Skip to main content

Advertisement

Log in

TDNN speed estimator applied to stator oriented IM sensorless drivers

  • Application of soft computing
  • Published:
Soft Computing Aims and scope Submit manuscript

Abstract

The direct measurement of speed in induction motors is costly and requires maintenance. Thus, sensorless techniques for estimating or predicting the speed in three-phase induction motors represent a feasible and economical solution. This work considers a single time delay neural network as a speed estimator in two different strategies of stator field-oriented induction motor drive: direct current and torque control. Time delay neural network makes the estimated signal robust against noise, that is usually found in switched power systems, and against disturbances on the input signals, since the estimator is not dependent only on instantaneous values. The synchronous speed and the electromagnetic torque, which are usual quantities in field oriented drives, are the inputs of the proposed neural estimator. In order to have a robust estimator facing induction motor parameter variations, the procedure of training and validating the neural networks are conducted with three different induction motors, from simulations to the experimental tests. An embedded system is also presented, and the scheme is tested considering various speed and load torque levels with different control strategies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  • Abu-Rub H, Stando D, Kazmierkowski MP (2013) Simple speed sensorless DTC-SVM scheme for induction motor drives. Bull Polish Acad Sci Tech Sci 61:301–307

    Google Scholar 

  • Alonge F, D’Ippolito F, Sferlazza A (2014) Sensorless control of induction-motor drive based on robust kalman filter and adaptive speed estimation. IEEE Trans Industr Electron 61(3):1444–1453

  • Alsofyani IM, Idris NRN (2016) Lookup-table-based DTC of induction machines with improved flux regulation and extended kalman filter state estimator at low-speed operation. IEEE Trans Industr Inf 12(4):1412–1425

    Article  Google Scholar 

  • Amezquita-Brooks L, Liceaga-Castro J, Liceaga-Castro E (2014) Speed and position controllers using indirect field-oriented control: a classical control approach. IEEE Trans Industr Electron 61(4):1928–1943

    Article  Google Scholar 

  • Ammar A, Bourek A, Benakcha A (2017) Nonlinear SVM-DTC for induction motor drive using input-output feedback linearization and high order sliding mode control. ISA Trans 67:428–442

    Article  Google Scholar 

  • Bahloul M, Chrifi-Alaoui L, Drid S, Souissi M, Chaabane M (2018) Robust sensorless vector control of an induction machine using multiobjective adaptive fuzzy luenberger observer. ISA Trans 74:144–154

    Article  Google Scholar 

  • Bierhoff MH (2017) A general PLL-type algorithm for speed sensorless control of electrical drives. IEEE Trans Industr Electron 64(12):9253–9260

    Article  Google Scholar 

  • Bose BK, Wasynczuk O, Sudhof SD (2002) Modern power eletronics and AC drives. Pretice Hall, New Jersey

    Google Scholar 

  • Caruana C, Asher GM, Sumner M (2005) Performance of hf signal injection techniques for zero-low-frequency vector control of induction machines under sensorless conditions. IEEE Trans Industr Electron 53(1):225–238

    Article  Google Scholar 

  • Casadei D, Profumo F, Serra G, Tani A (2002) FOC and DTC: two viable schemes for induction motors torque control. IEEE Trans Power Electron 17(5):779–787

    Article  Google Scholar 

  • Cherian J, Mathew J (2012) Parameter independent sensorless vector control of induction motor. In: 2012 IEEE international conference on power electronics, drives and energy systems (PEDES), pp 1–6

  • Kan J, Zhang K, Wang Z (2015) Indirect vector control with simplified rotor resistance adaptation for induction machines. IET Power Electron 8(7):1284–1294

    Article  Google Scholar 

  • Kazmierkowski MP, Franquelo LG, Rodriguez J, Perez MA, Leon JI (2011) High-performance motor drives. IEEE Ind Electron Mag 5(3):6–26

    Article  Google Scholar 

  • Krause PC, Wasynczuk O, Sudhof SD (2002) Analysis of electric machinery and drive systems. Academic Press, New Jersey

    Book  Google Scholar 

  • Lang KJ, Hinton GE (1988) The development of the time-delay neural network architecture for speech recognition. Technical Report CMU-CS-88-152

  • Lascu C, Boldea I, Blaabjerg F (2000) A modified direct torque control for induction motor sensorless drive. IEEE Trans Ind Appl 36(1):122–130

    Article  Google Scholar 

  • Lima F, Kaiser W, da Silva IN, de Oliveira Jr AA (2014) Open-loop neuro-fuzzy speed estimator applied to vector and scalar induction motor drives. Appl Soft Comput 21:469–480

    Article  Google Scholar 

  • Maiti S, Verma V, Chakraborty C, Hori Y (2012) An adaptive speed sensorless induction motor drive with artificial neural network for stability enhancement. IEEE Trans Industr Inf 8(4):757–766

    Article  Google Scholar 

  • Merabet A, Tanvir AA, Beddek K (2017) Torque and state estimation for real-time implementation of multivariable control in sensorless induction motor drives. IET Electr Power Appl 11(4):653–663. https://doi.org/10.1049/iet-epa.2016.0557

    Article  Google Scholar 

  • Oguz Y, Dede M (2011) Speed estimation of vector controlled squirrel cage asynchronous motor with artificial neural networks. Energy Convers Manag 52(1):675–686

    Article  Google Scholar 

  • Ong CM (1998) Dynamic simulation of electric machinery: using matlab/simulink. Prentice-Hall, Upper Sanddle River

    Google Scholar 

  • Pimkumwong N, Wang MS (2018) Full-order observer for direct torque control of induction motor based on constant V/F control technique. ISA Trans 73:189–200

    Article  Google Scholar 

  • Ponce P, Ponce H, Molina A (2018) Doubly fed induction generator (DFIG) wind turbine controlled by artificial organic networks. Soft Comput 22(9):2867–2879

    Article  Google Scholar 

  • Santos TH, Goedtel A, da Silva SAO, Suetake M (2014) Scalar control of an induction motor using a neural sensorless technique. Electric Power Syst Res 108:322–330

    Article  Google Scholar 

  • Smith AN, Gadoue SM, Finch JW (2016) Improved rotor flux estimation at low speeds for torque MRAS-based sensorless induction motor drives. IEEE Trans Energy Convers 31(1):270–282

    Article  Google Scholar 

  • Sun X, Chen L, Yang Z, Zhu H (2013) Speed-sensorless vector control of a bearingless induction motor with artificial neural network inverse speed observer. IEEE/ASME Trans Mechatron 18(4):1357–1366

    Article  Google Scholar 

  • Sun X, Cao J, Lei G, Guo Y, Zhu J (2020a) Speed sensorless control for permanent magnet synchronous motors based on finite position set. IEEE Trans Industr Electron 67(7):6089–6100. https://doi.org/10.1109/TIE.2019.2947875

    Article  Google Scholar 

  • Sun X, Hu C, Lei G, Yang Z, Guo Y, Zhu J (2020b) Speed sensorless control of SPMSM drives for EVs with a binary search algorithm-based phase-locked loop. IEEE Trans Veh Technol 69(5):4968–4978. https://doi.org/10.1109/TVT.2020.2981422

    Article  Google Scholar 

  • Tarchala G, Orlowska-Kowalska T (2018) Equivalent-signal-based sliding mode speed MRAS-type estimator for induction motor drive stable in the regenerating mode. IEEE Trans Industr Electron 65(9):6936–6947

  • Tatte YN, Aware MV (2017) Direct torque control of five-phase induction motor with common-mode voltage and current harmonics reduction. IEEE Trans Power Electron 32(11):8644–8654

    Article  Google Scholar 

  • Verrelli CM, Savoia A, Mengoni M, Marino R, Tomei P, Zarri L (2014) On-line identification of winding resistances and load torque in induction machines. IEEE Trans Control Syst Technol 22(4):1629–1637

    Article  Google Scholar 

  • Waibel A, Hanazawa T, Hinton G, Shikano K, Lang K (1989) Phoneme recognition using time-delay neural networks. IEEE Trans Acoust Speech Signal Process 37(3):328–339. https://doi.org/10.1109/29.21701

    Article  Google Scholar 

  • Yang S, Li X, Ding D, Zhang X, Xie Z (2016) Speed sensorless control of induction motor based on sliding-mode observer and MRAS. In: 2016 IEEE 8th international power electronics and motion control conference (IPEMC-ECCE Asia), pp 1889–1893

  • Yin Z, Zhao C, Liu J, Zhong Y (2013) Research on anti-error performance of speed and flux estimator for induction motor using robust reduced-order EKF. IEEE Trans Industr Inf 9(2):1037–1046

    Article  Google Scholar 

  • Yin Z, Li G, Zhang Y, Liu J, Sun X, Zhong Y (2017) A speed and flux observer of induction motor based on extended kalman filter and markov chain. IEEE Trans Power Electron 32(9):7096–7117

    Article  Google Scholar 

  • Zbede YB, Gadoue SM, Atkinson DJ (2016) Model predictive MRAS estimator for sensorless induction motor drives. IEEE Trans Industr Electron 63(6):3511–3521

    Article  Google Scholar 

  • Zhang X (2013) Sensorless induction motor drive using indirect vector controller and sliding-mode observer for electric vehicles. IEEE Trans Veh Technol 62(7):3010–3018

    Article  Google Scholar 

  • Zhao L, Huang J, Chen J, Ye M (2016) A parallel speed and rotor time constant identification scheme for indirect field oriented induction motor drives. IEEE Trans Power Electron 31(9):6494–6503

    Article  Google Scholar 

Download references

Acknowledgements

Author Alessandro Goedtel has received research grants from National Council for Scientific and Technological Development - CNPq (Processes 552269/2011-5, 405228/2016-3). Author Ivan Nunes da Silva has received grant from São Paulo Research Support Foundation - FAPESP (Process 2011/17610-0).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marcelo Favoretto Castoldi.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

dos Santos, T.H., da Silva, I.N., Goedtel, A. et al. TDNN speed estimator applied to stator oriented IM sensorless drivers. Soft Comput 25, 12977–12988 (2021). https://doi.org/10.1007/s00500-021-05989-7

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00500-021-05989-7

Keywords

Navigation