lambda {\kern 1pt} N)^{2} }} \), respectively. Obviously, \( \frac{{\partial p_{s}^{A*} }}{\partial N} < 0 \), \( \frac{{\partial p_{s}^{A*} }}{\partial \gamma } > 0 \), \( \frac{{\partial p_{s}^{A*} }}{\partial \beta } > 0 \), \( \frac{{\partial p_{s}^{A*} }}{\partial \lambda } < 0 \).

(iii) The first-order condition of Eq. (11) with respect to \( N \)is \( \frac{{\partial \Pi^{A*} }}{\partial N} = \frac{{\beta^{2} \lambda (v + \lambda {\kern 1pt} N) - 2v{\kern 1pt} c_{s} (v + \beta {\kern 1pt} \gamma )}}{{2v(v + \beta {\kern 1pt} \gamma )}} \). When \( \beta^{2} \lambda (v + \lambda {\kern 1pt} N) - 2v{\kern 1pt} (v + \beta {\kern 1pt} \gamma )c_{s} > 0 \), i.e., \( N > N_{0} = \frac{{v{\kern 1pt} {\kern 1pt} (2c_{s} {\kern 1pt} v - \lambda {\kern 1pt} \beta^{2} + 2\beta {\kern 1pt} \gamma {\kern 1pt} c_{s} )}}{{\lambda^{2} {\kern 1pt} \beta^{2} }} \), we know \( \frac{{\partial \Pi^{A*} }}{\partial N} > 0 \). When \( N < N_{0} \), \( \frac{{\partial \Pi^{A*} }}{\partial N} < 0 \). Furthermore, the first-order conditions of Eq. (11) with respect to \( \gamma \), \( \beta \) and \( \lambda \) are \( \frac{{\partial \Pi^{A*} }}{\partial \gamma } = - \frac{{\beta^{3} (v + \lambda_{u} N)^{2} }}{{4v{\kern 1pt} {\kern 1pt} (v + \beta {\kern 1pt} \gamma )^{2} }} \), \( \frac{{\partial \Pi^{A*} }}{\partial \beta } = \frac{{\beta (2{\kern 1pt} v + \beta {\kern 1pt} \gamma )(v + \lambda_{u} N)^{2} }}{{4v(v + \beta {\kern 1pt} \gamma )^{2} }} \), \( \frac{{\partial \Pi^{A*} }}{\partial \lambda } = \frac{{\beta^{2} N(v + \lambda {\kern 1pt} N)}}{{2v(v + \beta {\kern 1pt} \gamma )}} \), respectively. Obviously, \( \frac{{\partial \Pi^{A*} }}{\partial \gamma } < 0 \), \( \frac{{\partial \Pi^{A*} }}{\partial \beta } > 0 \), \( \frac{{\partial \Pi^{A*} }}{\partial \lambda } > 0 \).

Hence, Corollary 2 holds.

Proof of Lemma 2

The first-order condition of Eq. (23a) with respect to \( p_{s}^{M} \) is\( \frac{{\partial \Pi^{M} (p_{a}^{M} ,p_{u}^{M} ,p_{s}^{M} )}}{{\partial p_{s}^{M} }} = - N\alpha \frac{{(1 - k)(k{\kern 1pt} v + \lambda {\kern 1pt} N)v + \gamma (\beta - p_{a}^{M} )(v + \lambda {\kern 1pt} N) - \gamma {\kern 1pt} p_{u}^{M} (\beta - \gamma )}}{{\left[{(1 - k)k{\kern 1pt} v + \gamma (\beta - p_{a}^{M} )} \right]v}} \); then, we know \( \frac{{\partial \Pi (p_{a}^{M} ,p_{u}^{M} ,p_{s}^{M} )}}{{\partial p_{s}^{M} }} < 0 \), i.e., \( \Pi^{M} \) is the decreasing function of \( p_{s}^{M} \), so we can obtain the optimal solution of model (23) at the boundary of \( p_{s}^{M} \).

By Eq. (23b), let \( p_{s}^{M} \alpha \frac{{(1 - k)(kv + \lambda N)v + \gamma (\beta - p_{a}^{M} )(v + \lambda N) - \gamma p_{u}^{M} (\beta - \gamma )}}{{\left[{(1 - k)kv + \gamma (\beta - p_{a}^{M} )} \right]v}} - c_{s} = 0 \), we can obtain

$$ p_{s}^{*} = \frac{{\left[{(1 - k)kv + \gamma (\beta - p_{a}^{M} )} \right]c_{s} v}}{{\left[{(1 - k)(kv + \lambda N)v + \gamma (\beta - p_{a}^{M} )(v + \lambda N) - \gamma p_{u}^{M} (\beta - \gamma )} \right]\alpha }} . $$
(A.4)

Substituting Eq. (A.4) into Eq. (23a), we have

$$ \Pi^{M} (p_{a}^{M} ,p_{u}^{M} ) = \frac{{p_{a}^{M} (\beta - p_{a}^{M} )\left[{kp_{u}^{M} + \lambda N(1 - k)} \right]^{{{\kern 1pt} 2}} }}{{\left[{(1 - k)kv + \gamma (\beta - p_{a}^{M} )} \right]^{{{\kern 1pt} 2}} }} + \frac{{p_{u}^{M} \gamma (\beta - p_{a}^{M} )\left[{kp_{u}^{M} + \lambda N(1 - k)} \right]}}{{\left[{(1 - k)kv + \gamma (\beta - p_{a}^{M} )} \right](1 - k)v}} $$
$$ + \frac{{p_{u}^{M} (v - kv - p_{u}^{M} )}}{(1 - k)v} - Nc_{s} . $$
(A.5)

The first-order conditions of Eq. (A.5) with respect to \( p_{a}^{M} \) and \( p_{u}^{M} \) are

\( \frac{{\partial \Pi^{M} }}{{\partial p_{a}^{M} }} = \frac{{G^{2} \left[{(\beta - 2p_{a}^{M} )W + 2\gamma p_{a}^{M} (\beta - p_{a}^{M} )} \right]}}{{W^{3} }} + \frac{{\gamma p_{u}^{M} \left[{\gamma (\beta - p_{a}^{M} )G - W} \right]}}{{W^{2} (1 - k)v}}, \) \( \frac{{\partial \Pi^{M} }}{{\partial p_{u}^{M} }} = \frac{{kp_{a}^{M} (\beta - p_{a}^{M} )}}{{W^{2} }} + \frac{{\left[{2k\gamma (\beta - p_{a}^{M} )p_{u}^{M} + \lambda N\gamma (1 - k)(\beta - p_{a}^{M} )} \right]}}{W(1 - k)v} + \frac{{(1 - k)v - 2p_{u}^{M} }}{(1 - k)v}, \)

where \( W = (1 - k)kv + \gamma (\beta - p_{a}^{M} ) \), \( G = kp_{u}^{M} + \lambda N(1 - k) \). Furthermore, the second-order conditions with respect to \( p_{a}^{M} \)and \( p_{u}^{M} \) are

$$ \frac{{\partial^{2} \Pi^{M} }}{{\partial (p_{a}^{M} )^{2} }}\, = \frac{{G^{2} \left[{\beta \gamma - 2\gamma p_{a}^{M} - 2W} \right]W + 3G^{2} \gamma \left[{(\beta - 2p_{a}^{M} )W + 2\gamma p_{a}^{M} (\beta - p_{a}^{M} )} \right]}}{{W^{4} }} $$
$$ + \frac{{2\gamma^{2} p_{u}^{M} \left[{\gamma (\beta - p_{a}^{M} ) - 2W} \right]}}{{W^{3} (1 - k)v}} , $$
(A.6)
$$ \frac{{\partial^{2} \Pi^{M} }}{{\partial p_{u}^{M} \partial p_{a}^{M} }} = \frac{{(k\beta - 2kp_{a}^{M} )W + 2k\gamma p_{a}^{M} (\beta - p_{a}^{M} )}}{{W^{3} }} + \frac{{\left[{2k\gamma p_{u}^{M} + \lambda \gamma N(1 - k)} \right]\left[{\gamma (\beta - p_{a}^{M} ) + W} \right]}}{{W^{2} (1 - k)v}}, $$
(A.7)
$$ \frac{{\partial^{2} \Pi^{M} }}{{\partial (p_{u}^{M} )^{2} }}{\kern 1pt} = \frac{{2k\gamma (\beta - p_{a}^{M} ) - 2W}}{W(1 - k)v}. $$
(A.8)

Let \( \frac{{\partial \Pi^{M} }}{{\partial p_{a}^{M} }} = 0 \) and \( \frac{{\partial \Pi^{M} }}{{\partial p_{u}^{M} }} = 0 \), and we can get

$$ p_{a}^{M*} = \frac{{(\beta - \gamma )kv\left[{kv(1 - k) + \beta \gamma } \right] + \lambda \beta N\left[{2kv(1 - k) - k\gamma (\beta + \gamma ) - 2\beta \gamma } \right]}}{{(kv + \lambda N)\left[{\beta \gamma + 2kv(1 - k)} \right] + (\beta \gamma + 2kv)(1 - k)\lambda N}}, $$
$$ p_{u}^{M*} = \frac{{(1 - k)\left[{2kv(1 - k) + 2\beta \gamma v + \lambda \beta N(\beta + \gamma )} \right]}}{{4kv(1 - k) + 4\beta \gamma - (\beta + \gamma )^{2} k}}. $$

Substituting \( p_{a}^{M*} \)and \( p_{u}^{M*} \) into Eqs. (A.6), (A.7) and (A.8), respectively. Through the analysis, we can find \( \frac{{\partial^{2} \Pi^{M} }}{{\partial (p_{a}^{M} )^{2} }} < 0 \), \( \frac{{\partial^{2} \Pi^{M} }}{{\partial (p_{u}^{M} )^{2} }} < 0 \), and \( \frac{{\partial^{2} \Pi^{M} }}{{\partial (p_{a}^{M} )^{2} }} \cdot \frac{{\partial^{2} \Pi^{M} }}{{\partial (p_{u}^{M} )^{2} }} - \left({\frac{{\partial^{2} \Pi^{M} }}{{\partial p_{u}^{M} \partial p_{a}^{M} }}} \right)^{2} > 0 \)when \( 4kv(1 - k) + 4\beta \gamma - (\beta + \gamma )^{2} k > 0 \). Therefore, \( p_{a}^{M*} \) and \( p_{u}^{M*} \) are the optimal solutions of model (23).

Substituting \( p_{a}^{M*} \) and \( p_{u}^{M*} \) into Eq. (A.4), we have \( p_{s}^{M*} = \frac{{c_{s} {\kern 1pt} k{\kern 1pt} v\left[{4kv(1 - k) + 4\beta \gamma - (\beta + \gamma )^{2} k} \right]}}{{\alpha \left[{4kv(1 - k)(kv + \lambda N) - (\beta + \gamma )(\beta \,k\,v + \lambda \,\beta {\kern 1pt} N + \lambda {\kern 1pt} \gamma {\kern 1pt} N) + 2\beta {\kern 1pt} \gamma {\kern 1pt} \lambda {\kern 1pt} N(1 + k) - \gamma^{2} kv + 3\beta {\kern 1pt} \gamma N {\kern 1pt} k{\kern 1pt} v} \right]}} \).

Hence, Lemma 2 holds.

Proof of Corollary 3

(i) The first-order conditions of Eq. (29) with respect to N and \( \lambda \) are

\( \frac{{\partial n_{u}^{M*} }}{\partial N} = \frac{{\lambda \left[{4kv(1 - k) + 2\beta \gamma - \beta^{2} k - \gamma^{2} k} \right]}}{{\left[{4kv(1 - k) + 4\beta \gamma - (\beta + \gamma )^{2} k} \right]kv}} \)and \( \frac{{\partial n_{u}^{M*} }}{\partial \lambda } = \frac{{N\left[{4kv(1 - k) + 2\beta \gamma - \beta^{2} k - \gamma^{2} k} \right]}}{{\left[{4kv(1 - k) + 4\beta \gamma - (\beta + \gamma )^{2} k} \right]kv}} \), respectively. Because \( 4kv(1 - k) + 2\beta \gamma - \beta^{2} k - \gamma^{2} k > 4kv(1 - k) + 2\beta \gamma - (\beta^{2} + \gamma^{2} )k > 0 \), we have \( \frac{{\partial n_{u}^{M*} }}{\partial N} > 0 \) and \( \frac{{\partial n_{u}^{M*} }}{\partial \lambda } > 0 \).

(ii) The first-order conditions of Eq. (30) with respect to \( N \) and \( \lambda \) are \( \frac{{\partial n_{a}^{M*} }}{\partial N} = \frac{2\lambda \beta (1 - k)}{{4kv(1 - k) + 4\beta \gamma - (\beta + \gamma )^{2} k}} \) and \( \frac{{\partial n_{a}^{M*} }}{\partial \lambda } = \frac{2\beta N(1 - k)}{{4kv(1 - k) + 4\beta \gamma - (\beta + \gamma )^{2} k}} \), respectively. Obviously, \( \frac{{\partial n_{a}^{M*} }}{\partial N} > 0 \), \( \frac{{\partial n_{a}^{M*} }}{\partial \lambda } > 0 \).

Hence, Corollary 3 holds.

Proof of Corollary 4

(i) The first-order conditions of Eq. (24) with respect to \( N \) and \( \lambda \) are

\( \frac{{\partial p_{a}^{M*} }}{\partial N} = \frac{{\lambda \gamma k^{2} v^{2} (1 - k)\left[{4kv(1 - k) + 4\beta \gamma - (\beta + \gamma )^{2} k} \right]}}{{\left[{(kv + \lambda N)(\beta \gamma + 2kv - 2k^{2} v) + (\beta \gamma + 2kv)(1 - k)\lambda N} \right]{\kern 1pt}^{2} }}, \) \( \frac{{\partial p_{a}^{M*} }}{\partial \lambda } = \frac{{N\gamma k^{2} v^{2} (1 - k)\left[{4\frac{{\partial p_{a}^{M*} }}{\partial N} > 0 kv(1 - k) + 4\beta \gamma - (\beta + \gamma )^{2} k} \right]}}{{\left[{(kv + \lambda N)(\beta \gamma + 2kv - 2k^{2} v) + (\beta \gamma + 2kv)(1 - k)\lambda N} \right]{\kern 1pt}^{2} }}. \)

Similar to the proof of Corollary 3(i), we have \( \frac{{\partial p_{a}^{M*} }}{\partial N} > 0 \) and \( \frac{{\partial p_{a}^{M*} }}{\partial \lambda } > 0 \).

The first-order condition of Eq. (24) with respect to \( \gamma \) is

$$ \begin{aligned} \frac{{\partial p_{a}^{M*} }}{\partial \gamma } = & kv(1 - k)\frac{{2(1 - k)(k^{3} v^{3} - \lambda^{2} \beta^{2} N^{2} ) - (\beta - \gamma )^{2} k^{2} v^{2} + 2\beta \lambda^{2} N^{2} (2k\gamma - \beta )}}{{\left[ {(kv + \lambda N)(\beta \gamma + 2kv - 2k^{2} v) + (\beta \gamma + 2kv)(1 - k)\lambda N} \right]{\kern 1pt}^{2} }} \\ & \; + kv(1 - k)\frac{{\lambda Nkv\left[ {4kv(1 - k) + 4\gamma (\gamma - \beta ) + (\beta + \gamma )^{2} k} \right]}}{{\left[ {(kv + \lambda N)(\beta \gamma + 2kv - 2k^{2} v) + (\beta \gamma + 2kv)(1 - k)\lambda N} \right]{\kern 1pt}^{2} }}, \\ \end{aligned} $$

when \( \gamma < \gamma_{0} = \frac{{\sqrt {2(kv + 2\lambda N)(v + \lambda N)W} + 2\lambda \beta N(v - \lambda N) + \beta kv(v + \lambda N)}}{kv(v + \lambda N)} \), we know \( \frac{{\partial p_{a}^{M*} }}{\partial \gamma } > 0 \), otherwise, \( \frac{{\partial p_{a}^{M*} }}{\partial \gamma } < 0 \), where \( W = \beta^{2} (v + \lambda N)^{2} - v^{2} (1 - k)(\beta^{2} + k^{2} v) \).

  1. (ii)

    The first-order conditions of Eq. (25) with respect to \( N \) and \( \lambda \) are \( \frac{{\partial p_{u}^{M * } }}{\partial N} = \frac{{\beta \lambda_{u} (1 - k)(\beta + \gamma )}}{{4kv(1 - k) + 4\beta \gamma - (\beta + \gamma )^{2} k}} \) and \( \frac{{\partial p_{u}^{M*} }}{\partial \lambda } = \frac{\beta N(1 - k)(\beta + \gamma )}{{4kv(1 - k) + 4\beta \gamma - (\beta + \gamma )^{2} k}} \). Obviously, \( \frac{{\partial p_{u}^{M*} }}{\partial N} > 0 \), \( \frac{{\partial p_{u}^{M*} }}{\partial \lambda } > 0 \).

The first-order condition of Eq. (25) with respect to γ is \( \frac{{\partial p_{u}^{M*} }}{\partial \gamma } = \frac{(1 - k)(2\beta v + \lambda \beta N)}{{4kv(1 - k) + 4\beta \gamma - (\beta + \gamma )^{2} k}} + \frac{{(1 - k)(2\beta k - 4\beta + 2\gamma k)(2kv^{2} - 2k^{2} v^{2} + 2\beta \gamma v + \lambda \beta^{2} N + \lambda \beta \gamma N)}}{{\left[ {4kv(1 - k) + 4\beta \gamma - (\beta + \gamma )^{2} k} \right]^{2} }}. \)

when \( \gamma < \gamma_{1} = \frac{{2\sqrt {k(\beta^{2} + k^{2} v - kv)W} - 2k^{2} v^{2} (1 - k) - \lambda k\beta^{2} N}}{\beta k(2v + \lambda N)} \), we know \( \frac{{\partial p_{u}^{M*} }}{\partial \gamma } < 0 \), otherwise, \( \frac{{\partial p_{u}^{M*} }}{\partial \gamma } > 0 \).

  1. (iii)

    The first-order conditions of Eq. (26) with respect to \( N \) and \( \lambda \) are

$$ \begin{aligned} & \frac{{\partial p_{s}^{M*} }}{\partial N} = - \frac{{\lambda_{u} c_{s} kv\left[ {4kv(1 - k) - \beta \gamma k - \gamma^{2} k + 2\beta \gamma } \right]\left[ {4kv(1 - k) + 4\beta \gamma - (\beta + \gamma )^{2} k} \right]}}{{\alpha \left[ {4kv(1 - k)(kv + \lambda N) - (\beta + \gamma )(\beta kv + \lambda \beta N + \lambda \gamma N) + 2\beta \gamma \lambda N(1 + k) - \gamma^{2} kv + 3\beta \gamma kv} \right]{\kern 1pt}^{2} }}, \\ & \frac{{\partial p_{s}^{M*} }}{\partial \lambda } = - \frac{{Nc_{s} kv\left[ {4kv(1 - k) + 2\beta \gamma - \beta^{2} k - \gamma^{2} k} \right]\left[ {4kv(1 - k) + 4\beta \gamma - (\beta + \gamma )^{2} k} \right]}}{{\alpha \left[ {4kv(1 - k)(kv + \lambda N) - (\beta + \gamma )(\beta kv + \lambda \beta N + \lambda \gamma N) + 2\beta \gamma \lambda N(1 + k) - \gamma^{2} kv + 3\beta \gamma kv} \right]{\kern 1pt}^{2} }} \\ \end{aligned}. $$

According to Corollary 3, we can obtain \( 4kv(1 - k) - \beta \gamma k - \gamma^{2} k + 2\beta \gamma > 0 \). According to Lemma 2, we can obtain \( 4kv(1 - k) + 4\beta \gamma - (\beta + \gamma )^{2} k < 0 \). Obviously, \( \frac{{\partial p_{s}^{M*} }}{\partial N} < 0 \) and \( \frac{{\partial p_{s}^{M*} }}{\partial \lambda } < 0 \).

Therefore, Corollary 4 holds.

Proof of Proposition 1

By Eqs. (7) and (24), we have \( p_{a}^{A*} - p_{a}^{M*} = \frac{\beta (v + \beta \gamma )}{2v + \beta \gamma } - \frac{{(\beta - \gamma )kv\left[{kv(1 - k) + \beta \gamma } \right] + 2\lambda_{u} kv\beta N(1 - k) - \lambda k\beta \gamma N(\beta + \gamma ) - 2\beta^{2} \lambda \gamma N}}{{(kv + \lambda N)\left[{\beta \gamma + 2kv(1 - k)} \right] + (\beta \gamma + 2kv)(1 - k)\lambda N}} \).

When \( \gamma < \gamma_{2} = \frac{{\beta^{2} k(v - kv + k^{2} v - \lambda N) + 2\lambda \beta^{2} N(1 + \beta k^{2} - k - 2k^{2} v^{2} (1 - k)}}{{\beta k(kv - k^{2} v + v + \lambda N)}} \), we know \( p_{a}^{A*} < p_{a}^{M*} \), otherwise, \( p_{a}^{A*} > p_{a}^{M*} \).

Therefore, Proposition 1 holds.

The proof process of Propositions 23 is similar to that of Proposition 1, which is not discussed here.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chi, X., Fan, ZP. & Wang, X. Pricing mode selection for the online short video platform. Soft Comput 25, 5105–5120 (2021). https://doi.org/10.1007/s00500-020-05513-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00500-020-05513-3

Keywords

Navigation