Skip to main content
Log in

A numerical solution strategy based on error analysis for time-fractional mobile/immobile transport model

  • Application of soft computing
  • Published:
Soft Computing Aims and scope Submit manuscript

Abstract

This paper discusses a finite difference/spectral method for numerical solving of fractal mobile/immobile transport (FM/IT) models based on Caputo fractional derivative (C-FD). The proposed method is based on a finite difference scheme in time and a spectral method in space. Stability and convergence of the method are established rigorously, providing the theoretical basis for solving the equation. We prove that the temporal discretization scheme is unconditionally stable. Some numerical experiments illustrate the efficiency and applicability of the proposed approach in the sense of accuracy and convergence ratio.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Abro KA, Gómez-Aguilar JF, Khan I, Nisar KS (2019) Role of modern fractional derivatives in an armature-controlled DC servomotor. Eur Phys J Plus 134(11)

  • Ahmad I, Khan MN, Inc M, Ahmad H, Nisar KS (2020) Numerical simulation of simulate an anomalous solute transport model via local meshless method. Alex Eng J 59(4):2827–2838

    Article  Google Scholar 

  • Ali F, Ahmad Z, Arif M, Khan I, Nisar KS (2020) A time fractional model of generalized Couette flow of couple stress nanofluid with heat and mass transfer: applications in engine oil. IEEE Access 8:146944–146966

    Article  Google Scholar 

  • Bernardi C, Maday Y (1992) Approximations spectrales de problems aux limites elliptiques. Springer, Berlin

    MATH  Google Scholar 

  • Canuto C, Quarteroni A (1982) Approximation results for orthogonal polynomials in Sobolov spaces. Math Comput 38:67–86

    Article  MATH  Google Scholar 

  • Canuto C, Hussaini MY, Quarteroni A, Zang TA (2010) Spectral methods: fundamentals in single domains. Springer, Berlin

    MATH  Google Scholar 

  • Chakraborty A, Sivakumar M, Gopalakrishnan S (2006) Spectral element based model for wave propagation analysis in multi-wall carbon nanotubes. Int J Solids Struct 43(2):279–294

    Article  MATH  Google Scholar 

  • Dehghan M, Manafian J, Saadatmandi A (2009) Solving nonlinear fractional partial differential equations using the homotopy analysis method. Numer Methods Partial Differ Equ 26:448–479

    Article  MathSciNet  MATH  Google Scholar 

  • Dehghan M, Yousefi SA, Lotfi A (2011) The use of Hes variational iteration method for solving the telegraph and fractional telegraph equations. Int J Numer Methods Biomed Eng 27(2):219–231

    Article  MathSciNet  MATH  Google Scholar 

  • Diethelm K (2010) The analysis of fractional differential equations. Springer, Berlin

    Book  MATH  Google Scholar 

  • Giraldo FX (2003) Strong and weak Lagrange–Galerkin spectral element methods for the shallow water equations. Comput Math Appl 45:97–121

    Article  MathSciNet  MATH  Google Scholar 

  • Golbabai A, Nikan O, Nikazad T (2019) Numerical investigation of the time fractional mobile-immobile advection-dispersion model arising from solute transport in porous media. Int J Appl Comput Math 5(3)

  • Hifer R (2000) Application of fractional calculus in physics. World Scientific, Singapore

    Book  Google Scholar 

  • Kanth AR, Deepika S (2018a) Application and analysis of spline approximation for time fractional mobile-immobile advection-dispersion equation. Numer Methods Partial Differ Equ 34(5):1799–1819. https://doi.org/10.1002/num.22266

  • Kanth AR, Deepika S (2018b) Application and analysis of spline approximation for time fractional mobile-immobile advection-dispersion equation. Numer Methods Partial Differ Equ 34(5):1799–1819

  • Kilbas AA, Srivastava HM, Trujillo JJ (2006) Theory and applications of fractional differential equations. Elsevier, Amsterdam

    MATH  Google Scholar 

  • Kumar S, Kumar A, Momani S, Aldhaifallah M, Nisar KS (2019) Numerical solutions of nonlinear fractional model arising in the appearance of the strip patterns in two-dimensional systems. Adv Differ Equ. https://doi.org/10.1186/s13662-019-2334-7

  • Kumar A, Chauhan HV, Ravichandran C, Nisar KS, Baleanu D (2020) Existence of solutions of non-autonomous fractional differential equations with integral impulse condition. Adv Differ Equ 2020(1)

  • Liu Z, Li X (2017) A Crank–Nicolson difference scheme for the time variable fractional mobile-immobile advection-dispersion equation. J Appl Math Comput 56:391–410

    Article  MathSciNet  MATH  Google Scholar 

  • Liu F, Zhuang P, Anh V, Turner I, Burrage K (2007) Stability and convergence of the difference methods for the space-time fractional advection-diffusion equation. Appl Math Comput 191(1):12–20

    MathSciNet  MATH  Google Scholar 

  • Luchko Y (2010) Some uniqueness and existence results for the initial-boundary-value problems for the generalized time-fractional diffusion equation. Comput Math Appl 59(5):1766–1772

    Article  MathSciNet  MATH  Google Scholar 

  • Luchko Y, Yamamoto M (2016) General time-fractional diffusion equation: some uniqueness and existence results for the initial-boundary-value problems. Fract Calc Appl Anal 19(3)

  • Machado JAT, Kiryakova V (2019) Recent history of the fractional calculus: data and statistics. Basic Theory. https://doi.org/10.1515/9783110571622-001

  • Mohebbi A, Abbaszadeh M, Dehghan M (2014) High-order difference scheme for the solution of linear time fractional Klein–Gordon equations. Numer Methods Partial Differ Equ 30(4):1234–1253

    Article  MathSciNet  MATH  Google Scholar 

  • Nikan O, Avazzadeh Z, Machado JT (2020a) Numerical investigation of fractional nonlinear sine-Gordon and Klein–Gordon models arising in relativistic quantum mechanics. Eng Anal Bound Elem 120:223–237

  • Nikan O, Machado JT, Avazzadeh Z, Jafari H (2020b) Numerical evaluation of fractional Tricomi-type model arising from physical problems of gas dynamics. J Adv Res 25:205–216

  • Nikan O, Avazzadeh Z, Machado JT (2021a) An efficient local meshless approach for solving nonlinear time-fractional fourth-order diffusion model. J King Saud Univ Sci 33(1)

  • Nikan O, Machado JT, Golbabai A (2021b) Numerical solution of time-fractional fourth-order reaction–diffusion model arising in composite environments. Appl Math Model 89:819–836

  • Nikan O, Machado JT, Golbabai A, Rashidinia J (2021c) Numerical evaluation of the fractional Klein–Kramers model arising in molecular dynamics. J Comput Phys 428

  • Odibat Z, Kumar S (2019) A robust computational algorithm of homotopy asymptotic method for solving systems of fractional differential equations. J Comput Nonlinear Dyn 10(1115/1):4043617

    Google Scholar 

  • Oldham KB, Spanier J (1974) The fractional calculus. Academic Press, New York

    MATH  Google Scholar 

  • Oliveira EC, Machado JA (2014) A review of definitions for fractional derivatives and integral. Math Probl Eng 2014:1–6

    Article  MathSciNet  MATH  Google Scholar 

  • Ortigueira MD (2011) Fractional calculus for scientists and engineer: lecture notes in electrical engineering. Springer, Berlin

    Book  Google Scholar 

  • Plociniczak L, Switala M (2018) Existence and uniqueness results for a time-fractional nonlinear diffusion equation. J Math Anal Appl 462(2):1425–1434

  • Podlubny I (1999) Fractional differential equations. Academic Press, San Diego

    MATH  Google Scholar 

  • Quarteroni A, Valli A (1994) Numerical approximation of partial differential equations. Springer series in computational mathematics. Springer, Berlin

    Book  MATH  Google Scholar 

  • Saitoh S, Sawano Y (2016) Theory of reproducing kernels and applications. Springer, Singapore

    Book  MATH  Google Scholar 

  • Sheikh NA, Jamil M, Ching DL, Khan I, Usman M, Nisar KS (2021) A generalized model for quantitative analysis of sediments loss: a Caputo time fractional model. J King Saud Univ Sci 33(1):101179

    Article  Google Scholar 

  • Sun Z-Z, Wu X (2006) A fully discrete difference scheme for a diffusion-wave system. Appl Numer Math 56(2):193–209

    Article  MathSciNet  MATH  Google Scholar 

  • Tateishi AA, Ribeiro HV, Lenzi EK (2017) The role of fractional time-derivative operators on anomalous diffusion. Front Phys. https://doi.org/10.3389/fphy.2017.00052

  • Yuste SB, Acedo L (2005) An explicit finite difference method and a new von Neumann-type stability analysis for fractional diffusion equations. SIAM J Numer Anal 42(5):1862–1874

    Article  MathSciNet  MATH  Google Scholar 

  • Zampieri E, Pavarino LF (2006) Approximation of acoustic waves by explicit Newmark’s schemes and spectral element methods. J Comput Appl Math 185:308–325

    Article  MathSciNet  MATH  Google Scholar 

  • Zeng F, Li C, Liu F, Turner I (2015) Numerical algorithms for time-fractional subdiffusion equation with second-order accuracy. SIAM J Sci Comput 37(1):A55–A78

  • Zhu W, Kopriva DA (2009a) A spectral element method to price European options. I. Single asset with and without jump diffusion. J Sci Comput 39(2):222–243

  • Zhu W, Kopriva DA (2009b) A spectral element approximation to price European options with one asset and stochastic volatility. J Sci Comput 42(3):426–446

Download references

Acknowledgements

The authors would like to thank the editor and anonymous reviewer for his/her constructive suggestions and comments, which improved the presentation of this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Fardi.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest regarding the publication of this paper.

Ethical approval

This article does not contain any studies with human participants or animals performed by the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix A: The proof of Lemma 5

Setting \(v_{M}=u_{M}^{k+1}\), we get

$$\begin{aligned}&{\mathcal {K}}_{1,\alpha ,\delta t}\langle u_{M}^{k+1},u_{M}^{k+1} \rangle _{1,M}+c^{-1}_{\alpha ,\delta t}\gamma _{1}a_{\omega }\langle u_{M}^{k+1},u_{M}^{k+1}\rangle \nonumber \\&\quad = \langle {\mathcal {P}}_{t}^{I,\alpha }u_{M}^{k},u_{M}^{k+1} \rangle _{1,M}\nonumber \\&\qquad + \langle I^{c}_{M}F^{k+1},u_{M}^{k+1}\rangle _{1,M}, \end{aligned}$$
(54)

where

$$\begin{aligned} \langle {\mathcal {P}}_{t}^{I,\alpha }u_{M}^{k},u_{M}^{k+1} \rangle _{1,M}&= {\mathcal {K}}_{2,\alpha ,\delta t}\langle u_{M}^{k}, u_{M}^{k+1} \rangle _{1,M}\\&\quad +\lambda _{2}\sum _{j=1}^{k-1}(d_{\alpha ,j}-d_{\alpha ,j+1}) \langle u_{M}^{k-j},u_{M}^{k+1} \rangle _{1,M}\\&\quad +\lambda _{2} d_{\alpha ,k}\langle u_{M}^{0},u_{M}^{k+1} \rangle _{1,M}. \end{aligned}$$

Using the following inequality

$$\begin{aligned} ab\le \frac{1}{2\varTheta ^2}a^2+\frac{\varTheta ^2}{2}b^2,\quad \forall \varTheta \ne 0, \end{aligned}$$

we have

$$\begin{aligned}&\langle {\mathcal {P}}_{t}^{I,\alpha }u_{M}^{k},u_{M}^{k+1} \rangle _{1,M} \le {\mathcal {K}}_{2,\alpha ,\delta t} (\Vert u_{M}^{k}\Vert ^2_{1,M}\nonumber \\&\quad +\frac{1}{4}\Vert u_{M}^{k+1} \Vert ^{2}_{1,M}) +\lambda _{2}\sum _{j=1}^{k-1}(d_{\alpha ,j}-d_{\alpha ,j+1}) (\Vert u_{M}^{k-j}\Vert ^2_{1,M}\nonumber \\&\quad +\frac{1}{4}\Vert u_{M}^{k+1} \Vert ^{2}_{1,M}) +\lambda _{2} d_{\alpha ,k}(\Vert u_{M}^{0}\Vert ^2_{1,M}\nonumber \\&\quad +\frac{1}{4}\Vert u_{M}^{k+1} \Vert ^{2}_{1,M}) \le \lambda _{1}\beta _{\alpha ,\delta t} \Vert u_{M}^{k}\Vert ^2_{1,M} + \frac{{\mathcal {K}}_{2,\alpha ,\delta t}}{4}\Vert u_{M}^{k+1} \Vert ^{2}_{1,M} \nonumber \\&\quad +\lambda _{2}\sum _{j=0}^{k-1}(d_{\alpha ,j}-d_{\alpha ,j+1})\Vert u_{M}^{k-j}\Vert ^2_{1,M}\nonumber \\&\quad +\frac{\lambda _{2}}{4}(d_{\alpha ,1}-d_{\alpha ,k})\Vert u_{M}^{k+1} \Vert ^{2}_{1,M} \nonumber \\&\quad +\lambda _{2} d_{\alpha ,k}\Vert u_{M}^{0}\Vert ^2_{1,M}+\frac{\lambda _{2} d_{\alpha ,k}}{4}\Vert u_{M}^{k+1} \Vert ^{2}_{1,M}. \end{aligned}$$
(55)

By using Lemma 3 and using (54) and (55), we have

$$\begin{aligned}&{\mathcal {K}}_{1,\alpha ,\delta t}\Vert u_{M}^{k+1}\Vert ^{2}_{1,M}+\frac{c^{-1}_{\alpha ,\delta t}\gamma _{1}}{4}\Vert \partial _{x}u_{M}^{k+1}\Vert ^{2}_{0,\omega }\\&\quad \le \lambda _{1}\beta _{\alpha ,\delta t} \Vert u_{M}^{k}\Vert ^2_{1,M} + \frac{{\mathcal {K}}_{2,\alpha ,\delta t}}{4}\Vert u_{M}^{k+1} \Vert ^{2}_{1,M} \\&\qquad +\lambda _{2}\sum _{j=0}^{k-1}(d_{\alpha ,j}-d_{\alpha ,j+1})\Vert u_{M}^{k-j}\Vert ^2_{1,M}\\&\qquad +\frac{\lambda _{2}}{4}(d_{\alpha ,1}-d_{\alpha ,k})\Vert u_{M}^{k+1} \Vert ^{2}_{1,M} \\&\qquad +\lambda _{2} d_{\alpha ,k}\Vert u_{M}^{0}\Vert ^2_{1,M}+\frac{\lambda _{2} d_{\alpha ,k}}{4}\Vert u_{M}^{k+1} \Vert ^{2}_{1,M}+\langle I^{c}_{M}F^{k+1},u_{M}^{k+1}\rangle _{1,M}. \end{aligned}$$

Using Lemmas 1 and 2 , it follows that

$$\begin{aligned}&\left( {\mathcal {K}}_{1,\alpha ,\delta t}-\frac{{\mathcal {K}}_{2,\alpha , \delta t}}{4}-\frac{\lambda _{2}}{4}(d_{\alpha ,1}-d_{\alpha ,k}) -\frac{\lambda _{2} d_{\alpha ,k}}{4}\right) \Vert u_{M}^{k+1} \Vert ^{2}_{1,M}\nonumber \\&\qquad +\frac{c^{-1}_{\alpha ,\delta t}\gamma _{1}}{4}\Vert \partial _{x}u_{M}^{k+1} \Vert ^{2}_{0,\omega } \nonumber \\&\quad \le \lambda _{1}\beta _{\alpha ,\delta t} \Vert u_{M}^{k}\Vert ^2_{1,M}\nonumber \\&\qquad +\lambda _{2}\sum _{j=0}^{k-1}(d_{\alpha ,j}-d_{\alpha ,j+1})\Vert u_{M}^{k-j} \Vert ^2_{1,M}+\lambda _{2} d_{\alpha ,k}\Vert u_{M}^{0}\Vert ^2_{1,M}\nonumber \\&\qquad +\langle I^{c}_{M}F^{k+1},u_{M}^{k+1}\rangle _{1,M}\le \sqrt{2} \lambda _{1}\beta _{\alpha ,\delta t} \Vert u_{M}^{k}\Vert ^2_{0,\omega }\nonumber \\&\qquad +\lambda _{2}\sum _{j=0}^{k-1}(d_{\alpha ,j}-d_{\alpha ,j+1})\Vert u_{M}^{k-j} \Vert ^2_{1,M}\nonumber \\&\qquad +\lambda _{2} d_{\alpha ,k}\Vert u_{M}^{0}\Vert ^2_{1,M} +\langle I^{c}_{M}F^{k+1},u_{M}^{k+1}\rangle _{1,M}\nonumber \\&\quad \le \sqrt{2}c \lambda _{1}\beta _{\alpha ,\delta t} \Vert \partial _{x}u_{M}^{k}\Vert ^2_{0,\omega } \nonumber \\&\qquad +\lambda _{2}\sum _{j=0}^{k-1}(d_{\alpha ,j}-d_{\alpha ,j+1})\Vert u_{M}^{k-j}\Vert ^2_{1,M}+\lambda _{2} d_{\alpha ,k}\Vert u_{M}^{0}\Vert ^2_{1,M}\nonumber \\&\qquad +\langle I^{c}_{M}F^{k+1},u_{M}^{k+1}\rangle _{1,M}. \end{aligned}$$
(56)

We know

$$\begin{aligned}&\langle I^{c}_{M}F^{k+1},u_{M}^{k+1}\rangle _{1,M}\le \frac{1}{3(\lambda _{1}\beta _{\alpha ,\delta t}+\lambda _{2})}\Vert I^{c}_{M}F^{k+1}\Vert ^{2}_{1,M}\nonumber \\&\quad +\frac{3}{4}(\lambda _{1}\beta _{\alpha ,\delta t}+\lambda _{2})\Vert u_{M}^{k+1}\Vert ^{2}_{1,M}. \end{aligned}$$
(57)

In view of (56) and (57), we have

$$\begin{aligned}&\gamma _{2}c^{-1}_{\alpha ,\delta t}\Vert u_{M}^{k+1} \Vert ^{2}_{1,M}+\frac{c^{-1}_{\alpha ,\delta t}\gamma _{1}}{4}\Vert \partial _{x}u_{M}^{k+1}\Vert ^{2}_{0,\omega } \le \sqrt{2}c\lambda _{1}\beta _{\alpha ,\delta t} \Vert \partial _{x}u_{M}^{k}\Vert ^2_{0,\omega }\\&\qquad +\lambda _{2}\sum _{j=1}^{k}(d_{\alpha ,k-j}-d_{\alpha ,k-j+1})\Vert u_{M}^{j} \Vert ^2_{1,M}+\lambda _{2} d_{\alpha ,k}\Vert u_{M}^{0}\Vert ^2_{1,M}\\&\qquad +\frac{1}{3(\lambda _{1}\beta _{\alpha ,\delta t}+\lambda _{2})} \Vert I^{c}_{M}F^{k+1}\Vert ^{2}_{1,M}\\&\quad \le \frac{\lambda _{1}\beta _{\alpha ,\delta t}\sqrt{2}c}{1-d_{\alpha ,1}} \sum _{j=1}^{k}(d_{\alpha ,k-j}-d_{\alpha ,k-j+1}) \Vert \partial _{x}u_{M}^{j} \Vert ^2_{0,\omega }\\&\qquad +\lambda _{2}\sum _{j=1}^{k}(d_{\alpha ,k-j}-d_{\alpha ,k-j+1}) \Vert u_{M}^{j}\Vert ^2_{1,M}\\&\qquad +\lambda _{2} d_{\alpha ,k}\Vert u_{M}^{0}\Vert ^2_{1,M}+\frac{1}{3(\lambda _{1}\beta _{\alpha ,\delta t}+\lambda _{2})}\Vert I^{c}_{M}F^{k+1}\Vert ^{2}_{1,M}. \end{aligned}$$

If

$$\begin{aligned}&C_{1,\alpha ,\delta t}=\min \left\{ \gamma _{2}c^{-1}_{\alpha ,\delta t}, \frac{c^{-1}_{\alpha ,\delta t}\gamma _{1}}{4}\right\} ,\\&C_{2,\alpha ,\delta t}=\max \left\{ \lambda _{2},\frac{\lambda _{1}\beta _{\alpha ,\delta t}\sqrt{2}c}{1-d_{\alpha ,1}}\right\} , \end{aligned}$$

we can get the following inequality

$$\begin{aligned}&\Vert u_{M}^{k+1} \Vert ^{2}_{1,M}+\Vert \partial _{x}u_{M}^{k+1} \Vert ^{2}_{0,\omega } \le \sum _{j=1}^{k}\frac{C_{2,\alpha ,\delta t}}{C_{1,\alpha ,\delta t}}(d_{\alpha ,k-j}-d_{\alpha ,k-j+1})\\&\quad (\Vert u_{M}^{j} \Vert ^2_{1,M}+ \Vert \partial _{x}u_{M}^{j}\Vert ^2_{0,\omega }) +C_{1,\alpha ,\delta t}^{-1}\lambda _{2} d_{\alpha ,k}\Vert u_{M}^{0}\Vert ^2_{1,M}\\&\quad +\frac{1}{3C_{1,\alpha ,\delta t}(\lambda _{1}\beta _{\alpha ,\delta t}+\lambda _{2})}\Vert I^{c}_{M}F^{k+1}\Vert ^{2}_{1,M}. \end{aligned}$$

Noting Lemma 4, we have

$$\begin{aligned}&\Vert u_{M}^{k+1} \Vert ^{2}_{1,M}+\Vert \partial _{x}u_{M}^{k+1}\Vert ^{2}_{0,\omega }\\&\quad \le \left( C_{1,\alpha ,\delta t}^{-1}\lambda _{2} d_{\alpha ,k}\Vert u_{M}^{0}\Vert ^2_{1,M}+\frac{\Vert I^{c}_{M}F^{k+1}\Vert ^{2}_{1,M}}{3C_{1,\alpha ,\delta t}(\lambda _{1}\beta _{\alpha ,\delta t}+\lambda _{2})}\right) \\&\quad e^{\frac{C_{2,\alpha ,\delta t}}{C_{1,\alpha ,\delta t}}(d_{\alpha ,0}-d_{\alpha ,k})}. \end{aligned}$$

Therefore

$$\begin{aligned}&\Vert u_{M}^{k+1} \Vert ^{2}_{1,M}+\Vert \partial _{x}u_{M}^{k+1}\Vert ^{2}_{0,\omega }\\&\quad \le {\mathbf {C}}_{1,\alpha ,\delta t}\left( \Vert u_{M}^{0}\Vert ^2_{1,M}+\Vert I^{c}_{M}F^{k+1}\Vert ^{2}_{1,M}\right) e^{{\mathbf {C}}_{2,\alpha ,\delta t}(d_{\alpha ,0}-d_{\alpha ,k})}, \end{aligned}$$

where \({\mathbf {C}}_{1,\alpha ,\delta t}=\max \{C_{1,\alpha ,\delta t}^{-1}\lambda _{2} d_{\alpha ,k},\frac{1}{3C_{1,\alpha ,\delta t}(\lambda _{1}\beta _{\alpha ,\delta t}+\lambda _{2})}\}\) and \({\mathbf {C}}_{2,\alpha ,\delta t}=\frac{C_{2,\alpha ,\delta t}}{C_{1,\alpha ,\delta t}}\).

Appendix B: The proof of Lemma 10

It is evident that \(a_{\omega }\langle \varPi ^{1,0}_{M}{\mathcal {U}}^{k+1},v_{M} \rangle =a_{\omega }\langle {\mathcal {U}}^{k+1},v_{M} \rangle \), therefore one can write

$$\begin{aligned}&c^{-1}_{\alpha ,\delta t}\gamma _{1}a_{\omega }\langle \varPi ^{1,0}_{M} {\mathcal {U}}^{k+1},v_{M} \rangle =-c^{-1}_{\alpha ,\delta t}\langle (\lambda _{1}\partial _{t} {\mathcal {U}}^{k+1}\nonumber \\&\quad +\lambda _{2}~_{0}^{C} \partial _{t}^{\alpha } {\mathcal {U}}^{k+1}+\gamma _{2} {\mathcal {U}}^{k+1}), v_{M}\rangle _{0,\omega }\nonumber \\&\quad +c^{-1}_{\alpha ,\delta t}\langle f^{k+1},v_{M}\rangle _{0,\omega }, \end{aligned}$$
(58)

Furthermore, we have

$$\begin{aligned}&{\mathcal {K}}_{1,\alpha ,\delta t}\langle \varPi _{M}^{1,0} {\mathcal {U}}^{k+1},v_{M} \rangle _{1,M}-\langle {\mathcal {P}}_{t}^{I, \alpha }\varPi _{M}^{1,0}{\mathcal {U}}^{k},v_{M} \rangle _{1,M}\nonumber \\&\quad =c^{-1}_{\alpha ,\delta t}\langle (\lambda _{1}\partial _{t} \varPi _{M}^{1,0} {\mathcal {U}}^{k+1}\nonumber \\&\qquad +\lambda _{2}~_{0}^{C}\partial _{t}^{\alpha } ~\varPi _{M}^{1,0} {\mathcal {U}}^{k+1}+\gamma _{2} \varPi _{M}^{1,0} {\mathcal {U}}^{k+1}),v_{M}\rangle _{1,M}\nonumber \\&\qquad +c^{-1}_{\alpha ,\delta t}\langle r_{\varPi _{M}^{1,0}{\mathcal {U}}}^{k+1} ,v_{M} \rangle _{0,\omega }, \end{aligned}$$
(59)

where \(r_{\varPi _{M}^{1,0}{\mathcal {U}}}^{k+1}=O(\delta t)\).

Now, from (58) and (59), it easily conclude that

$$\begin{aligned}&{\mathcal {K}}_{1,\alpha ,\delta t}\langle \varPi _{M}^{1,0} {\mathcal {U}}^{k+1},v_{M} \rangle _{1,M}+c^{-1}_{\alpha ,\delta t} \gamma _{1}a_{\omega }\langle \varPi ^{1,0}_{M}{\mathcal {U}}^{k+1},v_{M} \rangle \\&\quad =\langle {\mathcal {P}}_{t}^{I,\alpha }\varPi _{M}^{1,0}{\mathcal {U}}^{k},v_{M} \rangle _{1,M}\\&\qquad -c^{-1}_{\alpha ,\delta t}\langle (\lambda _{1}\partial _{t} {\mathcal {U}}^{k+1}+\lambda _{2}~_{0}^{C}\partial _{t}^{\alpha } {\mathcal {U}}^{k+1}\\&\qquad +\gamma _{2} {\mathcal {U}}^{k+1}),v_{M}\rangle _{0,\omega } +c^{-1}_{\alpha ,\delta t}\langle f^{k+1},v_{M}\rangle _{0,\omega }\\&\qquad +c^{-1}_{\alpha ,\delta t}\langle (\lambda _{1}\partial _{t} \varPi _{M}^{1,0}{\mathcal {U}}^{k+1}\\&\qquad +\lambda _{2}~_{0}^{C}\partial _{t}^{\alpha } ~\varPi _{M}^{1,0} {\mathcal {U}}^{k+1}+\gamma _{2} \varPi _{M}^{1,0} {\mathcal {U}}^{k+1}),v_{M}\rangle _{M}\\&\qquad +c^{-1}_{\alpha ,\delta t}\langle r_{\varPi _{M}^{1,0}{\mathcal {U}}}^{k+1} ,v_{M} \rangle _{M}\\&\quad =\langle {\mathcal {P}}_{t}^{I,\alpha }\varPi _{M}^{1,0} {\mathcal {U}}^{k},v_{M} \rangle _{1,M}-c^{-1}_{\alpha ,\delta t}\langle (\lambda _{1}\partial _{t} {\mathcal {U}}^{k+1}\\&\qquad +\lambda _{2}~_{0}^{C} \partial _{t}^{\alpha } {\mathcal {U}}^{k+1}+\gamma _{2} {\mathcal {U}}^{k+1}), v_{M}\rangle _{0,\omega }\\&\qquad +c^{-1}_{\alpha ,\delta t}\langle (\lambda _{1}\partial _{t} \varPi _{M}^{1,0} {\mathcal {U}}^{k+1}+\lambda _{2}~_{0}^{C}\partial _{t}^{\alpha } ~ \varPi _{M}^{1,0} {\mathcal {U}}^{k+1}\\&\qquad +\gamma _{2} \varPi _{M}^{1,0} {\mathcal {U}}^{k+1}),v_{M}\rangle _{0,\omega }\\&\qquad -c^{-1}_{\alpha ,\delta t}\langle (\lambda _{1}\partial _{t} \varPi _{M}^{1,0} {\mathcal {U}}^{k+1}+\lambda _{2}~_{0}^{C}\partial _{t}^{\alpha } ~ \varPi _{M}^{1,0} {\mathcal {U}}^{k+1}\\&\qquad +\gamma _{2} \varPi _{M}^{1,0} {\mathcal {U}}^{k+1}),v_{M}\rangle _{0,\omega }\\&\qquad +c^{-1}_{\alpha ,\delta t}\langle (\lambda _{1}\partial _{t} \varPi _{M}^{1,0} {\mathcal {U}}^{k+1}+\lambda _{2}~_{0}^{C}\partial _{t}^{\alpha } ~ \varPi _{M}^{1,0} {\mathcal {U}}^{k+1}\\&\qquad +\gamma _{2} \varPi _{M}^{1,0} {\mathcal {U}}^{k+1}),v_{M}\rangle _{1,M}\\&\qquad +c^{-1}_{\alpha ,\delta t}\langle f^{k+1},v_{M}\rangle _{0,\omega }+c^{-1}_{\alpha ,\delta t}\langle r_{\varPi _{M}^{1,0}{\mathcal {U}}}^{k+1} ,v_{M} \rangle _{0,\omega }, \end{aligned}$$

therefore

$$\begin{aligned}&{\mathcal {K}}_{1,\alpha ,\delta t}\langle \varPi _{M}^{1,0} {\mathcal {U}}^{k+1},v_{M} \rangle _{1,M}+c^{-1}_{\alpha ,\delta t} \gamma _{1}a_{\omega }\langle \varPi ^{1,0}_{M}{\mathcal {U}}^{k+1},v_{M} \rangle \nonumber \\&\quad =\langle {\mathcal {P}}_{t}^{I,\alpha }\varPi _{M}^{1,0}{\mathcal {U}}^{k}, v_{M} \rangle _{1,M}\nonumber \\&\qquad -c^{-1}_{\alpha ,\delta t}\langle (I_{d}-\varPi _{M}^{1,0}) (\lambda _{1}\partial _{t} {\mathcal {U}}^{k+1}+\lambda _{2}~_{0}^{C} \partial _{t}^{\alpha } {\mathcal {U}}^{k+1}\nonumber \\&\qquad +\gamma _{2} {\mathcal {U}}^{k+1}), v_{M}\rangle _{0,\omega }\nonumber \\&\qquad +c^{-1}_{\alpha ,\delta t}\langle E(\lambda _{1}\partial _{t} \varPi _{M}^{1,0}{\mathcal {U}}^{k+1}+\lambda _{2}~_{0}^{C}\partial _{t}^{\alpha } ~\varPi _{M}^{1,0} {\mathcal {U}}^{k+1}\nonumber \\&\qquad +\gamma _{2} \varPi _{M}^{1,0} {\mathcal {U}}^{k+1}), v_{M}\rangle _{0,\omega }\nonumber \\&\qquad +c^{-1}_{\alpha ,\delta t}\langle f^{k+1},v_{M}\rangle _{0,\omega }+c^{-1}_{\alpha ,\delta t}\langle r_{\varPi _{M}^{1,0}{\mathcal {U}}}^{k+1} ,v_{M} \rangle _{0,\omega }. \end{aligned}$$
(60)

Let \(e_{M}^{k+1}=u_{M}^{k+1}-\varPi ^{1,0}_{M}{\mathcal {U}}^{k+1}\). From (11) and (60), we obtain

$$\begin{aligned}&{\mathcal {K}}_{1,\alpha ,\delta t}\langle e_{M}^{k+1},v_{M} \rangle _{1,M}+c^{-1}_{\alpha ,\delta t}\gamma _{1}a_{\omega }\langle e_{M}^{k+1},v_{M} \rangle \nonumber \\&\quad =\langle {\mathcal {P}}_{t}^{I,\alpha }e_{M}^{k}, v_{M} \rangle _{1,M}\nonumber \\&\qquad +c^{-1}_{\alpha ,\delta t}\langle (I_{d}-\varPi _{M}^{1,0}) (\lambda _{1}\partial _{t} {\mathcal {U}}^{k+1}+\lambda _{2}~_{0}^{C} \partial _{t}^{\alpha } {\mathcal {U}}^{k+1}\nonumber \\&\qquad +\gamma _{2} {\mathcal {U}}^{k+1}), v_{M}\rangle _{0,\omega }\nonumber \\&\qquad -c^{-1}_{\alpha ,\delta t}\langle E(\lambda _{1}\partial _{t} \varPi _{M}^{1,0} {\mathcal {U}}^{k+1}+\lambda _{2}~_{0}^{C}\partial _{t}^{\alpha } ~\varPi _{M}^{1,0} {\mathcal {U}}^{k+1}\nonumber \\&\qquad +\gamma _{2} \varPi _{M}^{1,0} {\mathcal {U}}^{k+1}),v_{M}\rangle _{0,\omega }\nonumber \\&\qquad +c^{-1}_{\alpha ,\delta t}\langle I_{N}^{c}f^{k+1},v_{M}\rangle _{N,\omega }-c^{-1}_{\alpha ,\delta t}\langle f^{k+1},v_{M}\rangle _{0,\omega }\nonumber \\&\qquad -c^{-1}_{\alpha ,\delta t}\langle r_{\varPi _{M}^{1,0}{\mathcal {U}}}^{k+1} ,v_{M} \rangle _{1,M}, \end{aligned}$$
(61)

therefore we can write

$$\begin{aligned}&{\mathcal {K}}_{1,\alpha ,\delta t}\langle e_{M}^{k+1},v_{M} \rangle _{1,M}+c^{-1}_{\alpha ,\delta t}\gamma _{1}a_{\omega }\langle e_{M}^{k+1},v_{M} \rangle \\&\quad = \langle {\mathcal {P}}_{t}^{I,\alpha }e_{M}^{k},v_{M} \rangle _{1,M}+ \langle \delta ^{k+1},v_{M} \rangle _{0,\omega }, \end{aligned}$$

where

$$\begin{aligned} \langle \delta ^{k+1},v_{M}\rangle _{0,\omega }&=\langle \delta _{1}^{k+1},v_{M}\rangle _{0,\omega }+\langle \delta _{2}^{k+1},v_{M} \rangle _{0,\omega }\\&\quad +\langle \delta _{3}^{k+1},v_{M}\rangle _{0,\omega }, \end{aligned}$$

in which

$$\begin{aligned}&\langle \delta _{1}^{k+1},v_{M}\rangle _{0,\omega }=c^{-1}_{\alpha ,\delta t}\langle (I_{d}-\varPi _{M}^{1,0})(\lambda _{1}\partial _{t} {\mathcal {U}}^{k+1}\\&\quad +\lambda _{2}~_{0}^{C}\partial _{t}^{\alpha } {\mathcal {U}}^{k+1}+\gamma _{2} {\mathcal {U}}^{k+1}),v_{M}\rangle _{0,\omega }, \\&\langle \delta _{2}^{k+1},v_{M}\rangle _{0,\omega }=-c^{-1}_{\alpha ,\delta t}\langle E(\lambda _{1}\partial _{t} \varPi _{M}^{1,0}{\mathcal {U}}^{k+1}\\&\quad +\lambda _{2}~_{0}^{C}\partial _{t}^{\alpha } ~\varPi _{M}^{1,0} {\mathcal {U}}^{k+1}+\gamma _{2} \varPi _{M}^{1,0} {\mathcal {U}}^{k+1}),v_{M}\rangle _{0,\omega }, \end{aligned}$$

and

$$\begin{aligned} \langle \delta _{3}^{k+1},v_{M}\rangle _{0,\omega }&=c^{-1}_{\alpha ,\delta t}\langle I_{N}^{c}f^{k+1},v_{M}\rangle _{N,\omega }-c^{-1}_{\alpha ,\delta t}\langle f^{k+1},v_{M}\rangle _{0,\omega }\\&\quad -c^{-1}_{\alpha ,\delta t}\langle r_{\varPi _{M}^{1,0}{\mathcal {U}}}^{k+1} ,v_{M} \rangle _{0,\omega }. \end{aligned}$$

It easily conclude that

$$\begin{aligned}&{\mathcal {K}}_{1,\alpha ,\delta t}\langle e_{M}^{k+1},v_{M} \rangle _{1,M}+c^{-1}_{\alpha ,\delta t}\gamma _{1}a_{\omega }\langle e_{M}^{k+1},v_{M} \rangle \nonumber \\&\quad = {\mathcal {K}}_{2,\alpha ,\delta t}\langle e_{M}^{k} ,v_{M}\rangle _{1,M} \nonumber \\&\qquad +\lambda _{2}\sum _{j=1}^{k-1}(d_{\alpha ,j}-d_{\alpha ,j+1})\langle e_{M}^{k-j},v_{M}\rangle _{1,M}\nonumber \\&\qquad +\lambda _{2} d_{\alpha ,k}\langle e_{M}^{0},v_{M}\rangle _{1,M}\nonumber \\&\qquad +\langle \delta ^{k+1},v_{M}\rangle _{0,\omega },\quad \forall v_{M} \in {\mathbb {P}}^{0}_{M}. \end{aligned}$$
(62)

This completes the proof of Lemma 10.

Appendix C: The proof of Theorem 5

We have

$$\begin{aligned}&\langle {\mathcal {P}}_{t}^{I,\alpha }e_{M}^{k},e_{M}^{k+1} \rangle _{1,M} \le {\mathcal {K}}_{2,\alpha ,\delta t} (\Vert e_{M}^{k}\Vert ^2_{1,M}\nonumber \\&\quad +\frac{1}{4}\Vert e_{M}^{k+1} \Vert ^{2}_{1,M}) +\lambda _{2}\sum _{j=1}^{k-1}(d_{\alpha ,j}-d_{\alpha ,j+1})(\Vert e_{M}^{k-j} \Vert ^2_{1,M}\nonumber \\&\quad +\frac{1}{4}\Vert e_{M}^{k+1} \Vert ^{2}_{1,M}) +\lambda _{2} d_{\alpha ,k}(\Vert u_{M}^{0}\Vert ^2_{1,M}\nonumber \\&\quad +\frac{1}{4}\Vert e_{M}^{k+1} \Vert ^{2}_{1,M}) \le \lambda _{1}\beta _{\alpha ,\delta t} \Vert e_{M}^{k}\Vert ^2_{1,M} + \frac{{\mathcal {K}}_{2,\alpha ,\delta t}}{4}\Vert e_{M}^{k+1} \Vert ^{2}_{1,M} \nonumber \\&\quad +\lambda _{2}\sum _{j=0}^{k-1}(d_{\alpha ,j}-d_{\alpha ,j+1})\Vert e_{M}^{k-j}\Vert ^2_{1,M}\nonumber \\&\quad +\frac{\lambda _{2}}{4}(d_{\alpha ,1}-d_{\alpha ,k})\Vert e_{M}^{k+1} \Vert ^{2}_{1,M} \nonumber \\&\quad +\lambda _{2} d_{\alpha ,k}\Vert e_{M}^{0}\Vert ^2_{1,M}+\frac{\lambda _{2} d_{\alpha ,k}}{4}\Vert e_{M}^{k+1} \Vert ^{2}_{1,M}.~ \end{aligned}$$
(63)

By Lemmas 1 and 3 and using (63), we have

$$\begin{aligned}&{\mathcal {K}}_{1,\alpha ,\delta t}\Vert e_{M}^{k+1}\Vert ^{2}_{1,M}+\frac{c^{-1}_{\alpha ,\delta t}\gamma _{1}}{8}\Vert \partial _{x}e_{M}^{k+1}\Vert ^{2}_{1,M}\\&\quad \le \lambda _{1}\beta _{\alpha ,\delta t} \Vert e_{M}^{k}\Vert ^2_{1,M}\\&\qquad + \frac{{\mathcal {K}}_{2,\alpha ,\delta t}}{4}\Vert e_{M}^{k+1} \Vert ^{2}_{1,M}+\lambda _{2}\sum _{j=0}^{k-1}(d_{\alpha ,j}-d_{\alpha ,j+1}) \Vert e_{M}^{k-j}\Vert ^2_{1,M}\\&\qquad +\frac{\lambda _{2}}{4}(d_{\alpha ,1}-d_{\alpha ,k})\Vert e_{M}^{k+1} \Vert ^{2}_{1,M} +\lambda _{2} d_{\alpha ,k}\Vert e_{M}^{0}\Vert ^2_{1,M}\\&\qquad +\frac{\lambda _{2} d_{\alpha ,k}}{4}\Vert e_{M}^{k+1} \Vert ^{2}_{1,M}+\langle \delta ^{k+1},e_{M}^{k+1}\rangle _{0,\omega }. \end{aligned}$$

It follows that

$$\begin{aligned}&\left( \frac{3}{4}(\lambda _{1}\beta _{\alpha ,\delta t}+\lambda _{2}) +\gamma _{2}c^{-1}_{\alpha ,\delta t}\right) \Vert e_{M}^{k+1} \Vert ^{2}_{1,M}\nonumber \\&\qquad +\frac{c^{-1}_{\alpha ,\delta t}\gamma _{1}}{8}\Vert \partial _{x}e_{M}^{k+1} \Vert ^{2}_{1,M} \nonumber \\&\qquad \le \lambda _{1}\beta _{\alpha ,\delta t} \Vert e_{M}^{k}\Vert ^2_{1,M} +\lambda _{2}\sum _{j=0}^{k-1}(d_{\alpha ,j}-d_{\alpha ,j+1})\Vert e_{M}^{k-j} \Vert ^2_{1,M}\nonumber \\&\quad +\lambda _{2} d_{\alpha ,k}\Vert e_{M}^{0}\Vert ^2_{1,M}+\langle \delta ^{k+1},e_{M}^{k+1}\rangle _{0,\omega }. \end{aligned}$$
(64)

Using Lemmas 8 and 9 , we obtain

$$\begin{aligned}&|\langle \delta _{1}^{k+1},e^{k+1}_{M}\rangle _{0,\omega }| =c^{-1}_{\alpha ,\delta t}|\langle (I_{d}-\varPi _{M}^{1,0}) ((\lambda _{1}\partial _{t} {\mathcal {U}}^{k+1}\nonumber \\&\qquad +\lambda _{2}~_{0}^{C} \partial _{t}^{\alpha } {\mathcal {U}}^{k+1}+\gamma _{2} {\mathcal {U}}^{k+1})), e^{k+1}_{M}\rangle _{0,\omega }| \nonumber \\&\quad \le D_{1,\alpha }\delta t^{\alpha } M^{-2r}+\frac{1}{4}(\lambda _{1}\beta _{\alpha ,\delta t}+\lambda _{2}) \Vert e_{M}^{k+1}\Vert ^{2}_{1,M} , \end{aligned}$$
(65)
$$\begin{aligned}&|\langle \delta _{2}^{k+1},e^{k+1}_{M}\rangle _{0,\omega }=c^{-1}_{\alpha , \delta t}|\langle E(\lambda _{1}\partial _{t} \varPi _{M}^{1,0}{\mathcal {U}}^{k+1}\nonumber \\&\qquad +\lambda _{2}~_{0}^{C}\partial _{t}^{\alpha } ~\varPi _{M}^{1,0} {\mathcal {U}}^{k+1} +\gamma _{2} \varPi _{M}^{1,0} {\mathcal {U}}^{k+1}), e^{k+1}_{M}\rangle _{0,\omega }|\nonumber \\&\quad \le D_{2,\alpha } \delta t^{\alpha } M^{-2r}+\frac{1}{4}(\lambda _{1}\beta _{\alpha ,\delta t}+\lambda _{2}) \Vert e_{M}^{k+1}\Vert ^{2}_{1,M}, \end{aligned}$$

and

$$\begin{aligned} |\langle \delta _{3}^{k+1},e^{k+1}_{M}\rangle _{0,\omega }|&\le c^{-1}_{\alpha ,\delta t}|\langle I_{N}^{c}f^{k+1},v_{M} \rangle _{N,\omega }\nonumber \\&\quad -\langle f^{k+1},v_{M}\rangle _{0,\omega }| +c^{-1}_{\alpha ,\delta t}|\langle r_{\varPi _{M}^{1,0}{\mathcal {U}}}^{k+1} , e^{k+1}_{M} \rangle _{0,\omega }|\nonumber \\&\le D_{3,\alpha } \delta t^{\alpha } M^{-2r}+D_{4,\alpha } \delta t^{2+\alpha } \nonumber \\&\quad +\frac{1}{4}(\lambda _{1}\beta _{\alpha ,\delta t}+\lambda _{2})\Vert e_{M}^{k+1}\Vert ^{2}_{1,M}. \end{aligned}$$
(66)

In view of (64), (65) and (66), we have

$$\begin{aligned}&\gamma _{2}\Vert e_{M}^{k+1} \Vert ^{2}_{1,M}+\frac{\gamma _{1}}{8}\Vert \partial _{x}e_{M}^{k+1}\Vert ^{2}_{1,M}\nonumber \\&\quad \le \lambda _{1}c_{\alpha , \delta t}\beta _{\alpha ,\delta t} \Vert e_{M}^{k}\Vert ^2_{1,M} +\lambda _{2}c_{\alpha ,\delta t}\sum _{j=0}^{k-1}(d_{\alpha ,j} -d_{\alpha ,j+1})\Vert e_{M}^{k-j}\Vert ^2_{1,M}\nonumber \\&\qquad +\lambda _{2}c_{\alpha ,\delta t} d_{\alpha ,k}\Vert e_{M}^{0}\Vert ^2_{1,M} +{\widetilde{D}}_{1,\alpha } M^{-2r} +{\widetilde{D}}_{2,\alpha } \delta t^{2}. \end{aligned}$$
(67)

If

$$\begin{aligned}&B_{1}=\min \left\{ \gamma _{2},\frac{\gamma _{1}}{8}\right\} ,\\&B_{2,\alpha ,\delta t}=\max \left\{ \lambda _{2}c_{\alpha ,\delta t},\frac{\lambda _{1}c_{\alpha ,\delta t}\beta _{\alpha ,\delta t}}{1-d_{\alpha ,1}}\right\} . \end{aligned}$$

Now, we can get the following inequality

$$\begin{aligned}&\Vert e_{M}^{k+1} \Vert ^{2}_{1,M}+\Vert \partial _{x}e_{M}^{k+1}\Vert ^{2}_{1,M}\\&\quad \le \sum _{j=1}^{k}\frac{B_{2,\alpha ,\delta t}}{B_{1}}(d_{\alpha ,k-j} -d_{\alpha ,k-j+1})(\Vert e_{M}^{j}\Vert ^2_{1,M} + \Vert \partial _{x}e_{M}^{j}\Vert ^2_{1,M})\\&\qquad +B_{1}^{-1}\lambda _{2}(1-\alpha ) \frac{t_{k}^{-\alpha }}{\varGamma (2-\alpha )} \Vert u_{M}^{0}\Vert ^2_{1,M}+{\widetilde{D}}_{1,\alpha } M^{-2r}+{\widetilde{D}}_{2,\alpha } \delta t^{2}. \end{aligned}$$

By Lemma 4, we have

$$\begin{aligned}&\Vert u_{M}^{k+1} \Vert ^{2}_{1,M}\le \Vert u_{M}^{k+1} \Vert ^{2}_{1,M} +\Vert \partial _{x}u_{M}^{k+1}\Vert ^{2}_{0,\omega }\nonumber \\&\quad \le \left( \frac{B_{1}^{-1}\lambda _{2}(1-\alpha )t_{k}^{-\alpha }}{\varGamma (2-\alpha )} \Vert u_{M}^{0}\Vert ^2_{1,M}+{\widetilde{D}}_{1,\alpha } M^{-2r}+{\widetilde{D}}_{2,\alpha } \delta t^{2}\right) \nonumber \\&\qquad e^{\frac{B_{2,\alpha ,\delta t}}{B_{1}}(d_{\alpha ,0}-d_{\alpha ,k})}. \end{aligned}$$
(68)

Appendix D: The proof of Lemma 15

Setting \(v_{M}=u_{M}^{k+1}\), we get

$$\begin{aligned}&{\mathcal {A}}_{1,\alpha ,\delta t}\langle u_{M}^{k+1},u_{M}^{k+1} \rangle _{1,M}+c^{-1}_{\alpha ,\delta t}\gamma a_{\omega }\langle u_{M}^{k+1},u_{M}^{k+1}\rangle =\langle {\mathcal {P}}_{t}^{I,\alpha }u_{M}^{k},u_{M}^{k+1} \rangle _{1,M}\nonumber \\&\quad + \left\{ {\begin{array}{ll} \langle I^{c}_{M}{\mathcal {Q}}(u_{M}^{0}),u_{M}^{1} \rangle _{1,M} + \langle I^{c}_{M}F^{1},u_{M}^{1}\rangle _{1,M},&{}k=0,\\ \langle 2I^{c}_{M}{\mathcal {Q}}(u_{M}^{k})-I^{c}_{M}{\mathcal {Q}}(u_{M}^{k-1}), u_{M}^{k+1} \rangle _{1,M}+ \langle I^{c}_{M}F^{k+1},u_{M}^{k+1}\rangle _{1,M},&{}k\ge 1. \end{array} } \right. \end{aligned}$$
(69)

We know

$$\begin{aligned}&({\mathcal {A}}_{2,\alpha ,\delta t}+\lambda _{2} d_{\alpha ,1}) \langle u_{M}^{0},u_{M}^{1} \rangle _{1,M}\le (\lambda _{1}\beta _{\alpha ,\delta t}+\lambda _{2}) \Vert u_{M}^{0}\Vert ^2_{1,M}\nonumber \\&\quad + \frac{(\lambda _{1}\beta _{\alpha ,\delta t}+\lambda _{2})}{4}\Vert u_{M}^{1} \Vert ^{2}_{1,M}, \end{aligned}$$
(70)

and

$$\begin{aligned}&\langle {\mathcal {P}}_{t}^{I,\alpha }u_{M}^{k},u_{M}^{k+1} \rangle _{1,M}\le \lambda _{1}\beta _{\alpha ,\delta t} \Vert u_{M}^{k} \Vert ^2_{1,M}+ \frac{{\mathcal {A}}_{2,\alpha ,\delta t}}{4}\Vert u_{M}^{k+1} \Vert ^{2}_{1,M}\nonumber \\&\quad +\lambda _{2}\sum _{j=0}^{k-1}(d_{\alpha ,j}-d_{\alpha ,j+1}) \Vert u_{M}^{k-j}\Vert ^2_{1,M}\nonumber \\&\quad +\frac{\lambda _{2}}{4}(d_{\alpha ,1}-d_{\alpha ,k})\Vert u_{M}^{k+1} \Vert ^{2}_{1,M} +\lambda _{2} d_{\alpha ,k}\Vert u_{M}^{0}\Vert ^2_{1,M}\nonumber \\&\quad +\frac{\lambda _{2} d_{\alpha ,k}}{4}\Vert u_{M}^{k+1} \Vert ^{2}_{1,M},\quad k\ge 1. \end{aligned}$$
(71)

Using Lemmas 12 and 3 and applying Eqs. (69), (70) and (71), we obtain

$$\begin{aligned}&\frac{3(\lambda _{1}\beta _{\alpha ,\delta t}+\lambda _{2})}{4}\Vert u_{M}^{1} \Vert ^{2}_{1,M}+\frac{c^{-1}_{\alpha ,\delta t}\gamma }{4}\Vert \partial _{x}u_{M}^{1}\Vert ^{2}_{0,\omega }\nonumber \\&\quad \le (\lambda _{1}\beta _{\alpha ,\delta t} +\lambda _{2}) \Vert u_{M}^{0}\Vert ^2_{1,M}\nonumber \\&\qquad +\langle I^{c}_{M}{\mathcal {Q}}(u_{M}^{0}),u_{M}^{1} \rangle _{1,M}+ \langle I^{c}_{M}F^{1},u_{M}^{1}\rangle _{1,M} \nonumber \\&\quad \le \sqrt{2}c_{1}(\lambda _{1}\beta _{\alpha ,\delta t} +\lambda _{2}) \Vert \partial _{x}u_{M}^{0}\Vert ^2_{0,\omega } \nonumber \\&\qquad +\langle I^{c}_{M} {\mathcal {Q}}(u_{M}^{0}),u_{M}^{1} \rangle _{1,M}+ \langle I^{c}_{M}F^{1},u_{M}^{1}\rangle _{1,M}\nonumber \\&\quad \le \sqrt{2}c_{1}(\lambda _{1}\beta _{\alpha ,\delta t} +\lambda _{2}) \Vert \partial _{x}u_{M}^{0}\Vert ^2_{0,\omega }\nonumber \\&\qquad + \frac{1}{(\lambda _{1}\beta _{\alpha ,\delta t}+\lambda _{2})}(\Vert I^{c}_{M}F^{1}\Vert ^{2}_{1,M}+\Vert I^{c}_{M}{\mathcal {Q}}(u_{M}^{0}) \Vert ^{2}_{1,M})\nonumber \\&\qquad +\frac{(\lambda _{1}\beta _{\alpha ,\delta t}+\lambda _{2})}{2}\Vert u_{M}^{1}\Vert ^{2}_{1,M},\quad k=0. \end{aligned}$$
(72)

We know that there exists a positive constants \(c_{2}\) such that \(|{\mathcal {Q}}({\mathcal {U}})|\le c_{2} |{\mathcal {U}}|\). Then, we conclude that

$$\begin{aligned}&\frac{(\lambda _{1}\beta _{\alpha ,\delta t}+\lambda _{2})}{4} \Vert u_{M}^{1} \Vert ^{2}_{1,M}+\frac{c^{-1}_{\alpha ,\delta t}\gamma }{4} \Vert \partial _{x}u_{M}^{1}\Vert ^{2}_{0,\omega } \\&\quad \le \frac{1}{(\lambda _{1}\beta _{\alpha ,\delta t}+\lambda _{2})}\Vert I^{c}_{M}F^{1} \Vert ^{2}_{1,M}\\&\qquad +\frac{c_{2}^{2}}{(\lambda _{1}\beta _{\alpha ,\delta t}+\lambda _{2})} \Vert u_{M}^{0}\Vert ^2_{1,M}+ \sqrt{2}c_{1}(\lambda _{1}\beta _{\alpha ,\delta t} \\&\qquad +\lambda _{2}) \Vert \partial _{x}u_{M}^{0}\Vert ^2_{0,\omega },~k=0. \end{aligned}$$

If

$$\begin{aligned}&C_{1,\alpha ,\delta t}=\min \left\{ \frac{\lambda _{1}\beta _{\alpha ,\delta t} +\lambda _{2})}{4},\frac{c^{-1}_{\alpha ,\delta t}\gamma }{4}\right\} ,\\&C_{2,\alpha ,\delta t}=\max \left\{ \frac{c_{2}^{2}}{(\lambda _{1}\beta _{\alpha ,\delta t}+\lambda _{2})},\sqrt{2}c_{1}(\lambda _{1}\beta _{\alpha ,\delta t}+\lambda _{2})\right\} , \end{aligned}$$

we can get the following inequality

$$\begin{aligned}&\Vert u_{M}^{1} \Vert ^{2}_{1,M}+\Vert \partial _{x}u_{M}^{1}\Vert ^{2}_{0,\omega } \le \frac{1}{C_{1,\alpha ,\delta t}(\lambda _{1}\beta _{\alpha ,\delta t}+\lambda _{2})}\Vert I^{c}_{M}F^{1}\Vert ^{2}_{1,M}\\&\quad +\frac{C_{2,\alpha ,\delta t}}{C_{1,\alpha ,\delta t}} (\Vert u_{M}^{0}\Vert ^2_{1,M}+ \Vert \partial _{x}u_{M}^{0}\Vert ^2_{0,\omega }). \end{aligned}$$

Now, noting Lemma 4, we obtain

$$\begin{aligned} \Vert u_{M}^{1} \Vert ^{2}_{1,M}+\Vert \partial _{x}u_{M}^{1}\Vert ^{2}_{0,\omega } \le {\mathbf {C}}_{1,\alpha ,\delta t}\Vert I^{c}_{M}F^{1}\Vert ^{2}_{1,M}, \end{aligned}$$

where \({\mathbf {C}}_{1,\alpha ,\delta t}=\frac{e^{\frac{C_{2,\alpha ,\delta t}}{C_{1}}}}{C_{1,\alpha ,\delta t}(\lambda _{1}\beta _{\alpha ,\delta t}+\lambda _{2})}\).

For \(k\ge 1\), it can also be shown

$$\begin{aligned}&\frac{3(\lambda _{1}\beta _{\alpha ,\delta t}+\lambda _{2})}{4} \Vert u_{M}^{k+1}\Vert ^{2}_{1,M}+\frac{c^{-1}_{\alpha ,\delta t}\gamma }{4}\Vert \partial _{x}u_{M}^{k+1}\Vert ^{2}_{0,\omega } \\&\quad \le \lambda _{1}\beta _{\alpha ,\delta t} \Vert u_{M}^{k}\Vert ^2_{1,M} \\&\qquad + \lambda _{2}\sum _{j=0}^{k-1}(d_{\alpha ,j}-d_{\alpha ,j+1}) \Vert u_{M}^{k-j}\Vert ^2_{1,M}+\lambda _{2} d_{\alpha ,k}\Vert u_{M}^{0}\Vert ^2_{1,M}\\&\qquad +\langle 2I^{c}_{M}{\mathcal {Q}}(u_{M}^{k})-I^{c}_{M} {\mathcal {Q}}(u_{M}^{k-1}),u_{M}^{k+1} \rangle _{1,M}\\&\qquad +\langle I^{c}_{M}F^{k+1},u_{M}^{k+1}\rangle _{1,M}\le \sqrt{2} \lambda _{1}\beta _{\alpha ,\delta t} \Vert u_{M}^{k}\Vert ^2_{0,\omega }\\&\qquad +\lambda _{2}\sum _{j=0}^{k-1}(d_{\alpha ,j}-d_{\alpha ,j+1})\Vert u_{M}^{k-j} \Vert ^2_{1,M}\\&\qquad +\lambda _{2} d_{\alpha ,k}\Vert u_{M}^{0}\Vert ^2_{1,M}+\langle 2I^{c}_{M} {\mathcal {Q}}(u_{M}^{k})-I^{c}_{M}{\mathcal {Q}}(u_{M}^{k-1}),u_{M}^{k+1} \rangle _{1,M}\\&\qquad +\langle I^{c}_{M}F^{k+1},u_{M}^{k+1}\rangle _{1,M}\\&\quad \le \sqrt{2}c_{1}\lambda _{1}\beta _{\alpha ,\delta t} \Vert \partial _{x}u_{M}^{k}\Vert ^2_{0,\omega }\\&\qquad +\lambda _{2}\sum _{j=0}^{k-1} (d_{\alpha ,j}-d_{\alpha ,j+1})\Vert u_{M}^{k-j}\Vert ^2_{1,M} +\lambda _{2} d_{\alpha ,k}\Vert u_{M}^{0}\Vert ^2_{1,M}\\&\qquad +\frac{1}{(\lambda _{1}\beta _{\alpha ,\delta t}+\lambda _{2})} (\Vert I^{c}_{M}F^{k+1}\Vert ^{2}_{1,M}+\Vert 2I^{c}_{M}{\mathcal {Q}}(u_{M}^{k})\\&\qquad -I^{c}_{M}{\mathcal {Q}}(u_{M}^{k-1})\Vert ^{2}_{1,M}) +\frac{(\lambda _{1}\beta _{\alpha ,\delta t}+\lambda _{2})}{2}\Vert u_{M}^{k+1} \Vert ^2_{1,M}\\&\quad \le \sqrt{2}c \lambda _{1}\beta _{\alpha ,\delta t} \Vert \partial _{x}u_{M}^{k}\Vert ^2_{0,\omega }+\lambda _{2}\sum _{j=1}^{k} (d_{\alpha ,k-j}-d_{\alpha ,k-j+1})\Vert u_{M}^{j}\Vert ^2_{1,M}\\&\qquad +\lambda _{2} d_{\alpha ,k}\Vert u_{M}^{0}\Vert ^2_{1,M}\\&\qquad +\frac{1}{(\lambda _{1}\beta _{\alpha ,\delta t}+\lambda _{2})}(\Vert I^{c}_{M}F^{k+1}\Vert ^{2}_{1,M}+ 8c_{2}^{2}\Vert u_{M}^{k}\Vert ^2_{1,M}\\&\qquad +2c_{2}^{2}\Vert u_{M}^{k-1}\Vert ^2_{1,M})+\frac{(\lambda _{1}\beta _{\alpha ,\delta t}+\lambda _{2})}{2}\Vert u_{M}^{k+1}\Vert ^2_{1,M}, \end{aligned}$$

and therefore

$$\begin{aligned}&\frac{(\lambda _{1}\beta _{\alpha ,\delta t}+\lambda _{2})}{4} \Vert u_{M}^{k+1}\Vert ^{2}_{1,M}+\frac{c^{-1}_{\alpha ,\delta t}\gamma }{4}\Vert \partial _{x}u_{M}^{k+1}\Vert ^{2}_{0,\omega }\nonumber \\&\quad \le \left( \lambda _{2}+\frac{1}{(\lambda _{1}\beta _{\alpha ,\delta t}+\lambda _{2})} \left( \frac{8c_{2}^{2}}{(1-d_{\alpha ,1})}+\frac{2c_{2}^{2}}{(d_{\alpha ,1} -d_{\alpha ,2})}\right) \right) \nonumber \\&\qquad \sum _{j=1}^{k}(d_{\alpha ,k-j}-d_{\alpha ,k-j+1}) \Vert u_{M}^{j}\Vert ^2_{1,M}\nonumber \\&\qquad +\frac{\sqrt{2}c_{1}\lambda _{1}\beta _{\alpha ,\delta t}}{1-d_{\alpha ,1}} \sum _{j=1}^{k}(d_{\alpha ,k-j}-d_{\alpha ,k-j+1}) \Vert \partial _{x}u_{M}^{j} \Vert ^2_{0,\omega }\nonumber \\&\qquad +\lambda _{2} d_{\alpha ,k}\Vert u_{M}^{0}\Vert ^2_{1,M} +\frac{1}{(\lambda _{1}\beta _{\alpha ,\delta t}+\lambda _{2})}\Vert I^{c}_{M}F^{k+1}\Vert ^{2}_{1,M}. \end{aligned}$$
(73)

If

$$\begin{aligned} C_{1,\alpha ,\delta t}&=\min \left\{ \frac{(\lambda _{1}\beta _{\alpha ,\delta t} +\lambda _{2})}{4},\frac{c^{-1}_{\alpha ,\delta t}\gamma }{4}\right\} ,\\ C_{2,\alpha ,\delta t}&=\max \left\{ \left( \lambda _{2}+\frac{1}{(\lambda _{1}\beta _{\alpha ,\delta t}+\lambda _{2})}\right. \right. \\&\quad \left. \left. \times \left( \frac{8c_{2}^{2}}{(1-d_{\alpha ,1})} +\frac{2c_{2}^{2}}{(d_{\alpha ,1}-d_{\alpha ,2})}\right) \right) ,\right. \\&\quad \left. \frac{\sqrt{2}c_{1}\lambda _{1}\beta _{\alpha ,\delta t}}{1-d_{\alpha ,1}}\right\} , \end{aligned}$$

we can get the following inequality

$$\begin{aligned}&\Vert u_{M}^{k+1} \Vert ^{2}_{1,M}+\Vert \partial _{x}u_{M}^{k+1}\Vert ^{2}_{0,\omega } \le \sum _{j=1}^{k}\frac{C_{2,\alpha ,\delta t}}{C_{1,\alpha ,\delta t}} (d_{\alpha ,k-j}-d_{\alpha ,k-j+1})\\&\quad (\Vert u_{M}^{j}\Vert ^2_{1,M} + \Vert \partial _{x}u_{M}^{j}\Vert ^2_{0,\omega })\\&\quad +C_{1,\alpha ,\delta t}^{-1}\lambda _{2} d_{\alpha ,k}\Vert u_{M}^{0}\Vert ^2_{1,M}\\&\quad +\frac{1}{C_{1,\alpha ,\delta t}(\lambda _{1}\beta _{\alpha ,\delta t} +\lambda _{2})}\Vert I^{c}_{M}F^{k+1}\Vert ^{2}_{1,M}. \end{aligned}$$

Noting Lemma 4, we have

$$\begin{aligned}&\Vert u_{M}^{k+1} \Vert ^{2}_{1,M}+\Vert \partial _{x}u_{M}^{k+1}\Vert ^{2}_{0,\omega }\\&\quad \le {\mathbf {C}}_{2,\alpha ,\delta t} \left( \Vert u_{M}^{0}\Vert ^2_{1,M}+\Vert I^{c}_{M}F^{k+1}\Vert ^{2}_{1,M}\right) \\&\qquad e^{{\mathbf {C}}_{3,\alpha ,\delta t}(d_{\alpha ,0}-d_{\alpha ,k})}, \end{aligned}$$

where \({\mathbf {C}}_{2,\alpha ,\delta t}=\max \{C_{1,\alpha ,\delta t}^{-1}\lambda _{2} d_{\alpha ,k},\frac{1}{C_{1,\alpha ,\delta t}(\lambda _{1}\beta _{\alpha ,\delta t}+\lambda _{2})}\}\) and \({\mathbf {C}}_{3,\alpha ,\delta t}=\frac{C_{2,\alpha ,\delta t}}{C_{1,\alpha ,\delta t}}\).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fardi, M., Ghasemi, M. A numerical solution strategy based on error analysis for time-fractional mobile/immobile transport model. Soft Comput 25, 11307–11331 (2021). https://doi.org/10.1007/s00500-021-05914-y

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00500-021-05914-y

Keywords

Navigation