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Spiral-based chaotic chicken swarm optimization algorithm for parameters 1 

identification of photovoltaic models 2 

Miao Li1, Chunquan Li1, Zhengyu Huang1, Jiehui Huang1, Gaige Wang2 and Peter X. Liu1 3 

Abstract 4 

Photovoltaic (PV) systems are becoming increasingly significant because they can convert solar energy into electricity. The 5 

conversion effeciency is ralated to the PV models’ parameters, so it is crucial to identify parameters of PV models. Recently, 6 

various heuristic methods have been proposed to identify the parameters, but they cannot provide sufficient accurate and reliable 7 

performance. To address this problem, this paper proposes a spiral-based chaos chicken swarm optimization algorithm (SCCSO) 8 

including three stratages: i) the information-sharing strategy provides the latest information of the roosters for searching global 9 

optimal solution, beneficial to improve the exploitation ability; ii) the spiral motion strategy can enable hens and chicks to move 10 

towards their corresponding targets with a spiral trajectory, improving the exploration ability; iii) a self-adaptive-based chaotic 11 

disturbance mechanism is introduced around the global optimal solution to generate a promising solution for the worst chick at 12 

each iteration, thereby improving the convergence speed of the chicken flock. Besides, SCCSO is used for identifying different 13 

PV models such as the single diode, the double diode, and PV module models. Comprehensive analysis and experimental results 14 

show that SCCSO provides better robustness and accuracy than other advanced heuristic methods. 15 

Keywords 16 

Chicken swarm optimization algorithm (CSO); spiral shrinkage; parameters identification; photovoltaic models. 17 

Declarations 18 

Funding 19 

This work was supported in part by the National Natural Science Foundation of China under Grants 61863028, 81660299, 20 

and 61503177, and in part by the Science and Technology Department of Jiangxi Province of China under Grants 21 

20161ACB21007, 20171BBE50071, and 20171BAB202033. 22 

Conflicts of interest/Competing interests 23 

The authors declare that they have no known competing financial interests or personal relationships that could have appeared 24 

to influence the work reported in this paper. 25 

Availability of data and material 26 

All data generated or analysed during this study are included in this published article. 27 

Code availability 28 

Not applicable. 29 

Authors' contributions 30 

Miao Li: Methodology, Software, Formal analysis, Writing - original draft. Chunquan Li: Funding acquisition, Writing - review 31 

& editing, Supervision. Zhengyu Huang: Methodology, Validation, Writing - review & editing. Jiehui Huang: Conceptualization, 32 

Writing - review & editing. Gaige Wang: Writing - review & editing, Supervision. Peter X. Liu: Writing - review & editing, 33 

Supervision. 34 

Ethics approval 35 

Not applicable. 36 

Consent to participate 37 

Not applicable. 38 

Consent for publication 39 

Written informed consent for publication was obtained from all participants. 40 

 

 Chunquan Li 
lichunquan@ncu.edu.cn 

1

  Information Engineering School, Nanchang University, Nanchang 330031, China 
2

  Department of Computer Science and Technology, Ocean University, Qingdao 266100, China 



2 

1 Introduction 41 

With the depletion of non-renewable energy, it is more and more urgent to find clean alternative energy, and thus people pay 42 

more attention to the utilization of renewable energy (Qais et al. 2019a). Among all renewable energy sources, solar energy is 43 

regarded as inexhaustible clean energy, which has attracted worldwide attention due to its low development cost and huge 44 

development potential (Manel et al. 2018). Solar energy can be converted into electricity through PV systems (Zhang et al. 2020b). 45 

Nevertheless, the utilization efficiency of solar energy is greatly affected by weather and other environmental factors as PV arrays 46 

of PV systems are easily damaged in those tough conditions (Eseye et al. 2017; Zhang et al. 2020a). As a result, to control and 47 

optimize PV systems, it is significant to build accurate PV models by measured voltage-current data for evaluating the actual 48 

operation behavior of PV arrays (Li et al. 2020; Zaimi et al. 2019).  49 

Several mathematical models have successfully depicted the performance and nonlinear behavior of PV systems. Among them, 50 

the single diode model and double diode model are widely adopted in various practical problems (Aly et al. 2019; Liu et al. 2020). 51 

What’s more, the accuracy of PV models mainly depends on their parameters. However, the parameters usually change and even 52 

are unavailable owing to aging, faults, and unstable operating conditions of the PV systems (Harrou et al. 2018; Jiao et al. 2020). 53 

Therefore, to effectively simulate, evaluate, and control PV systems, it is indispensable to identify the model parameters accurately 54 

and reliably. This has triggered the upsurge of researchers in developing various optimization methods for the parameter 55 

identification of PV models. 56 

In essence, the parameter identification of PV models can be regarded as an optimization problem and solved by building an 57 

effective objective function. To obtain the corresponding optimal solutions, various optimal algorithms have been designed. They 58 

can be roughly divided into deterministic methods and heuristic methods (Abdel-Basset et al. 2021a). The deterministic methods 59 

need to be combined with several model constraints, including differentiability and convexity (Elsheikh et al. 2019). It is apt for 60 

the deterministic methods to fall into the local optimum and their performance largely depends on their initial solutions (Gao et 61 

al. 2018; Ridha et al. 2020). In contrast, the performance of the heuristic methods is almost not affected by model constraints 62 

(Jordehi 2018), so they are used to solve various parameters identification of PV models. 63 

Many heuristic algorithms have already been put in use. Niu et al. proposed an improved TLBO (ITLBO) with elite strategy to 64 

obtain parameters of PV models according to the current-voltage results of solar cells (Niu et al. 2014). Chen et al. developed a 65 

generalized opposite teaching learning-based optimization algorithm (GOTLBO) to solve two parameter identification problems 66 

of solar cell models, including single diode model and double diode model (Chen et al. 2016). Yu et al. introduced the self-adaptive 67 

teaching-learning-based optimization algorithm (SATLBO) to accurately and reliably identify the PV model parameters (Yu et al. 68 

2017a). Abdel-Basset et al. applied a modified teaching–learning based optimization (MTLBO) to the accurate and efficient 69 

parameter estimation of PV models (Abdel-Basset et al. 2021b). Jaya algorithm proposed by Rao can perform effective exploration 70 

and was widely used to identify the parameters of PV models (Venkata Rao 2016). Additionally, other Jaya based algorithms are 71 

also widely utilized in PV models’ parameter identification. For instance, the new Jaya algorithm based on elite opposition (EO-72 

Jaya) (A et al.), an improved JAYA optimization algorithm (IJAYA) (Yu et al. 2017b), and the performance-guided JAYA (PGJAYA) 73 

algorithm (Yu et al. 2019). Yu et al. designed a multiple learning backtracking search algorithm (MLBSA) for the parameters 74 

identification of different PV models (Yu et al. 2018). Xiong et al. proposed a modified search strategy-assisted crossover whale 75 

optimization algorithm (MCSWOA) to extract accurate parameters of PV models (Xiong et al. 2019). Allam et al. used the moth 76 

flame optimization algorithm (MFO) for the parameter extraction process of a three diode model, a double diode and the modified 77 

double diode models of the same cell/module (Allam et al. 2016). An improved cuckoo search optimization is presented for the 78 

parameters extraction of PV cells (Gude and Jana 2020), and a teaching-learning-based artificial bee colony (TLABC) is employed 79 

for the solar PV parameters estimation problems (Chen et al. 2018). Besides, an improved brain storming optimization algorithm 80 

(IBSO) (Yan et al. 2019), and hybrid symbiotic differential evolution moth-flame optimization algorithm (HSDEMFO) are also 81 

presented to accurately identify parameters of PV models (Wu et al. 2020). However, as the parameters identification problem of 82 

PV models is multimodal, nonlinear, and contains lots of local optimums, most heuristic algorithms are not easy to sink into global 83 

optimal solutions. Therefore, it is still a challenging task to develop a competitive algorithm for identifying the parameters of 84 

different PV models accurately and reliably. 85 

Inspired by the foraging behavior and hierarchical order of chickens in nature, Meng et al. proposed a biological heuristic 86 

algorithm in 2014, namely chicken swarm optimization algorithm (CSO), which is employed to solve lots of optimization 87 

problems in the real world (Meng et al. 2014). In CSO, the information in the chicken flock can be fully utilized to achieve the 88 

balance between the exploration ability and the exploitation ability. Moreover, CSO can obtain better results than some classical 89 

swarm intelligence optimization algorithms such as PSO, DE, and BA when solving 12 benchmark function problems and other 90 

practical engineering problems (Meng et al. 2014). Owing to its advantage in solving optimization problems, CSO has been applied 91 

in collaborative beamforming in wireless sensor network (Al Shayokh and Shin 2017), evaluation of regional water resources 92 

carrying capacity (Yu et al. 2020), robot path planning (Mu et al. 2016), fault detection issues (Moldovan et al. 2018), and other 93 

issues (Ahmed et al. 2018; Sanchari et al. 2018; Taie et al. 2017). 94 

Nevertheless, CSO has some disadvantages in solving the parameters identification problem of PV models such as poor ability 95 

in jumping out from the local optimum, insufficient information utilization, and low convergence speed. To overcome these 96 

mentioned shortcomings, this paper proposes a spiral-based chaotic chicken swarm optimization algorithm (SCCSO), which 97 

involves an information-sharing strategy, a spiral motion strategy, and a self-adaptive-based chaotic disturbance mechanism. First, 98 

an information-sharing strategy is employed for roosters to fully use their latest information about food. Two roosters are randomly 99 

selected before the update of each rooster. When updating, each rooster draws near the rooster with a better fitness value while 100 

keeps away from the other rooster with a worse fitness value, which is propitious to improve the exploitation ability. Second, the 101 

spiral motion strategy allows both hens and chicks to move to their respective targets in a spiral trajectory, which expands the 102 
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searching range and improves the exploration ability. Especially, to fully use the information in the chicken flock, chicks follow 103 

roosters in early iteration stages while coming after hens in the later iteration stages. Third, a self-adaptive-based chaotic 104 

disturbance mechanism is introduced to improve the convergence speed. By imposing a certain disturbance on the global optimal 105 

solution, a new individual is generated to update the individual with the worst fitness value, which effectively improves the 106 

convergence speed. To verify the accuracy and robustness of SCCSO, it is compared with other advanced algorithms on different 107 

PV models including single diode, double diode, and PV module models. Experimental results show that the proposed SCCSO 108 

provides better robustness and accuracy compared with other advanced heuristic algorithms. 109 

The main contributions of this paper are given as follows. 110 

⚫ A new algorithm SCCSO is proposed to solve the parameters identification problems of PV models. 111 

⚫ An information-sharing strategy is designed to search for a globally optimal solution by the latest information in roosters and 112 

improve the exploitation ability. 113 

⚫ A spiral motion strategy is applied to expand the scope of searching global optimal solutions and improve the exploration 114 

ability. 115 

⚫ A self-adaptive-based chaotic disturbance mechanism is employed by guiding the worst chick move near the global optimal 116 

solution, speeding up the convergence speed of the chicken flock. 117 

⚫ The effectiveness of SCCSO is comprehensively evaluated in the parameters identification problems of various PV models. 118 

Following is the structure of the rest paper. Section 2 shows the modeling of PV systems and the problem formulation. Section 119 

3 briefly introduces the original CSO. The proposed SCCSO algorithm is introduced detailedly in Section 4. Section 5 analyzes 120 

and compares the experimental results. Finally, Section 6 concludes this paper. 121 

2 Modeling and problem formulation 122 

Several PV models have been developed to describe the current-voltage characteristics of solar cells in the literature. Only the 123 

single diode model and double diode model have been put into factual optimization problems. Brief descriptions and objective 124 

functions of these models are presented in this section. 125 

2.1 Single diode model 126 

The equivalent circuit of the single diode model is shown in Fig. 13. 127 

128 

 129 
As we can see, it is composed by a current source connected in parallel with the diode, a shunt resistor representing the leakage 130 

current passing through, and a series resistor of the load current considering the related loss. According to Kirchhoff's current law 131 

(Diantoro et al. 2018), the output current is calculated by (1). 132 

 𝐼𝐿 = 𝐼𝑃𝐻 − 𝐼𝐷 − 𝐼𝑆𝐻  (1) 133 

where 𝐼𝐿  is the output current, and 𝐼𝑃𝐻  is the photo-generated current. 𝑅𝑆𝐻 and 𝑅𝐿 are the series resistance. 𝐼𝐷 is the current 134 

through the diode obtained by Shockley diode [41], and 𝐼𝑆𝐻  is the current through the shunt resistor. Both of them are calculated 135 

by (2) and (3), respectively. 136 

 𝐼𝐷 = 𝐼𝑆𝐷 [exp (𝑉𝐿+𝑅𝐿𝐼𝐿𝑛𝑉𝑡 ) − 1] (2) 137 

 𝐼𝑆𝐻 = 𝑉𝐿+𝑅𝐿𝐼𝐿𝑅𝑆𝐻  (3) 138 

where 𝐼𝑆𝐷 is the reverse saturation current, 𝑉𝐿 is the output voltage of the port, 𝑛 is the ideal factor of the diode, and 𝑉𝑡 is the 139 

Thermal voltage calculated by (4). 140 

 𝑉𝑡 = 𝐾𝑡𝑞  (4) 141 

where 𝐾 is Boltzmann constant (1.3806503 × 10-23𝐽/𝐾). 𝑡 is the working temperature of the diode in Kelvin. 𝑞 is the charge 142 

amount of meta charge (1.60217646 × 10-19𝐶). By combining (1)-(4), (5) is obtained to reflect the relationship between the output 143 

current, the output voltage, and the PV model parameters. 144 

 
3  The figure was drawn with Visio. 
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 𝐼𝐿 = 𝐼𝑃𝐻 − 𝐼𝑆𝐷 [exp ((𝑉𝐿+𝑅𝐿𝐼𝐿)𝑞𝑛𝐾𝑡 ) − 1] − 𝑉𝐿+𝑅𝐿𝐼𝐿𝑅𝑆𝐻  (5) 145 

From (5), it can be seen that five unknown parameters (𝐼𝑃𝐻 , 𝐼𝑆𝐷, 𝑅𝐿, 𝑅𝑆𝐻, and 𝑛) need identifying for the single diode 146 

model. The more accurate these parameters are identified, the better the characteristics of PV systems can be reflected. 147 

2.2 Double diode model 148 

Fig. 23 shows the equivalent circuit of the double diode model. 149 

150 

 151 

As we can see, it is formed by connecting a diode in parallel at both ends of the diode connected in parallel with the shunt 152 

resistor and current source. By combining (2) and (4), the output current can be calculated as 153 

 𝐼𝐿 = 𝐼𝑃𝐻 − 𝐼𝑆𝐷1 [exp (𝑉𝐿+𝑅𝐿𝐼𝐿𝑛1𝑉𝑡 ) − 1] − 𝐼𝑆𝐷2 [exp (𝑉𝐿+𝑅𝐿𝐼𝐿𝑛2𝑉𝑡 ) − 1] − 𝑉𝐿+𝑅𝐿𝐼𝐿𝑅𝑆𝐻  (6) 154 

where 𝐼𝐷1 and 𝐼𝐷2 are diffusion current and saturation current, respectively. 𝐼𝑆𝐷1 and 𝐼𝑆𝐷2 are reverse saturation current of 155 

rectifier diode and compound diode, respectively. 𝑛1  and 𝑛2  are the ideal factor of two diodes. From (6), there are seven 156 

unknown parameters (𝐼𝑃𝐻, 𝐼𝑆𝐷1, 𝐼𝑆𝐷2,  𝑅𝐿, 𝑅𝑆𝐻, 𝑛1, and 𝑛2) need identifying for the double diode model. 157 

2.3 Photovoltaic module model 158 

Fig. 33 provides the equivalent circuit of a single diode PV module, which is composed of a plurality of solar cells connected 159 

in parallel and series. 160 

 161 

 162 

The output current 𝐼𝐿  is calculated by (7). 163 

 
𝐼𝐿𝑁𝑃 = 𝐼𝑃𝐻 − 𝐼𝑆𝐷 [exp ((𝑉𝐿⋅𝑁𝑃+𝑅𝐿𝐼𝐿⋅𝑁𝑆)𝑞𝑛𝐾𝑡⋅𝑁𝑆𝑁𝑃 ) − 1] − 𝑉𝐿⋅𝑁𝑃+𝑅𝐿𝐼𝐿⋅𝑁𝑆𝑅𝑆𝐻⋅𝑁𝑆𝑁𝑃  (7) 164 

where 𝑁𝑃  and 𝑁𝑆  represent the number of solar cells connected in parallel and series, respectively. Here, the unknown 165 

parameters to be identified are 𝐼𝑃𝐻 , 𝐼𝑆𝐷, 𝑅𝐿, 𝑅𝑆𝐻, and 𝑛. 166 

2.4 Objective function 167 

The PV models’ parameters identification problem can be transformed into optimization problems, minimizing the difference 168 

between the experimental and simulated data. The error functions of the single and double diode models are respectively defined 169 

by (8) and (9):  170 

 { 
 𝐹𝑒𝑟𝑟𝑜𝑟(𝑉𝐿 , 𝐼𝐿 , 𝑋) = 𝐼𝑃𝐻 − 𝐼𝑆𝐷 [exp ((𝑉𝐿+𝑅𝐿𝐼𝐿)𝑞𝑛𝐾𝑡 ) − 1]− 𝑉𝐿+𝑅𝐿𝐼𝐿𝑅𝑆𝐻 − 𝐼𝐿𝑋 = {𝐼𝑃𝐻 , 𝐼𝑆𝐷 , 𝑅𝐿 , 𝑅𝑆𝐻 , 𝑛}  (8) 171 

 {  
  𝐹𝑒𝑟𝑟𝑜𝑟(𝑉𝐿 , 𝐼𝐿 , 𝑋) = 𝐼𝑃𝐻 − 𝐼𝑆𝐷1 [exp ((𝑉𝐿+𝑅𝐿𝐼𝐿)𝑞𝑛1𝐾𝑡 ) − 1]−𝐼𝑆𝐷2 [exp ((𝑉𝐿+𝑅𝐿𝐼𝐿)𝑞𝑛2𝐾𝑡 ) − 1] − 𝑉𝐿+𝑅𝐿𝐼𝐿𝑅𝑆𝐻 − 𝐼𝐿𝑋 = {𝐼𝑃𝐻 , 𝐼𝑆𝐷1, 𝐼𝑆𝐷2, 𝑅𝐿 , 𝑅𝑆𝐻 , 𝑛1, 𝑛2}  (9) 172 
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Fig. 2 Equivalent circuit of the double diode model 

Fig. 3 Equivalent circuit of the PV module model 
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The root mean square error (𝑅𝑀𝑆𝐸) (Qais et al. 2020a) is used as the objective function of the overall difference between 173 

experimental and simulated current data: 174 

 𝑅𝑀𝑆𝐸(𝑋) = √ 1𝑁𝑚∑ 𝐹𝑖𝑒𝑟𝑟𝑜𝑟(𝑉𝐿 , 𝐼𝐿 , 𝑋)2𝑁𝑖=1  (10) 175 

where 𝑋 is the solution vector composed of the PV model parameters to be identified, and 𝑁𝑚 is the number of measured 𝐼–𝑉 176 

data pairs, 𝑖 ∈ {1, 2,⋯ ,𝑁}. 177 

3 Original CSO algorithm 178 

In 2014, inspired by the foraging behavior and hierarchy of the chicken flock in nature, Meng et al. proposed a chicken swarm 179 

optimization algorithm (CSO), which is applied to solve various optimization problems (Meng et al. 2014). For simplicity, the 180 

behavior of the chicken flock is idealized by the following regulations: 181 

(1) The chicken flock is divided into rooster sub-flock, hen sub-flock, and chick sub-flock according to the fitness value of each 182 

individual in the chicken flock. The individuals with better fitness values are defined as roosters, followed by hens, and those with 183 

the worst fitness values act as chicks. Particularly, the individual with the best fitness value is defined as the leader rooster, and 184 

some of the hens are randomly selected as mother hens. The mother-child relationship is established by randomly choosing mother-185 

hens and chicks. Similarly, the spouse relationship between hens and roosters is also done by randomly selecting hens and roosters. 186 

(2) The entire chicken flock is divided into several clusters. Each cluster consists of a rooster, some hens, and some chicks. 187 

(3) The identity of each individual is updated according to the corresponding fitness value at every 𝒢 generation. When the 188 

identity of each individual is updated, the mother-child and the spouse relationship are also updated. 189 

(4) The individuals in each sub-flock search for food under the leadership of roosters and the food is defined as the global 190 

optimal solution. Specifically, hens follow their spouses for food and steal food from other hens or roosters. Chicks follow their 191 

corresponding mother-hens to forage. The better the fitness values of individuals are, the more dominant the individuals are in the 192 

process of foraging or stealing food. 193 

In CSO, the position of each individual is regarded as a candidate solution for optimization problems. 𝒩 is the number of 194 

individuals in the chicken flock. Each individual searches food in 𝒟 space with dimensions and update its identity at every 𝒢 195 

generation. The range of the serial numbers of each individual is {1, 2, 3,⋯ ,𝛮𝑟 , 𝛮𝑟 + 1,⋯ ,𝛮ℎ, 𝛮ℎ + 1,⋯ ,𝛮𝑐}, where 𝛮𝑟, 𝛮ℎ, 196 

and 𝛮𝑐 are the maximum serial numbers of the roosters, hens, and chicks in each sub-flock after sorting, respectively. More 197 

details are shown as follows. 198 

3.1 Rooster foraging 199 

Each rooster forages under the guidance of other roosters in the rooster sub-flock. The original position and the updated position 200 

of each rooster are defined respectively as 𝛸𝑖,𝑗, and 𝛸𝑖,𝑗𝑛𝑒𝑤, where 𝑖 ∈ {1, 2, 3,⋯ ,𝛮𝑟}, 𝑗 ∈ {1, 2, 3,⋯ , 𝐷}. Roosters with smaller 201 

fitness can forage food in a wider searching range. The foraging behaviors are expressed by (11) and (12), respectively. 202 

 𝛸𝑖,𝑗𝑛𝑒𝑤 = 𝛸𝑖,𝑗 ⋅ (1 + ℜ𝑎𝑛𝑑𝑛(0, 𝜎2)) (11) 203 

 𝜎2 = {exp ((𝑓𝑛−𝑓𝑖)|𝑓𝑖|+𝜁 ) , if  𝑓𝑖> 𝑓𝑛1 , otherwise
 (12) 204 

where ℜ𝑎𝑛𝑑𝑛(0, 𝜎2) is the normal distribution with the average value of 0 and the standard deviation of 𝜎2. 𝑓 is the fitness 205 

function. 𝑓𝑖 and 𝑓𝑛 are the fitness values of the 𝑖th rooster and the 𝑛th rooster, respectively, where 𝑖, 𝑛 ∈ {1, 2, 3,⋯ ,𝛮𝑟}, and 206 𝑖 ≠ 𝑛. 𝜁 is a number approaching 0, which is used to prevent the denominator |𝑓𝑖| + 𝜁 from being 0. 207 

3.2 Hens foraging 208 

In the chicken flock, hens can obtain food by following their spouses or stealing from other roosters and hens. The original 209 

position and the updated position of each hen are defined respectively as 𝛸𝑖,𝑗 and 𝛸𝑖,𝑗𝑛𝑒𝑤, where 𝑖 ∈ {𝛮𝑟 + 1, 𝛮𝑟 + 2,⋯ ,𝛮ℎ}, 210 𝑗 ∈ {1, 2, 3,⋯ , 𝐷}. 𝛸𝑐,𝑗 is the position of a spouse, and 𝛸𝑑,𝑗 is the position of the individual which the 𝑖th hen wants to steal 211 

food, where 𝑐 ∈ {1, 2, 3,⋯ ,𝛮𝑟} , 𝑑 ∈ {1, 2, 3,⋯ ,𝛮ℎ} . The stealing and searching abilities of hens are related to their fitness 212 

values. The smaller the fitness value is, the stronger the foraging and stealing abilities are. These foraging behaviors are described 213 

by the following (13)-(15): 214 

 𝛸𝑖,𝑗𝑛𝑒𝑤 = 𝛸𝑖,𝑗 + 𝑆1 ⋅ ℜ𝑎𝑛𝑑 ⋅ (𝛸𝑐,𝑗 − 𝛸𝑖,𝑗) + 𝑆2 ⋅ ℜ𝑎𝑛𝑑 ⋅ (𝛸𝑑,𝑗 − 𝛸𝑖,𝑗) (13) 215 

 𝑆1 = exp (𝑓𝑖−𝑓𝑐|𝑓𝑖|+𝜁) (14) 216 

 𝑆2 = exp(𝑓𝑑 − 𝑓𝑖) (15) 217 

where ℜ𝑎𝑛𝑑 is a random number ranging within [0,1]. 218 

3.3 Chicken foraging 219 

Chicks follow their mothers to forage food. The smaller their fitness values, the easier for them to find food in the foraging 220 

process. The foraging behavior of the chicks is shown in (16): 221 

 𝛸𝑖,𝑗𝑛𝑒𝑤 = 𝛸𝑖,𝑗 +𝜛 ⋅ (𝛸𝑚,𝑗 − 𝛸𝑖,𝑗) (16) 222 

where 𝛸𝑖,𝑗  and 𝛸𝑖,𝑗𝑛𝑒𝑤  are the original position and the updated position of each chick, respectively. For each chick, 𝑖 ∈223 {𝛮ℎ + 1, 𝛮ℎ + 2,⋯ ,𝛮𝑚}, and 𝑗 ∈ {1, 2, 3,⋯ , 𝐷}. 𝛸𝑚,𝑗 is the position of the mother hen corresponding to the 𝑖th chick, where 224 
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𝑚 ∈ {𝛮𝑟 + 1, 𝛮𝑟 + 2,⋯ ,𝛮ℎ} . 𝜛  is the following probability, which indicates the probability for each chick following its 225 

mother-hen to forage. Considering the differences between each chick, 𝜛 is randomly generated between 0 and 2. 226 

3.4 Algorithm framework 227 

The pseudo-code of CSO is shown in Algorithm 1. 228 

Algorithm 1: Pseudo-code of the original CSO algorithm 

Randomly assign initial values to the individuals in the chicken flock; 
Define parameters such as 𝛮𝑟, 𝛮ℎ, and 𝛮𝑐; 𝑡 = 0; 
Calculate fitness values for each individual; 
While 𝑡 < 𝒯𝑚𝑎𝑥 do 

If (𝑡 % 𝒢 == 0) 
Rank the fitness values and divide the flock into different sub-groups; 

End if 
For 𝑖 = 1:𝛮𝑟 

Update 𝛸𝑖,𝑗 with Eq. (11); 
End for 

For 𝑖 = (𝛮𝑟 + 1):𝛮𝑚 

Update 𝛸𝑖,𝑗 with Eq. (13); 
End for 

For 𝑖 = (𝛮𝑚 + 1):𝛮𝑐 
Update 𝛸𝑖,𝑗 with Eq. (16); 

End for 

If 𝑓(𝛸𝑖,𝑗) < 𝑓(𝛸𝑖,𝑗𝑛𝑒𝑤) 𝛸𝑖,𝑗 = 𝛸𝑖,𝑗; 
Else 𝛸𝑖,𝑗 = 𝛸𝑖,𝑗𝑛𝑒𝑤; 
End if 𝑡 = 𝑡 + 1; 

End while 

Here, 𝑡 is the current iteration number, and 𝒯𝑚𝑎𝑥 is the maximum iteration number. 229 

4 Proposed SCCSO algorithm 230 

4.1 Motivation 231 

Although CSO performs excellently in many optimization problems, there still exist some shortcomings. First, the roosters in 232 

the rooster sub-flock only learn from a randomly-selected rooster, which causes the information of other roosters cannot be fully 233 

utilized. Second, the chicks neither learn from the rooster when foraging nor use the latest information in the chicken flock. Thus, 234 

they may fail to concentrate near food effectively and degenerate the convergence speed. Third, the ability of CSO to jump out of 235 

the local optimum is not strong enough, because hens and chicks also have a high probability of falling into local optimum when 236 

roosters fall into the local optimum. To address these problems, SCCSO is proposed with three effective strategies. 237 

4.2 Grouping principle 238 

In SCCSO, all individuals are rearranged according to the fitness values of all individuals in ascending order, and thus the 239 

identity of each individual can be determined. The sorted individuals are divided into three sub-flocks: rooster sub-flock, hen sub-240 

flock, and chicken sub-flock. Without loss of generality, SCCSO is used to search the minimum. Therefore, individuals with 241 

smaller fitness values are appointed as roosters while with the larger fitness values are chicks, and the rest are hens. Like CSO, 242 

SCCSO also follows the same regulation that the smaller the fitness value of chickens, the stronger the ability to find and search 243 

for food. The number of individuals in each sub-flock is represented by ℕ𝑟, ℕℎ, and ℕ𝑐, respectively, and their ratio is definded 244 

as 𝓇 with value of 1: 2: 1 in this paper. The total number of individuals is 𝑁, and 𝑁 = ℕ𝑟 + ℕℎ +ℕ𝑐. 245 

4.3 Improved strategy 246 

4.3.1 Information sharing strategy 247 

The information-sharing strategy is developed to update roosters that are individuals with smaller fitness values. Specifically, 248 𝛸𝑟1  and 𝛸𝑟2  are the positions of two roosters that are randomly selected from the rooster sub-flock; without loss of generality, 249 𝛸𝑟1   and 𝛸𝑟2   are defined as the positions of the rooster with better and worse fitness values, respectively. For each 𝑖 ∈250 {1, 2, 3,⋯ , ℕ𝑟}, 𝛸𝑖 is the position of the updated rooster at each iteration. It is allowed to follow 𝛸𝑟1  for foraging food, however, 251 

it will steal food from 𝛸𝑟2 . In this way, each updated rooster has access to share the information of other roosters, thus improving 252 

the exploitation ability. From the above analysis, the position of each rooster is updated by (17). 253 

 𝛸𝑖𝑛𝑒𝑤 = 𝛸𝑖 + ℜ𝑎𝑛𝑑𝑛 ∗ [(𝛸𝑟1 − 𝛸𝑖) − (𝛸𝑟2 − 𝛸𝑖)] (17) 254 
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where 𝛸𝑖𝑛𝑒𝑤 is the updated position of the 𝑖th rooster. ℜ𝑎𝑛𝑑𝑛 is a standard normal distribution and its mean value and the 255 

standard deviation is set to 0 and 1, respectively. If the updated position of a rooster is not good as the original position, the rooster 256 

will ignore the updated position and stays at the original position until the next update. 257 

4.3.2 Spiral movement strategy 258 

The spiral movement strategy is introduced to improve the foraging behaviors of the hens and chicks. First, for each hen, its 259 

position is defined as 𝛸𝑖, where 𝑖 ∈ {ℕ𝑟 + 1,ℕ𝑟 + 2, ⋯ , ℕ𝑟 +ℕℎ}. The spouse of each hen is randomly selected from the 260 

rooster sub-flock whose position is defined as 𝛸𝑟, where 𝑟 ∈ {1, 2, 3,⋯ , ℕ𝑟}. The updated position of each hen can be obtained 261 

by the distance between the hen and its spouse with the spiral movement strategy as follows: 262 

 {𝛸𝑖𝑛𝑒𝑤 = 𝜗1 ∗ ℜ𝑎𝑛𝑑𝑛 ∗ 𝐷𝑖𝑠𝑖,𝑟 ∗ exp(𝑏𝑙) ∗ cos(2𝜋𝑙) + 𝛸𝑟𝐷𝑖𝑠𝑖,𝑟 = 𝛸𝑟 − 𝛸𝑖  (18) 263 

where 𝐷𝑖𝑠𝑖,𝑟 means the distance between each hen and its spouse. 𝑒𝑏𝑙 ∗ 𝑐𝑜𝑠(2𝜋𝑙) denotes the spiral movement strategy, which 264 

can effectively enhance the exploration capability due to the spiral movement. Specifically, the spiral movement allows each hen 265 

to bypass the rooster and explore a wider space, instead of being limited to exploring the searching space between them. Here, 𝑏 266 

is a constant for defining the shape of the spiral movement, and it is set to −2 in this paper. 𝑙 is a random number in the range 267 [−1,1], shown in (19) as follows. Particularly, 𝜗1 is a variable parameter and here the value is set to 4. 268 

 𝑙 = (𝑎-1) ∗ ℜand +1 (19) 269 

 𝑎 = 𝑢 ∗ (1 + 𝐹𝐸𝑆𝐹𝐸𝑆𝑚𝑎𝑥) (20) 270 

where ℜand is a random number ranging between [0,1]. 𝑢 is set to -0.5. 𝐹𝐸𝑆 is the current iteration number and 𝐹𝐸𝑆𝑚𝑎𝑥 is 271 

the maximum iteration number. 272 

Afterward, for each chick, its position is also defined as 𝛸𝑖 , where 𝑖 ∈ {ℕ𝑟 + ℕℎ + 1, ℕ𝑟 + ℕℎ + 1, ⋯ ,𝑁} . At the early 273 

iteration stage, each chick follows a rooster for foraging food while at the later iteration stage, it helps a mother-hen to seek food 274 

and thus move towards the mother-hen. Therefore, a rooster and a mother-hen are first randomly selected from the rooster and hen 275 

sub-flock and their positions are respectively defined as 𝛸𝑟 and 𝛸𝑚, where 𝑟 ∈ {1, 2, 3,⋯ , ℕ𝑟}, 𝑚 ∈ {ℕ𝑟 + 1,ℕ𝑟 + 2,⋯ ,ℕ𝑟 +276 ℕℎ}. The updated position of each chick can be obtained by the distance between each chick and its corresponding rooster with 277 

the same spiral movement strategy at the early iteration stage: 278 

 {𝛸𝑖𝑛𝑒𝑤 = 𝜗2 ∗ ℜ𝑎𝑛𝑑𝑛 ∗ 𝐷𝑖𝑠𝑖,𝑟 ∗ exp(𝑏𝑙) ∗ cos(2𝜋𝑙) + 𝛸𝑟𝐷𝑖𝑠𝑖,𝑟 = 𝛸𝑟 − 𝛸𝑖  (21) 279 

where 𝐷𝑖𝑠𝑖,𝑟 indicates the distance between the 𝑖th chick and its corresponding rooster. 𝜗2 is a variable parameter and set to 3. 280 

The setting values of the other parameters are the same as those mentioned above. 281 

Conversely, at the later iteration stage, the updated position of each chick can be represented by the distance between each chick 282 

and its corresponding mother-hen with the spiral movement strategy: 283 

 {𝛸𝑖𝑛𝑒𝑤 = 𝜗2 ∗ ℜ𝑎𝑛𝑑𝑛 ∗ 𝐷𝑖𝑠𝑖,𝑚 ∗ exp(𝑏𝑙) ∗ cos(2𝜋𝑙) + 𝛸𝑚𝐷𝑖𝑠𝑖,𝑚 = 𝛸𝑚 − 𝛸𝑖  (22) 284 

where 𝐷𝑖𝑠𝑖,𝑟 is the distance between the 𝑖th chick and its corresponding mother-hen. In this strategy, both chicks and hens moved 285 

towards the roosters with a spiral trajectory at the early integration stage. The whole chicken flock can explore a wider searching 286 

range, and gather near the food quickly, thus improving the convergence speed. At the later iteration, chicks have almost gathered 287 

around the food. Chicks follow their mothers to search for food, which is beneficial to local exploitation. 288 

4.3.3 Self-adaptive-based chaotic disturbance mechanism 289 

The chaotic maps can create a chaotic sequence with better dynamic and statistics properties in a specific order (Ismail et al. 290 

2019). Compared with random numbers created by imposing ordinary probability distributions, the use of chaotic sequences helps 291 

the individuals to perform searches at a higher speed (Coelho and Mariani 2008). By increasing the convergence speed and 292 

preventing sinking into the local optimum, the chaotic sequence can be used to improve the performance of the solution obtained 293 

by the individuals (Lu et al. 2014). 294 

Due to such a fact, a self-adaptive-based chaotic disturbance mechanism is developed for guiding the movement of the 295 

individual with the worst fitness value to move towards the leader rooster at each iteration, which can improve the overall quality 296 

of the chicken flock. Assume that the position of the individual with the worst fitness value is defined as 𝛸𝑤, and its updated 297 

position is defined as 𝛸𝑤𝑛𝑒𝑤. In the early iteration stage, 𝛸𝑤𝑛𝑒𝑤 is generated by imposing a certain disturbance on the leader rooster 298 

whose position is defined as 𝛸𝑏. And in the later iteration stage, 𝛸𝑏 may be very close to the food, so it is necessary to retain 299 

more information about 𝛸𝑏 for 𝛸𝑤𝑛𝑒𝑤. With the self-adaptive-based chaotic disturbance mechanism, the updating method of 𝛸𝑤 300 

is given as follows: 301 

 𝛸𝑤𝑛𝑒𝑤 = {𝛸𝑏, if  ℜ𝑎𝑛𝑑2 ≥ 1 − 𝐹𝐸𝑆𝐹𝐸𝑆𝑚𝑎𝑥𝛸𝑏 + ℜ𝑎𝑛𝑑1 ∗ (2𝐶𝑘 − 1), otherwise
 (23) 302 

 𝐶𝑘+1 = 4 ∗ 𝐶𝑘 ∗ (1 − 𝐶𝑘) (24) 303 

where ℜ𝑎𝑛𝑑1 and ℜ𝑎𝑛𝑑2 are different random numbers generating within [0, 1]. 𝑘 is the iteration number, 𝐶𝑘 is the value 304 

at 𝑘th chaotic iteration, and the initial value of the chaotic sequence is randomly generated within [0, 1]. The result obtained by 305 1 − 𝐹𝐸𝑆𝐹𝐸𝑆𝑚𝑎𝑥 is a self-adaptive changed value. According to the comparison between the self-adaptive changed value and ℜ𝑎𝑛𝑑2, 306 

there is no obvious boundary between pre-iteration and post-iteration so that the natural transition is realized. 307 
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4.4 Framework of SCCSO 308 

Based on the above descriptions, the flow chart of SCCSO is shown in Fig. 43, and the pseudo-code of SCCSO is summarized 309 

in Algorithm 2.310 

Yes

For       belongs to roosters, update by Eq.(17)
i



For       belongs to hens, update by Eq.(18)
i



For       belongs to chicks, make a judgment
i



update      by Eq.(21)
i

 update      by Eq.(22)

            FES/FES

i


No

Update the worst chick         with Eq.(23)

Accept the new chicken if it is better than the old

= +FES FES 

max 50000?FES 

End

No

Initialize the chicken flock of      chickens 

Begin



FES = 1

 Calculate fitness values                and sort        

  Divide the chickens into roosters, hens and chicks

( )i
Fit 

Yes

 ?max

 311 

Fig. 4 Flow chart of SCCSO 312 

Algorithm 2: Pseudo-code of SCCSO 

Initialize variables, such as 𝑁, 𝒟, ℕ𝑟, ℕℎ, and ℕ𝑐; 
Initialize 𝛸𝑖 and calculate 𝐹𝑖𝑡(𝛸𝑖), 𝑖 ∈ {1, 2, 3,⋯ ,𝑁};  𝐹𝐸𝑆 = 0; 
While 𝐹𝐸𝑆 <  𝐹𝐸𝑆𝑚𝑎𝑥 do 

Sort 𝐹𝑖𝑡(𝛸𝑖) and determine the compositions of each group; 
For 𝑖 = 1:ℕ𝑟 do 

Update 𝛸𝑖 with Eq (17);  

End for 

For 𝑖 = (ℕ𝑟 + 1): (ℕ𝑟 +ℕℎ) do 

Update 𝛸𝑖 with Eq (18);  

End for 

For 𝑖 = (ℕ𝑟 +ℕℎ + 1):𝑁 do 

If  𝐹𝐸𝑆/𝐹𝐸𝑆𝑚𝑎𝑥 < ℑ then 

Update 𝛸𝑖 with Eq (21); 
Else 

Update 𝛸𝑖 with Eq (22); 
End if 

End for 
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Update Χ𝛮 with Eq (23); 𝐹𝐸𝑆 = 𝐹𝐸𝑆 + N; 
Replace 𝛸𝑖 with 𝛸𝑖𝑛𝑒𝑤 if 𝐹𝑖𝑡(Χinew) < 𝐹𝑖𝑡(Χi); 

End while 
 

Here, 𝒟 is the dimension of the searching range. 𝐹𝑖𝑡 is the fitness function and 𝐹𝑖𝑡(𝛸𝑖) expresses the fitness value of each 313 

individual in the chicken flock. ℑ is the constant controlling the time that the chicks follow the roosters foraging, here it is set to 314 0. 315 

4.5 Time computational complexity of SCCSO 316 

Following is the time computational complexities of SCCSO: 317 

(1) Initialization requires 𝑂(𝑁 × 𝒟) time, where 𝑁 represents the size of the chicken population, and 𝒟 is the dimension of 318 

the searching range, 𝑁 ≫ 𝒟. 319 

(2) Fitness calculation requires 𝑂(𝑁 × 𝒟) time. 320 

(3) Fitness sorting requires 𝑂(𝑁 × 𝑙𝑜𝑔𝑁) time. 321 

(4) Position updating requires 𝑂(𝑁 × 𝒟) time. 322 

For 𝑁 ≫ 𝒟, so 𝑂(𝑁 × 𝑙𝑜𝑔𝑁) ≫ 𝑂(𝑁 × 𝒟). In conclusion, the total time complexity is O(𝑁 × 𝑙𝑜𝑔𝑁) time per generation, 323 

the same as CSO’s. Therefore, the total time complexity of SCCSO for maximum iteration number is 𝑂(𝑁 × 𝑙𝑜𝑔𝑁 ×  𝐹𝐸𝑆𝑚𝑎𝑥), 324 

where 𝐹𝐸𝑆𝑚𝑎𝑥 is the maximum iteration number. 325 

5 Experimental results analysis and discussion 326 

To verify the effectiveness of SCCSO, it is applied to the parameters identification of different PV models, such as single diode, 327 

double diode, and PV module models. The current and voltage data of various solar cells and modules originates from reference 328 

(Easwarakhanthan et al. 1986), which has been vastly applied in various techniques of PV models’ parameters identification (Chen 329 

et al. 2016; Gong et al. ; Niu et al. 2014; Oliv et al. 2017; Yu et al. 2017b). In reference, the commercial R.T.C. French silicon 330 

solar cells, 57 mm in diameter, operates at 33℃ at an irradiance of 1000 W/m2. A solar module consisting of 36 polysilicon cells 331 

in series, called photowATt-PWP201, operates at 45℃ at an irradiance of 1000 W/m2. Table 1 shows the rational upper and lower 332 

limitations of different PV model parameters. 333 

Table 1 Parameters ranges of three PV models 334 

Parameter 
Single/Double diode  PV module 

Lower bound Upper bound  Lower bound Upper bound 𝑰𝑷𝑯 (A) 0 1  0 2 𝑰𝑺𝑫, 𝑰𝑺𝑫𝟏, 𝑰𝑺𝑫𝟐 (μA) 0 1  0 50 𝑹𝑳 (Ω) 0 0.5  0 2 𝑹𝑺𝑯 (Ω) 0 100  0 2000 𝒏, 𝒏𝟏, 𝒏𝟐 1 2  1 50 

To demonstrate the competitive performance of SCCSO, it is compared with seven other advanced algorithms which perform 335 

excellently in the parameter identification of PV models. They are chicken swarm optimization (CSO) (Meng et al. 2014), artificial 336 

bee colony algorithm (Karaboga and Ozturk 2011), moth flame optimization algorithm (MFO) (Mirjalili 2015), improved JAYA 337 

optimization algorithm (IJAYA) (Yu et al. 2017b), performance-guided JAYA algorithm (PGJAYA) (Yu et al. 2019), improved 338 

brainstorming optimization algorithm (IBSO) (Yan et al. 2019) and improved moth-flame optimization (IMFO) (Sheng et al. 2019). 339 

According to the recommendations in the corresponding references, Table 2 shows the parameter configuration of the algorithms 340 

involved. For fairness, the maximum evaluation time and run number of each algorithm in each experiment are set to 50000 and 341 

30, respectively.  342 

Table 2 Parameter configuration of different algorithms 343 

Algorithm Parameter configuration 

SCCSO 𝑁 = 100,𝑅𝑁 = 30,𝑀𝑁 = 40, 𝐶𝑁 = 30, 𝑡 = 0.25 

CSO (Meng et al. 2014) 𝑁 = 100,𝑅𝑁 = 15,𝐻𝑁 = 70,𝑀𝑁 = 50, 𝐶𝑁 = 15,𝐺 = 20, 𝐹𝐿 ∈ [0.4, 0.9] 
ABC (Karaboga and Ozturk 2011) 𝑁 = 50,𝐷 = 5, 𝑙𝑖𝑚𝑖𝑡 = 𝑁 ∗ 𝐷 

MFO (Mirjalili 2015) 𝑁 = 50 

IMFO (Sheng et al. 2019) 𝑁 = 100,𝑚 = 4,𝑃 = 0.4 

IJAYA (Yu et al. 2017b) 𝑁 = 20 

PGJAYA (Yu et al. 2019) 𝑁 = 20 

IBSO (Yan et al. 2019) 𝑁 = 50,𝑀 = 5, 𝑟1 = 𝑟𝑎𝑛𝑑, 𝑝𝑟1 = 0.8 

In the following sections, comparisons are conducted first on the performance of each algorithm about accuracy, robustness, 344 

and convergence speed by analyzing experimental results and convergence curves. Next, comparisons are made for the best RMSE 345 

values gained by the above-mentioned algorithms for 30 runs. Addtionally, analysis are performed on the sensitivity of crucial 346 

parameters. Then, authentication and disscussion are made about the effectiveness of the strategies proposed in SCCSO. To show 347 

the statistical results clearly, the overall best and second-best results of RMSE are underlined in bold gray and bold, respectively. 348 
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5.1 Analysis of data and convergence curves 349 

In this section, we evaluated the performance of all advanced algorithms including accuracy, robustness, and convergence speed 350 

by analyzing experimental data and convergence curve. Experimental data are shown in Table 3, where the minimum (Min) and 351 

average (Mean) value of RMSE reflects the accuracy and average accuracy of algorithms, respectively. The standard deviation of 352 

RMSE (SD) is related to the reliability of algorithms. Addtionally, the Wilcoxon signed-rank test with a significant level of 5% 353 

(Alcalá-Fdez et al. 2008) is introduced to estimate the difference between SCCSO and other algorithms. “+” and “≈” represent the 354 

performance of SCCSO is significantly better than or similar to that of other algorithms, respectively. 355 

Table 3 Experimental results of different algorithms for three models 356 

Model Algorithm 
RMSE Wilcoxon signed-

rank test Min Mean Max SD 

Single diode 

model 

SCCSO 9.8602E-04 9.8602E-04 9.8602E-04 2.3572E-17  

CSO 1.0004E-03 1.4457E-03 2.1624E-03 3.7225E-04 + 

ABC 9.9278E-04 1.4075E-03 1.1394E-03 1.0587E-04 + 

MFO 9.9272E-04 2.0594E-03 4.7694E-03 6.5366E-04 + 

IMFO 9.8603E-04 9.8999E-04 1.0212E-03 6.8178E-06 + 

IJAYA 9.8608E-04 9.9132E-04 1.0419E-03 1.0010E-05 + 

PGJAYA 9.8602E-04 9.8602E-04 9.8603E-04 8.1518E-10 + 

IBSO 9.8602E-04 9.8605E-04 9.8627E-04 6.5208E-08 + 

Double diode 

model 

SCCSO 9.8248E-04 9.8366E-04 9.8609E-04 1.4171E-06  

CSO 9.9273E-04 1.9532E-03 2.9254E-03 5.2375E-04 + 

ABC 9.9505E-04 1.2079E-03 1.0660E-03 5.9047E-05 + 

MFO 9.8287E-04 3.1610E-03 3.3398E-02 5.7468E-03 + 

IMFO 9.8298E-04 1.0635E-03 1.8118E-03 1.6481E-04 + 

IJAYA 9.8388E-04 1.0192E-03 1.4391E-03 9.9613E-05 + 

PGJAYA 9.8294E-04 9.8680E-04 1.0042E-03 3.8186E-06 + 

IBSO 9.8554E-04 1.0259E-03 1.3097E-03 7.4098E-05 + 

PV module  

modle 

SCCSO 2.4251E-03 2.4251E-03 2.4251E-03 1.5950E-17  

CSO 2.4333E-03 2.5366E-03 2.7329E-03 6.9708E-05 + 

ABC 2.4444E-03 2.6307E-03 2.5661E-03 5.4815E-05 + 

MFO 2.4982E-03 2.6051E-03 2.7428E-03 3.4529E-05 + 

IMFO 2.4256E-03 2.4510E-03 2.7083E-03 6.8809E-05 + 

IJAYA 2.4252E-03 2.4309E-03 2.4639E-03 7.9201E-06 + 

PGJAYA 2.4251E-03 2.4253E-03 2.4289E-03 8.3628E-07 + 

IBSO 2.4251E-03 2.4251E-03 2.4252E-03 2.0783E-08 + 

In Table 3, the results obtained by SCCSO on the three models are superior to the other seven advanced algorithms in accuracy 357 

and reliability. More specifically, in the single diode model, besides SCCSO, PGJAYA and IBSO also obtain the best Min, and 358 

IMFO gains the second best. Although PGJAYA also gets the best Mean, its reliability is inferior to SCCSO. In the double diode 359 

model, SCCSO also performs best as it gets the best in all aspects except for a small gap between SD and the best SD. In the PV 360 

module model, SCCSO also achieves best results in all aspects. Besides, IBSO and PGJAYA obtain the best Min, and IBSO ranks 361 

second in accuracy and reliability. Obviously, the Wilcoxon signed-rank test results show the superior performance of SCCSO on 362 

all mentioned PV models to other competitive algorithms. 363 

Furthermore, boxplots are applied to visually show the distribution of results obtained by every algorithm in 30 independent 364 

runs on three models, as shown in Fig. 54. Note that the symbol "+" represents the disordered values. Comparing the span of 365 

solution distributions and we can see that SCCSO performs better in accuracy and robustness than other advanced algorithms. 366 

     367 
(a)            (b)        (c) 368 

Fig. 5 Best RMSE boxplot in 30 runs of different algorithms for: (a) single diode model, (b) double diode model, (c) PV module model 369 

 
4 The figure was drawn with MATLAB. 
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To investigate the computational efficiency of SCCSO, Fig. 64 shows the average computational time of all algorithms on three 370 

models in 30 runs. For each algorithm, the CPU time are obtained on a PC Intel Core 7 Duo 1.80 GHz with a 8 GB RAM that 371 

runs on Windows 10 with MATLAB R2018a implementation. From Fig. 6, the proposed algorithm and PGJAYA consumes the 372 

lowest computational overhead among all algorithms. This indicates that SCCSO can obtain superior results under the condition 373 

of limited computational overhead. 374 

 375 

Fig. 6 The average CPU time of different algorithms for three models 376 

According to the average RMSE values obtained by each algorithm, the convergence curves are drawn and shown in Fig. 74. 377 

By amplifying the curves, it is obvious that SCCSO performs excellently in convergence speed as it gets a fast speed and obtains 378 

the best convergence values in the end among all algorithms. 379 

  380 

  (a)               (b) 381 

 382 
(c) 383 

Fig. 7 Convergence curves of SCCSO and compared algorithms for: (a) single diode model, (b) double diode model, (c) PV module model 384 

To summarize, the above analysis and comparisons of experimental results show that SCCSO performs better in robustness, 385 

accuracy, and convergence speed compared with the other competetive algorithms. 386 

5.2 Detailed experimental results analysis 387 

In this section, the best RMSE values and the related parameters identified by different algorithms in 30 independent runs are 388 

analyzed detailedly. 389 
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5.2.1 Single diode model 390 

Table 4 presents the analyzed experimental results on the single diode model, including the adjusted five parameters and the 391 

related RMSE values. We can observe that SCCSO, PGJAYA, and IBSO acquire the best RMSE value (9.8602E-04), while IMFO 392 

achieves the second-best value (9.8603E-04), followed by IJAYA, MFO, ABC, and CSO. Although the difference of RMSE value 393 

corresponding to each algorithm is not much different, a slight difference can improve the accuracy of adjusted parameters 394 

significantly for the objective function. Besides, Table 5 shows the individual absolute errors (IAE) between the experimental data 395 

and simulated data (Easwarakhanthan et al. 1986). All the IAE values of current are no more than 0.02152687 while those of 396 

power are less than 0.00873078, which shows the accuracy of the adjusted five parameters.  397 

Addionally, the best-adjusted parameters obtained by SCCSO are applied to constract the I-V and P-V curves in Fig. 84. Clearly, 398 

the simulated data acquired by SCCSO (blue five-pointed stars) are extremely unanimous with the experimental data (purple lines) 399 

within the whole voltage range. 400 

Table 4 Comparisons of experimental results on single diode model 401 

Algorithm 𝐼𝑃𝐻 (A) 𝐼𝑆𝐷  (μA) 𝑅𝐿 (Ω) 𝑅𝑆𝐻 (Ω) 𝑛 𝑅𝑀𝑆𝐸 

SCCSO 0.7608 0.32302 0.0364 53.7185 1.4812 9.8602E-04 

CSO 0.7607 0.35248 0.0360 56.7696 1.4900 1.0004E-03 

ABC 0.7608 0.30534 0.0366 52.3455 1.4755 9.9278E-04 

MFO 0.7607 0.34312 0.0361 55.4217 1.4873 9.9272E-04 

IMFO 0.7608 0.32225 0.0364 53.6451 1.4809 9.8603E-04 

IJAYA 0.7608 0.32312 0.0364 53.6988 1.4812 9.8608E-04 

PGJAYA 0.7608 0.32302 0.0364 53.7189 1.4812 9.8602E-04 

IBSO 0.7608 0.32299 0.0364 53.7230 1.4812 9.8602E-04 

Table 5 IAE of SCCSO on single diode model 402 

Item 
Measured data Calculated data Simulated current data Simulated power data 𝑈(𝑉) 𝐼(𝐴) 𝑃(𝑊) 𝐼𝑠𝑖𝑚(𝐴) 𝐼𝐴𝐸𝐼 𝑃𝑠𝑖𝑚(𝑊) 𝐼𝐴𝐸𝑃 

1 -0.2057 0.7640 -0.1572 0.76408770 0.00008770 -0.15717284 0.00001804 

2 -0.1291 0.7620 -0.0984 0.76266309 0.00066309 -0.09845980 0.00008560 

3 -0.0588 0.7605 -0.0447 0.76135531 0.00085531 -0.04476769 0.00005029 

4 0.0057 0.7605 0.0043 0.76015399 0.00034601 0.00433288 0.00000197 

5 0.0646 0.7600 0.0491 0.75905521 0.00094479 0.04903497 0.00006103 

6 0.1185 0.7590 0.0899 0.75804235 0.00095765 0.08982802 0.00011348 

7 0.1678 0.7570 0.1270 0.75709165 0.00009165 0.12703998 0.00001538 

8 0.2132 0.7570 0.1614 0.75614136 0.00085864 0.16120934 0.00018306 

9 0.2545 0.7555 0.1923 0.75508687 0.00041313 0.19216961 0.00010514 

10 0.2924 0.7540 0.2205 0.75366388 0.00033612 0.22037132 0.00009828 

11 0.3269 0.7505 0.2453 0.75139097 0.00089097 0.24562971 0.00029126 

12 0.3585 0.7465 0.2676 0.74735385 0.00085385 0.26792636 0.00030611 

13 0.3873 0.7385 0.2860 0.74011722 0.00161722 0.28664740 0.00062635 

14 0.4137 0.7280 0.3012 0.72738222 0.00061778 0.30091803 0.00025557 

15 0.4373 0.7065 0.3090 0.70697265 0.00047265 0.30915914 0.00020669 

16 0.4590 0.6755 0.3101 0.67528015 0.00021985 0.30995359 0.00010091 

17 0.4784 0.6320 0.3023 0.63075827 0.00124173 0.30175476 0.00059404 

18 0.4960 0.5730 0.2842 0.57192836 0.00107164 0.28367647 0.00053153 

19 0.5119 0.4990 0.2554 0.49960702 0.00060702 0.25574883 0.00031073 

20 0.5265 0.4130 0.2174 0.41364879 0.00064879 0.21778609 0.00034159 

21 0.5398 0.3165 0.1708 0.31751011 0.00101011 0.17139196 0.00054526 

22 0.5521 0.2120 0.1170 0.21215494 0.00015494 0.11713074 0.00008554 

23 0.5633 0.1035 0.0583 0.10225131 0.00124869 0.05759816 0.00070339 

24 0.5736 -0.0100 -0.0057 -0.00871754 0.00128246 -0.00500038 0.00073562 

25 0.5833 -0.1230 -0.0717 -0.12550741 0.00250741 -0.07320847 0.00146257 

26 0.5900 -0.2100 -0.1239 -0.20847233 0.00152767 -0.12299867 0.00090133 

Sum of IAE     0.02152687  0.00873078 

   403 

   (a)             (b)404 

405 Fig. 8 Comparisons between experimental data and simulated data obtained by SCCSO on single diode model: (a) I-V characteristic, (b) P-V characteristic 
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5.2.2 Double diode model 406 

Table 6 lists the compared results of the adjusted seven parameters as well as the related RMSE values. Among all algorithms, 407 

SCCSO obtains the best RMSE value (9.8248E-04) while MFO gains the second-best value (9.8287E-04), followed by PGJAYA, 408 

IMFO, IJAYA, IBSO, CSO, and ABC. Table 7 presents the IAE values of current and power, which are less than 0.02127523 and 409 

0.00877664, respectively. Thus, we can conclude that SCCSO can achieve high accuracy parameters.  410 

From the I-V and P-V curves presented in Fig. 94, the experimental and simulated data almost coincide with each other within 411 

the whole voltage range. 412 

Table 6 Comparisons of experimental results on double diode model 413 

Algorithm 𝐼𝑃𝐻 (A) 𝐼𝑆𝐷1 (μA) 𝑅𝐿 (Ω) 𝑅𝑆𝐻 (Ω) 𝑛1 𝐼𝑆𝐷2 (μA) 𝑛2 𝑅𝑀𝑆𝐸 

SCCSO 0.7608 0.22597 0.0367 55.4854 1.4510 0.74935 2 9.8248E-04 

CSO 0.7608 0.03814 0.0362 54.6261 1.7628 0.32712 1.4836 9.9273E-04 

ABC 0.7606 0.25109 0.0368 54.8424 1.4590 0.40557 1.9955 9.9505E-04 

MFO 0.7608 0.25300 0.0366 55.1029 1.4606 0.53624 2 9.8287E-04 

IMFO 0.7608 0.23074 0.0367 55.2518 1.4531 0.60012 1.9574 9.8298E-04 

IJAYA 0.7608 0.62044 0.0368 55.1757 1.9167 0.21129 1.4463 9.8388E-04 

PGJAYA 0.7608 0.25443 0.0366 54.8098 1.4609 0.50389 2 9.8294E-04 

IBSO 0.7608 0.30919 0.0364 54.0020 1.4777 0.08964 1.9324 9.8554E-04 

Table 7 IAE of SCCSO on double diode model 414 

Item 
Measured data Calculated data Simulated current data Simulated power data 𝑈(𝑉) 𝐼(𝐴) 𝑃(𝑊) 𝐼𝑠𝑖𝑚(𝐴) 𝐼𝐴𝐸𝐼 𝑃𝑠𝑖𝑚(𝑊) 𝐼𝐴𝐸𝑃 

1 -0.2057 0.7640 -0.1572 0.76398341 0.00001659 -0.15715139 0.00000341 

2 -0.1291 0.7620 -0.0984 0.76260410 0.00060410 -0.09845219 0.00007799 

3 -0.0588 0.7605 -0.0447 0.76133770 0.00083770 -0.04476666 0.00004926 

4 0.0057 0.7605 0.0043 0.76017379 0.00032621 0.00433299 0.00000186 

5 0.0646 0.7600 0.0491 0.75910768 0.00089232 0.04903836 0.00005764 

6 0.1185 0.7590 0.0899 0.75812142 0.00087858 0.08983739 0.00010411 

7 0.1678 0.7570 0.1270 0.75718861 0.00018861 0.12705625 0.00003165 

8 0.2132 0.7570 0.1614 0.75624361 0.00075639 0.16123114 0.00016126 

9 0.2545 0.7555 0.1923 0.75517730 0.00032270 0.19219262 0.00008213 

10 0.2924 0.7540 0.2205 0.75372235 0.00027765 0.22038842 0.00008118 

11 0.3269 0.7505 0.2453 0.75139913 0.00089913 0.24563238 0.00029393 

12 0.3585 0.7465 0.2676 0.74730144 0.00080144 0.26790757 0.00028732 

13 0.3873 0.7385 0.2860 0.74001066 0.00151066 0.28660613 0.00058508 

14 0.4137 0.7280 0.3012 0.72724695 0.00075305 0.30086206 0.00031154 

15 0.4373 0.7065 0.3090 0.70685030 0.00035030 0.30910564 0.00015319 

16 0.4590 0.6755 0.3101 0.67521054 0.00028946 0.30992164 0.00013286 

17 0.4784 0.6320 0.3023 0.63076076 0.00123924 0.30175595 0.00059285 

18 0.4960 0.5730 0.2842 0.57199473 0.00100527 0.28370939 0.00049861 

19 0.5119 0.4990 0.2554 0.49970613 0.00070613 0.25579957 0.00036147 

20 0.5265 0.4130 0.2174 0.41373367 0.00073367 0.21783078 0.00038628 

21 0.5398 0.3165 0.1708 0.31754621 0.00104621 0.17141144 0.00056474 

22 0.5521 0.2120 0.1170 0.21212300 0.00012300 0.11711311 0.00006791 

23 0.5633 0.1035 0.0583 0.10216328 0.00133672 0.05754857 0.00075298 

24 0.5736 -0.0100 -0.0057 -0.00879175 0.00120825 -0.00504295 0.00069305 

25 0.5833 -0.1230 -0.0717 -0.12554343 0.00254343 -0.07322949 0.00148359 

26 0.5900 -0.2100 -0.1239 -0.20837159 0.00162841 -0.12293924 0.00096076 

Sum of IAE     0.02127523  0.00877664 

     415 

  (a)            (b) 416 

Fig. 9 Comparisons between experimental data and simulated data obtained by SCCSO on double diode model: (a) I-V characteristic, (b) P-V characteristic 417 

5.2.3 Photovoltaic module model 418 

Table 8 presents the five adjusted parameters and related RMSE values. Interestingly, SCCSO and PGJAYA obtain the best 419 

RMSE value (2.42507E-03) while the second-best RMSE value (2.42508E-03) is obtained by IBSO. As mentioned above, the 420 
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slight difference in objective function has a significant impact on the accuracy of the adjusted parameters. Hence, SCCSO has 421 

strong competitiveness in the accuracy of parameters adjustment. Table 9 displays the IAE values of current and power, which are 422 

no more than 0.04892368 and 0.51688808, respectively. 423 

Furthermore, Fig. 104 shows the I-V and P-V curves, and we can see that the simulated data are in great agreement with the 424 

experimental data within the whole voltage range. 425 

Table 8 Comparisons of experimental results on PV module 426 

Algorithm 𝐼𝑃𝐻 (A) 𝐼𝑆𝐷  (μA) 𝑅𝐿 (Ω) 𝑅𝑆𝐻 (Ω) 𝑛 𝑅𝑀𝑆𝐸 

SCCSO 1.0305 3.48226 1.2013 981.9823 48.6428 2.42507E-03 

CSO 1.0301 3.74181 1.1937 1067.3017 48.9195 2.43329E-03 

ABC 1.0296 3.70463 1.1955 1127.7167 48.8777 2.44438E-03 

MFO 1.0293 4.32274 1.1786 1290.2168 49.4843 2.49818E-03 

IMFO 1.0303 3.53721 1.1998 1009.1064 48.7025 2.42560E-03 

IJAYA 1.0305 3.50358 1.2004 983.5366 48.6665 2.42525E-03 

PGJAYA 1.0305 3.48261 1.2013 982.1342 48.6432 2.42507E-03 

IBSO 1.0305 3.48318 1.2012 982.4548 48.6438 2.42508E-03 

Table 9 IAE of SCCSO on PV module 427 

Item 
Measured data Calculated data Simulated current data Simulated power data 𝑈(𝑉) 𝐼(𝐴) 𝑃(𝑊) 𝐼𝑠𝑖𝑚(𝐴) 𝐼𝐴𝐸𝐼 𝑃𝑠𝑖𝑚(𝑊) 𝐼𝐴𝐸𝑃 

1 0.1248 1.0315 0.1287 1.02911916 0.00238084 0.12843407 0.00029713 

2 1.8093 1.0300 1.8636 1.02738107 0.00261893 1.85884058 0.00473842 

3 3.3511 1.026 3.4382 1.02574180 0.00025820 3.43736334 0.00086526 

4 4.7622 1.0220 4.8670 1.02410715 0.00210715 4.87700309 0.01003469 

5 6.0538 1.0180 6.1628 1.02229180 0.00429180 6.18875013 0.02598173 

6 7.2364 1.0155 7.3486 1.01993068 0.00443068 7.38062638 0.03206218 

7 8.3189 1.0140 8.4354 1.01636311 0.00236311 8.45502304 0.01965844 

8 9.3097 1.0100 9.4028 1.01049615 0.00049615 9.40741602 0.00461902 

9 10.2163 1.0035 10.2521 1.00062897 0.00287103 10.22272575 0.02933130 

10 11.0449 0.9880 10.9124 0.98454838 0.00345162 10.87423839 0.03812281 

11 11.8018 0.9630 11.3651 0.95952168 0.00347832 11.32408292 0.04105048 

12 12.4929 0.9255 11.5622 0.92283882 0.00266118 11.52893307 0.03324588 

13 13.1231 0.8725 11.4499 0.87259966 0.00009966 11.45121264 0.00130789 

14 13.6983 0.8075 11.0614 0.80727426 0.00022574 11.05828505 0.00309220 

15 14.2221 0.7265 10.3324 0.72833648 0.00183648 10.35847423 0.02611858 

16 14.6995 0.6345 9.3268 0.63713800 0.00263800 9.36561003 0.03877728 

17 15.1346 0.5345 8.0894 0.53621306 0.00171306 8.11537023 0.02592653 

18 15.5311 0.4275 6.6395 0.42951132 0.00201132 6.67078334 0.03123809 

19 15.8929 0.3185 5.0619 0.31877448 0.00027448 5.06625098 0.00436233 

20 16.2229 0.2085 3.3825 0.20738951 0.00111049 3.36445923 0.01801542 

21 16.5241 0.1010 1.6689 0.09616717 0.00483283 1.58907596 0.07985814 

22 16.7987 0.0080 0.1344 -0.00832539 0.00032539 -0.13985567 0.00546607 

23 17.0499 -0.1110 -1.8925 -0.11093648 0.00006352 -1.89145594 0.00108296 

24 17.2793 -0.2090 -3.6114 -0.20924727 0.00024727 -3.61564628 0.00427258 

25 17.4885 -0.3030 -5.2990 -0.30086359 0.00213641 -5.26165284 0.03736266 

Sum of IAE     0.04892368  0.51688808 

     428 

  (a)            (b) 429 

Fig. 10 Comparisons between experimental data and simulated data obtained by SCCSO on PV module: (a) I-V characteristic, (b) P-V characteristic 430 

5.3 Sensitivity analysis of crucial parameters 431 

As discussed in Section 4, 𝓇 and ℑ are crucial to improve the performance of SCCSO. 𝓇 is the ratio of individuals in each 432 

sub-flock, and ℑ  is the constant controlling when the chicks follow the rooster foraging. In this section, to investigate the 433 

sensitivity of 𝓇 and ℑ, some experiments are conducted without changing other experimental settings. In previous experiments, 434 𝓇 is set to 1:2:1 and ℑ is 0.4. Here, different values are set for 𝓇: 3:14:10, 1:1:1 and 1:3:1, and different ℑ: 0.3 and 0.5. Table 435 
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10 displays the experimental results of SCCSO using combinations of 𝓇 and ℑ for three models. 436 

Table 10 Experimental results of SCCSO using combinations of 𝓇 and ℑ for three models 437 

Model Combination 
RMSE 

Min Mean Max SD 

Single diode 

model 

ℑ=0.4, 𝓇=1:2:1 9.86022E-04 9.86022E-04 9.86022E-04 2.35724E-17 ℑ=0.3, 𝓇=3:14:10 9.86022E-04 9.86022E-04 9.86022E-04 2.85964E-17 ℑ=0.5, 𝓇=3:14:10 9.86022E-04 9.86022E-04 9.86022E-04 2.42036E-17 ℑ=0.3, 𝓇=1:1:1 9.86022E-04 9.86022E-04 9.86022E-04 2.68358E-17 ℑ=0.5, 𝓇=1:1:1 9.86022E-04 9.86022E-04 9.86022E-04 2.38761E-17 ℑ=0.3, 𝓇=1:3:1 9.86022E-04 9.86022E-04 9.86022E-04 2.41871E-17 ℑ=0.5, 𝓇=1:3:1 9.86022E-04 9.86022E-04 9.86022E-04 2.93259E-17 

Double diode 

model 

ℑ=0.4, 𝓇=1:2:1 9.82485E-04 9.83663E-04 9.86090E-04 1.41713E-06 ℑ=0.3, 𝓇=3:14:10 9.82485E-04 9.87357E-04 1.02978E-03 9.11867E-06 ℑ=0.5, 𝓇=3:14:10 9.82534E-04 9.99856E-04 9.86645E-04 3.05001E-06 ℑ=0.3, 𝓇=1:1:1 9.82485E-04 9.84143E-04 9.91049E-04 1.99448E-06 ℑ=0.5, 𝓇=1:1:1 9.82485E-04 9.84068E-04 9.86422E-04 1.50059E-06 ℑ=0.3, 𝓇=1:3:1 9.82485E-04 9.84295E-04 9.86126E-04 1.57948E-06 ℑ=0.5, 𝓇=1:3:1 9.82485E-04 9.84417E-04 9.92203E-04 2.17523E-06 

PV module 

model 

ℑ=0.4, 𝓇=1:2:1 2.42507E-03 2.42507E-03 2.42507E-03 1.59503E-17 ℑ=0.3, 𝓇=3:14:10 2.42507E-03 2.42507E-03 2.42507E-03 1.95130E-17 ℑ=0.5, 𝓇=3:14:10 2.42507E-03 2.42507E-03 2.42507E-03 1.93792E-17 ℑ=0.3, 𝓇=1:1:1 2.42507E-03 2.42507E-03 2.42507E-03 1.65169E-17 ℑ=0.5, 𝓇=1:1:1 2.42507E-03 2.42507E-03 2.42507E-03 1.65594E-17 ℑ=0.3, 𝓇=1:3:1 2.42507E-03 2.42507E-03 2.42507E-03 1.78661E-17 ℑ=0.5, 𝓇=1:3:1 2.42507E-03 2.42507E-03 2.42507E-03 1.97725E-17 

From Table 10, the variants all obtain the best results on the single diode model and PV module models, but only SCCSO 438 

achieves the best results on the double diode model with the best stability. Hence, by comparing the results with the combinations, 439 

we can conclude that the combination of 𝓇=1:2:1 and ℑ=0.4 is a suitable choice for SCCSO. 440 

5.4 Authentication of strategy effectiveness 441 

To verify the effectiveness of the proposed strategies, it is essential to conduct several experiments. In this section, three variants 442 

are proposed based on SCCSO, which are SCCSO without the information-sharing strategy instead of the original rooster 443 

optimization equation in CSO (denoted as SCCSO-1), SCCSO without spiral motion trajectory equation instead of the original 444 

update equation of hen and chicks (denoted as SCCSO-2), and SCCSO without the self-adaptive-based chaotic disturbance 445 

mechanism (denoted as SCCSO-3). In the experiments, the parameter settings stay the same as mentioned. Table 11 presents the 446 

experimental results of SCCSO and its three variants on PV models in 30 independent runs. The results obtained by SCCSO 447 

performs better in all PV models than SCCSO-1. Although SCCSO-2 obtained the best results on the single diode model and PV 448 

module models, the results on the double diode model are not as good as the results obtained by SCCSO. As for SCCSO-3, it 449 

obtaines the best results on the single diode model, but the performance on the other two models are not as good as SCCSO. 450 

Comparisons indicate the extraordinary performance of SCCSO in robustness, accuracy, and avoiding local optimal. As a 451 

consequence, using a single strategy is insufficient to achieve satisfactory results, but combining all proposed strategies leads to 452 

the best results. 453 

Table 11 Comparisons of SCCSO and its variants for three models 454 

Model Algorithm 
RMSE 

Min Mean Max SD 

Single diode 

model 

SCCSO 9.86022E-04 9.86022E-04 9.86022E-04 2.35724E-17 

SCCSO-1 9.86022E-04 9.86711E-04 9.91720E-04 1.59080E-06 

SCCSO-2 9.86022E-04 9.86022E-04 9.86022E-04 1.40373E-11 

SCCSO-3 9.86022E-04 9.86022E-04 9.86022E-04 2.60856E-17 

Double diode 

model 

SCCSO 9.82485E-04 9.83663E-04 9.86090E-04 1.41713E-06 

SCCSO-1 9.82487E-04 9.86081E-04 1.00122E-03 3.93889E-06 

SCCSO-2 9.83591E-04 9.87476E-04 1.02355E-03 7.34131E-06 

SCCSO-3 1.08174E-03 2.58761E-03 6.72875E-03 1.21375E-03 

PV module 

model 

SCCSO 2.42507E-03 2.42507E-03 2.42507E-03 1.59503E-17 

SCCSO-1 2.42507E-03 2.05469E-02 2.74251E-01 6.89644E-02 

SCCSO-2 2.42507E-03 2.42507E-03 2.42507E-03 2.67803E-17 

SCCSO-3 2.44472E-03 3.94530E-02 2.74278E-01 9.36957E-02 
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5.5 Discussion 455 

The above experimental results incicate that compared with the advanced algorithms, SCCSO obtaines significant advances on 456 

robustness and accuracy. The reason is due to the three strategies we used in SCCSO, covering the information-sharing strategy, 457 

the spiral motion strategy and the self-adaptive-based chaotic disturbance mechanism. Specific discussion shows as follows: 458 

(1) The information-sharing strategy is developed to overcome the shortness of low utilization of the information. In CSO, 459 

roosters only learn from a randomly-selected rooster so that the information of other roosters cannot be fully utilized. By the 460 

information-sharing strategy, the roosters get information from the leader rooster and another randomly-selected rooster. Then, 461 

the roosters update their positions in an optimal range in the chicken flock, thus improving the information utilization and ensuring 462 

the exploitation ability. 463 

(2) The spiral motion strategy is designed to decrease the probability of falling into local optimum. In CSO, when the cock falls 464 

into the local optimum, the hens and the chicks are affected by the rooster and have a high probability of falling into the local 465 

optimum. By the spiral motion strategy, the searching range for hens and chicks is expanded, which is favorable to get rid of the 466 

local optimum and balance the early exploration and the later exploitation. Specifically, hens and chicks move to the roosters with 467 

the spiral trajectory, so the whole chicken flock can gather near roosters at a fast speed, accelerating the convergence speed. When 468 

at the later iteration, chicks have already gathered around the food. At this time, chicks follow their mothers to search for food 469 

benefits the exploitation ability. 470 

(3) The self-adaptive-based chaotic disturbance mechanism is used to accelerate the convergence speed of the chicken flock. In 471 

CSO, chicks neither learn from rooster when foraging nor use the latest information in the chicken flock. Thus, they may fail to 472 

concentrate near food effectively, degenerating the convergence speed of the chicken flock. By the self-adaptive-based chaotic 473 

disturbance mechanism, the worst chick moves to the position of the leader rooster derectly. After sorting fitness values of chickens, 474 

the new worst chick also moves to the new leader rooster, thus accelerating the convergence speed of the chicken flock without 475 

tripping into local optimum. 476 

In summary, SCCSO is an effective choice to solve the problem of nonlinear multi-modal PV model parameter identification. 477 

However, according to the no free lunch theorem (Wolpert and Macreadym, 1997), SCCSO is not suitable for solving all 478 

optimization problems. When it is used to solve complex optimization problems with high dimensions, the results are not satisfied 479 

enough, and the population diversity needs to be improved. In the future, our work focus on rationally introducing evolutionary 480 

operators to increase the diversity of the chicken flock, improving the performance of SCCSO. It is intresting to use it for solving 481 

other multi-objective and constrained optimization problems in the power system, such as the fault ride-through improvement and 482 

the maximum power point tracking of speed wind generators (Qais et al. 2019b; Qais et al. 2020b). 483 

6 Conclusion 484 

It is crucial to determine accrurate and reliable PV model parameters for the evaluation and optimization of PV systems. 485 

However, the parameter identification problems of PV models have multimodal and nonlinear features so that most existing 486 

heuristic algorithms fail to obtain globally optimal solutions. To overcome this problem, this paper proposed a spiral-based chaos 487 

chicken swarm optimization algorithm (SCCSO) to identify the parameters of PV models. The experimental results show that 488 

SCCSO performs better in robustness and accuracy than other advanced heuristic algorithms on the single diode, double diode, 489 

and PV module models. The reasons behind the fact are: i) SCCSO develops the information-sharing strategy to provide the latest 490 

information of roosters for exploring local optimal solutions, which is beneficial to improve the exploitation ability; ii) SCCSO 491 

develops the spiral motion strategy to expand the searching range of hens and chicks, improving the exploration ability; iii) SCCSO 492 

introduces the self-adaptive-based chaotic disturbance mechanism to update the worst chick based on the global optimal solution, 493 

improving the convergence speed of the chicken flock; iv) SCCSO rationally combines the above three strategies and thus achieves 494 

satisfactory results. Thus, SCCSO is a promising candidate technique for the parameters identification problems of PV models. 495 
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Figures

Figure 1

Equivalent circuit of the single diode model



Figure 2

Equivalent circuit of the double diode model

Figure 3

Equivalent circuit of the PV module model



Figure 4

Flow chart of SCCSO



Figure 5

Best RMSE boxplot in 30 runs of different algorithms for: (a) single diode model, (b) double diode model,
(c) PV module model

Figure 6

The average CPU time of different algorithms for three models



Figure 7

Convergence curves of SCCSO and compared algorithms for: (a) single diode model, (b) double diode
model, (c) PV module model

Figure 8



Comparisons between experimental data and simulated data obtained by SCCSO on single diode model:
(a) I-V characteristic, (b) P-V characteristic

Figure 9

Comparisons between experimental data and simulated data obtained by SCCSO on double diode model:
(a) I-V characteristic, (b) P-V characteristic

Figure 10

Comparisons between experimental data and simulated data obtained by SCCSO on PV module: (a) I-V
characteristic, (b) P-V characteristic


