\title{ Soft subalgebras and ideals of BCK|BCI-algebras based on 区-structures based on 区-structures
 Hashem Bordbar (\triangle Hashem.bordbar@ung.si)
 University of Nova Gorica https://orcid.org/0000-0003-3871-217X
 Rajab Ali Borzooei
 Shahid Beheshti University
 Arsham Borumand Saeid
 Shahid Bahonar University of Kerman
 Young Bae Bae Jun
 Gyeongsang National University

Research Article

 ideal

Posted Date: May 3rd, 2021
DOI: https://doi.org/10.21203/rs.3.rs-193896/v1
License: (c) (i) This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License

Version of Record: A version of this preprint was published at Soft Computing on August 20th, 2021. See the published version at https://doi.org/10.1007/s00500-021-06078-5.

Soft subalgebras and ideals of $B C K / B C I$-algebras based on \mathcal{N}-structures

Hashem Bordbar ${ }^{1, *}$, R.A. Borzooei, ${ }^{2}$, A. Borumand Saeid ${ }^{3}$ and Young Bae Jun ${ }^{4}$
${ }^{1}$ Center for Information Technology and Applied Mathematics, University of Nova Gorica, Slovenia
e-mail: hashem.bordbar@ung.si
${ }^{2}$ Department of Mathematics
Shahid Beheshti University, Tehran, Iran,
e-mail: borzooei@sbu.ac.ir
${ }^{3}$ Department of Pure Mathematics, Faculty of Mathematics and Computer,
Shahid Bahonar University of Kerman, Kerman, Iran, e-mail:arsham@uk.ac.ir
${ }^{4}$ Department of Mathematics Education, Gyeongsang National University, Jinju 52828, Korea
e-mail: skywine@gmail.com

Abstract

The notions of \mathcal{N}-ideal of types (ϵ, \in) and $(\epsilon, \in \vee q)$, soft \mathcal{N}_{ϵ}-set, soft \mathcal{N}_{q}-set, soft $\mathcal{N}_{\in \mathfrak{V} q}$-set, soft \mathcal{N}-subalgebra and soft \mathcal{N}-ideal in $B C K / B C I$-algebra are introduced, and several properties are investigated. Characterizations of \mathcal{N}-subalgebra of types (ϵ, ϵ) and $(\epsilon, \in \vee q), \mathcal{N}$-ideal of types (ϵ, \in) and $(\epsilon, \in \vee q)$, soft \mathcal{N}-subalgebra and soft \mathcal{N}-ideal are discussed.

Mathematics Subject Classification (2010): 06F35, 03G25.
Keywords: \mathcal{N}-ideal of types (ϵ, \in) and $(\epsilon, \in \vee q)$, soft \mathcal{N}_{ϵ}-set, soft \mathcal{N}_{q}-set, soft $\mathcal{N}_{\in \vee q}$-set, soft \mathcal{N}-subalgebra, soft \mathcal{N}-ideal.

[^0]
1 Introduction

The generalization of the crisp set to fuzzy sets relied on spreading positive information that fit the crisp point $\{1\}$ into the interval $[0,1]$. Because no negative meaning of information is suggested, we now feel a need to deal with negative information. To do so, we also feel a need to supply mathematical tools. To attain such an object, Jun et al. [6] introduced a new function which is called a negative-valued function and constructed \mathcal{N}-structures. They applied \mathcal{N}-structures to $B C K / B C I$-algebras, and discussed \mathcal{N}-subalgebras and \mathcal{N}-ideals in $B C K / B C I$-algebras. Jun et al. [7] considered closed ideals in BCH -algebras based on \mathcal{N}-structures. Bordbar et al. [3], [8] applied these notions. To obtain a more general form of an \mathcal{N}-subalgebra in $B C K / B C I$-algebras, Jun et al. [5] defined the notions of \mathcal{N}-subalgebras of types $(\epsilon, \in),(\epsilon, q),(\epsilon, \in \vee q),(q, \in),(q, q)$ and $(q, \in \vee q)$, and investigated related properties. They provided a characterization of an \mathcal{N}-subalgebra of type $(\in, \in \vee q)$, and considered conditions for an \mathcal{N}-structure to be an \mathcal{N}-subalgebra of type $(q, \in \vee q)$. Also for more information about soft algebraic structures, please refer to [1], [2] and [9].

In this paper, we introduce \mathcal{N}-ideal of types (ϵ, \in) and $(\in, \in \vee q)$, soft \mathcal{N}-set, soft $\mathcal{N}_{\epsilon^{-}}$ set, soft \mathcal{N}_{q}-set, soft $\mathcal{N}_{\in \vee}$-set, soft \mathcal{N}-subalgebra and soft \mathcal{N}-ideal in $B C K / B C I$-algebra, and investigate several properties. We consider characterizations of \mathcal{N}-subalgebra of types (ϵ, \in) and $(\epsilon, \in \vee q), \mathcal{N}$-ideal of types (ϵ, \in) and $(\epsilon, \in \vee q)$, soft \mathcal{N}-subalgebra and soft \mathcal{N}-ideal.

2 Preliminaries

Let $K(\tau)$ be the class of all algebras with type $\tau=(2,0)$. By a $B C I$-algebra we mean a system $X:=(X, *, 0) \in K(\tau)$ in which the following axioms hold:
(i) $((x * y) *(x * z)) *(z * y)=0$,
(ii) $(x *(x * y)) * y=0$,
(iii) $x * x=0$,
(iv) $x * y=y * x=0 \Longrightarrow x=y$
for all $x, y, z \in X$. If a $B C I$-algebra X satisfies $0 * x=0$ for all $x \in X$, then we say that X is a BCK-algebra. We can define a partial ordering \leq by

$$
(\forall x, y \in X)(x \leq y \Longleftrightarrow x * y=0) .
$$

In a $B C K / B C I$-algebra X, the following hold:
(a1) $(\forall x \in X)(x * 0=x)$,
(a2) $(\forall x, y, z \in X)((x * y) * z=(x * z) * y)$.
for all $x, y, z \in X$.
A non-empty subset S of a $B C K / B C I$-algebra X is called a subalgebra of X if $x * y \in S$ for all $x, y \in S$. A subset I of a $B C K / B C I$-algebra X is called an ideal of X if

$$
\begin{align*}
& 0 \in I \tag{2.1}\\
& (\forall x, y \in X)(x * y \in I, y \in I \Rightarrow x \in I) . \tag{2.2}
\end{align*}
$$

We refer the reader to the books [4] and [10] for further information regarding $B C K / B C I$ algebras.

For any family $\left\{a_{i} \mid i \in \Lambda\right\}$ of real numbers, we define

$$
\begin{aligned}
& \bigvee\left\{a_{i} \mid i \in \Lambda\right\}:= \begin{cases}\max \left\{a_{i} \mid i \in \Lambda\right\} & \text { if } \Lambda \text { is finite }, \\
\sup \left\{a_{i} \mid i \in \Lambda\right\} & \text { otherwise }\end{cases} \\
& \bigwedge\left\{a_{i} \mid i \in \Lambda\right\}:= \begin{cases}\min \left\{a_{i} \mid i \in \Lambda\right\} & \text { if } \Lambda \text { is finite } \\
\inf \left\{a_{i} \mid i \in \Lambda\right\} & \text { otherwise. }\end{cases}
\end{aligned}
$$

For two real numbers a_{1} and $a_{2}, \bigvee\left\{a_{1}, a_{2}\right\}$ and $\bigwedge\left\{a_{1}, a_{2}\right\}$ are also denoted by $a_{1} \vee a_{2}$ and $a_{1} \wedge a_{2}$, respectively.

Denote by $\mathscr{F}(X,[-1,0])$ the collection of functions from a set X to $[-1,0]$. We say that an element of $\mathscr{F}(X,[-1,0])$ is a negative-valued function from X to $[-1,0]$ (briefly, \mathcal{N}-function on X). By an \mathcal{N}-structure we mean an ordered pair (X, f) of X and an \mathcal{N}-function f on X.

Let (X, f) be an \mathcal{N}-structure in which f is given by

$$
f(y)=\left\{\begin{array}{lll}
0 & \text { if } & y \neq x \\
\alpha & \text { if } & y=x
\end{array}\right.
$$

where $\alpha \in[-1,0)$. In this case, f is denoted by x_{α} and we call $\left(X, x_{\alpha}\right)$ a point \mathcal{N} structure. For any \mathcal{N}-structure (X, g), we say that a point \mathcal{N}-structure $\left(X, x_{\alpha}\right)$ is an \mathcal{N}_{ϵ}-subset (resp., \mathcal{N}_{q}-subset) of (X, g) if $g(x) \leq \alpha$ (resp., $g(x)+\alpha+1<0$). If a point \mathcal{N}-structure $\left(X, x_{\alpha}\right)$ is an \mathcal{N}_{ϵ}-subset of (X, g) or an \mathcal{N}_{q}-subset of (X, g), we say $\left(X, x_{\alpha}\right)$ is an $\mathcal{N}_{\in \mathcal{V}^{-}}$-Subset of (X, g).

An \mathcal{N}-structure (X, f) is called an \mathcal{N}-subalgebra of type (ϵ, \in) (resp., type $(\epsilon, \in \vee q)$) (see [5]) if whenever two point \mathcal{N}-structures $\left(X, x_{\alpha}\right)$ and $\left(X, y_{\beta}\right)$ are \mathcal{N}_{ϵ}-subsets of (X, f) then the point \mathcal{N}-structure $\left(X,(x * y)_{\vee\{\alpha, \beta\}}\right)$ is an \mathcal{N}_{ϵ}-subset (resp., $\mathcal{N}_{\in \mathcal{V} q}$-subset) of (X, f).

3 Soft \mathcal{N}-subalgebras and soft \mathcal{N}-ideals

In what follows, let X denote a $B C K / B C I$-algebra unless otherwise specified. For a subset Δ of $[-1,0]$, a pair (\mathcal{A}, Δ) is called a soft \mathcal{N}-set over X, where $\mathcal{A}: \Delta \rightarrow \mathcal{P}(X)$ is a mapping.

Given an \mathcal{N}-structure (X, f) and $\Delta \subseteq[-1,0]$, we define two mappings:

$$
\begin{align*}
& \mathcal{A}_{\in}: \Delta \rightarrow \mathcal{P}(X), \alpha \mapsto\left\{x \in X \mid\left(X, x_{\alpha}\right) \text { is an } \mathcal{N}_{\epsilon} \text {-subset of }(X, f)\right\} \tag{3.1}\\
& \mathcal{A}_{q}: \Delta \rightarrow \mathcal{P}(X), \alpha \mapsto\left\{x \in X \mid\left(X, x_{\alpha}\right) \text { is an } \mathcal{N}_{q} \text {-subset of }(X, f)\right\} \tag{3.2}
\end{align*}
$$

Then $\left(\mathcal{A}_{\epsilon}, \Delta\right)$ and $\left(\mathcal{A}_{q}, \Delta\right)$ are soft \mathcal{N}-sets over X. If $\mathcal{A}_{\in}(\alpha) \neq \emptyset$ (resp., $\left.\mathcal{A}_{q}(\alpha) \neq \emptyset\right)$ for $\alpha \in \Delta$, then we say $\left(\mathcal{A}_{\epsilon}, \Delta\right)$ (resp., $\left(\mathcal{A}_{q}, \Delta\right)$) is a soft \mathcal{N}_{ϵ}-set (resp., soft \mathcal{N}_{q}-set) over X. A soft $\mathcal{N}_{\in \vee q}$-set over X is defined to be the union of a soft \mathcal{N}_{ϵ}-set and a soft \mathcal{N}_{q}-set over X, and is denoted by $\left(\mathcal{A}_{\in \vee}, \Delta\right)$ where $\mathcal{A}_{\in \vee}(\alpha)=\mathcal{A}_{\in}(\alpha) \cup \mathcal{A}_{q}(\alpha)$ for all $\alpha \in \Delta$.

Definition 3.1. A soft \mathcal{N}-set (\mathcal{A}, Δ) over X is called a soft \mathcal{N}-subalgebra over X if it satisfies:

$$
\begin{equation*}
(\forall \alpha \in \Delta)(\mathcal{A}(\alpha) \neq \emptyset \Rightarrow \mathcal{A}(\alpha) \text { is a subalgebra of } X) \tag{3.3}
\end{equation*}
$$

Theorem 3.2. Given an \mathcal{N}-structure (X, f) and $\Delta=[-1,0)$, the soft \mathcal{N}_{ϵ}-set $\left(\mathcal{A}_{\epsilon}, \Delta\right)$ is a soft \mathcal{N}-subalgebra over X if and only if (X, f) is an \mathcal{N}-subalgebra of type (ϵ, \in).

Proof. Assume that $\left(\mathcal{A}_{\epsilon}, \Delta\right)$ is a soft \mathcal{N}-subalgebra over X. If (X, f) is not an \mathcal{N} subalgebra of type (\in, \in), then there exist $a, b \in X$ and $t \in \Delta$ such that $\left(X, a_{t}\right)$ and $\left(X, b_{t}\right)$ are \mathcal{N}_{ϵ}-subsets of (X, f), but $\left(X,(a * b)_{t}\right)$ is not an \mathcal{N}_{ϵ}-subset of (X, f). Hence $a, b \in \mathcal{A}_{\in}(t)$ and $a * b \notin \mathcal{A}_{\in}(t)$, which shows that $\mathcal{A}_{\in}(t)$ is not a subalgebra of X. This is a contradiction, and therefore (X, f) is an \mathcal{N}-subalgebra of type (ϵ, ϵ).

Conversely, suppose that (X, f) is an \mathcal{N}-subalgebra of type (ϵ, \in) and let $\alpha \in \Delta$ be such that $\mathcal{A}_{\in}(\alpha) \neq \emptyset$. If $x, y \in \mathcal{A}_{\in}(\alpha)$, then $\left(X, x_{\alpha}\right)$ and $\left(X, y_{\alpha}\right)$ are \mathcal{N}_{\in}-subsets of (X, f). Thus $\left(X,(x * y)_{\alpha}\right)=\left(X,(x * y)_{\bigvee\{\alpha, \alpha\}}\right)$ is an \mathcal{N}_{\in}-subset of (X, f), that is, $x * y \in \mathcal{A}_{\in}(\alpha)$. Hence $\mathcal{A}_{\in}(\alpha)$ is a subalgebra of X for all $\alpha \in \Delta$, and thus $\left(\mathcal{A}_{\in}, \Delta\right)$ is a soft \mathcal{N}-subalgebra over X.

Lemma 3.3 ([5]). An \mathcal{N}-structure (X, f) is an \mathcal{N}-subalgebra of type (ϵ, ϵ) if and only if the following inequality is valid.

$$
\begin{equation*}
(\forall x, y \in X)(f(x * y) \leq \bigvee\{f(x), f(y)\}) \tag{3.4}
\end{equation*}
$$

Theorem 3.4. Given an \mathcal{N}-structure (X, f) and $\Delta=[-1,0)$, the soft \mathcal{N}_{q}-set $\left(\mathcal{A}_{q}, \Delta\right)$ is a soft \mathcal{N}-subalgebra over X if and only if (X, f) is an \mathcal{N}-subalgebra of type (ϵ, \in).

Proof. Assume that (X, f) is an \mathcal{N}-subalgebra of type (\in, \in) and let $\alpha \in \Delta$ be such that $\mathcal{A}_{q}(\alpha) \neq \emptyset$. If $x, y \in \mathcal{A}_{q}(\alpha)$, then $\left(X, x_{\alpha}\right)$ and $\left(X, y_{\alpha}\right)$ are \mathcal{N}_{q}-subsets of (X, f), and so $f(x)+\alpha+1<0$ and $f(y)+\alpha+1<0$. It follows from (3.4) that

$$
f(x * y)+\alpha+1 \leq \bigvee\{f(x), f(y)\}+\alpha+1<0
$$

and so that $\left(X,(x * y)_{\alpha}\right)=\left(X,(x * y)_{\bigvee\{\alpha, \alpha\}}\right)$ is an \mathcal{N}_{q}-subset of (X, f). Hence $x * y \in$ $\mathcal{A}_{q}(\alpha)$, and thus $\mathcal{A}_{q}(\alpha)$ is a subalgebra of X for all $\alpha \in \Delta$ with $\mathcal{A}_{q}(\alpha) \neq \emptyset$. Therefore $\left(\mathcal{A}_{q}, \Delta\right)$ is a soft \mathcal{N}-subalgebra over X.

Conversely, suppose that the soft \mathcal{N}_{q}-set $\left(\mathcal{A}_{q}, \Delta\right)$ is a soft \mathcal{N}-subalgebra over X, and assume that $f(a * b)>\bigvee\{f(a), f(b)\}$ for some $a, b \in X$. Then there exists $t \in \Delta$ such that

$$
f(a * b)+t+1 \geq 0 \text { and } \bigvee\{f(a), f(b)\}+t+1<0
$$

It follows that $\left(X, a_{t}\right)$ and $\left(X, b_{t}\right)$ are $\mathcal{N}_{q^{-}}$-subsets of (X, f) but $\left(X,(a * b)_{t}\right)$ is not an \mathcal{N}_{q}-subset of (X, f). This is a contradiction, and hence $f(x * y) \leq \bigvee\{f(x), f(y)\}$ for all $x, y \in X$. Therefore (X, f) is an \mathcal{N}-subalgebra of type (\in, \in) by Lemma 3.3.

Theorem 3.5. Given an \mathcal{N}-structure (X, f) and the soft \mathcal{N}_{ϵ}-set $\left(\mathcal{A}_{\in}, \Delta\right)$ with $\Delta=$ $[-1,-0.5)$, the following are equivalent:
(1) $\left(\mathcal{A}_{\in}, \Delta\right)$ is a soft \mathcal{N}-subalgebra over X.
(2) $(\forall x, y \in X)(\bigwedge\{f(x * y),-0.5\} \leq \bigvee\{f(x), f(y)\})$.

Proof. Assume that the soft \mathcal{N}_{ϵ}-set $\left(\mathcal{A}_{\epsilon}, \Delta\right)$ is a soft \mathcal{N}-subalgebra over X. Then $\mathcal{A}_{\in}(\alpha)$ is a subalgebra of X for all $\alpha \in \Delta$ with $\mathcal{A}_{\in}(\alpha) \neq \emptyset$. If there exist $a, b \in X$ such that

$$
\bigwedge\{f(a * b),-0.5\}>t:=\bigvee\{f(a), f(b)\}
$$

then $t \in \Delta$, and $\left(X, a_{t}\right)$ and $\left(X, b_{t}\right)$ are \mathcal{N}_{\in}-subsets of (X, f), that is, $a, b \in \mathcal{A}_{\in}(t)$, but $\left(X,(a * b)_{t}\right)$ is not an \mathcal{N}_{\in}-subset of (X, f), i.e., $a * b \notin \mathcal{A}_{\in}(t)$. This is a contradiction, and so $\bigwedge\{f(x * y),-0.5\} \leq \bigvee\{f(x), f(y)\}$ for all $x, y \in X$.

Conversely, suppose that (2) is valid. Let $x, y \in \mathcal{A}_{\in}(\alpha)$ for every $\alpha \in \Delta$. Then (X, x_{α}) and $\left(X, y_{\alpha}\right)$ are \mathcal{N}_{ϵ}-subsets of (X, f), and so

$$
\bigwedge\{f(x * y),-0.5\} \leq \bigvee\{f(x), f(y)\} \leq \alpha<-0.5
$$

It follows that $\left(X,(x * y)_{\alpha}\right)$ is an \mathcal{N}_{ϵ}-subset of (X, f), that is, $x * y \in \mathcal{A}_{\in}(\alpha)$. Thus $\mathcal{A}_{\in}(\alpha)$ is a subalgebra of X, and therefore $\left(\mathcal{A}_{\epsilon}, \Delta\right)$ is a soft \mathcal{N}-subalgebra over X.

Lemma 3.6 ([5]). An \mathcal{N}-structure (X, f) is an \mathcal{N}-subalgebra of type $(\epsilon, \in \vee q)$ if and only if it satisfies:

$$
\begin{equation*}
(\forall x, y \in X)(f(x * y) \leq \bigvee\{f(x), f(y),-0.5\}) \tag{3.5}
\end{equation*}
$$

Theorem 3.7. Given an \mathcal{N}-structure (X, f) and a soft \mathcal{N}_{ϵ}-set $\left(\mathcal{A}_{\epsilon}, \Delta\right)$, the following assertions are equivalent:
(1) (X, f) is an \mathcal{N}-subalgebra of type $(\in, \in \vee q)$.
(2) $\left(\mathcal{A}_{\in}, \Delta\right)$ is a soft \mathcal{N}-subalgebra over X for $\Delta=[-0.5,0)$.

Proof. Assume that (X, f) is an \mathcal{N}-subalgebra of type $(\in, \in \vee q)$. Let $x, y \in X$ and $\alpha \in \Delta$ be such that $x, y \in \mathcal{A}_{\in}(\alpha)$. Then $\left(X, x_{\alpha}\right)$ and $\left(X, y_{\alpha}\right)$ are \mathcal{N}_{ϵ}-subsets of (X, f). It follows from (3.5) that

$$
(\forall x, y \in X)(f(x * y) \leq \bigvee\{f(x), f(y),-0.5\} \leq \bigvee\{\alpha,-0.5\}=\alpha)
$$

This shows that $\left(X,(x * y)_{\alpha}\right)$ is an \mathcal{N}_{ϵ}-subset of (X, f). Thus $x * y \in \mathcal{A}_{\in}(\alpha)$, and so $\left(\mathcal{A}_{\in}, \Delta\right)$ is a soft \mathcal{N}-subalgebra over X.

Conversely, suppose that the soft \mathcal{N}_{ϵ}-set $\left(\mathcal{A}_{\epsilon}, \Delta\right)$ with $\Delta=[-0.5,0)$ is a soft \mathcal{N} subalgebra over X. Assume that (3.5) is not valid. Then

$$
f(a * b)>t \geq \bigvee\{f(a), f(b),-0.5\}
$$

for some $t \in \Delta$ and $a, b \in X$. It follows that $\left(X, a_{t}\right)$ and $\left(X, b_{t}\right)$ are \mathcal{N}_{\in}-subsets of (X, f), and so that $a, b \in \mathcal{A}_{\in}(t)$. But $f(a * b)>t$ induces that $\left(X,(a * b)_{t}\right)$ is not an \mathcal{N}_{ϵ}-subset of (X, f). This is a contradiction, and thus $f(x * y) \leq \bigvee\{f(x), f(y),-0.5\}$ for all $x, y \in X$. Using Lemma 3.6, we know that (X, f) is an \mathcal{N}-subalgebra of type $(\in, \in \vee q)$.

Theorem 3.8. Let $\left(\mathcal{A}_{\in}, \Delta\right)$ be a soft \mathcal{N}_{ϵ}-set over X. If $\Delta=[-0.5,0)$, then for any subalgebra S of X there exists an \mathcal{N}-subalgebra (X, f) of type $(\in, \in \vee q)$ such that $\mathcal{A}_{\in}(\alpha)=$ S for all $\alpha \in \Delta$.

Proof. Take an \mathcal{N}-subalgebra (X, f) in which f is given as follows:

$$
f: X \rightarrow[-1,0], x \mapsto \begin{cases}\alpha \in \Delta & \text { if } x \in S \\ 0 & \text { if otherwise }\end{cases}
$$

Obviously, $\mathcal{A}_{\in}(\alpha)=S$ for all $\alpha \in \Delta$. Assume that

$$
f(a * b)>\bigvee\{f(a), f(b),-0.5\}
$$

for some $a, b \in X$. Then $f(a * b)=0$ and $\bigvee\{f(a), f(b),-0.5\}=\alpha$ since $|\operatorname{Im}(f)|=2$. It follows that $f(a)=\alpha=f(b)$ so that $a, b \in S$. But $a * b \notin S$ since $f(a * b)=0$. This is impossible, and so

$$
f(x * y) \leq \bigvee\{f(x), f(y),-0.5\}
$$

for all $x, y \in X$. Therefore (X, f) is an \mathcal{N}-subalgebra of type $(\epsilon, \in \vee q)$ by Lemma 3.6.
Definition 3.9. An \mathcal{N}-structure (X, f) is called an \mathcal{N}-ideal of type (ϵ, \in) (resp., type $(\epsilon, \in \vee q))$ if the following assertions are valid.
(1) If a point \mathcal{N}-structure $\left(X, x_{\alpha}\right)$ is an $\mathcal{N}_{\epsilon^{-}}$-subset of (X, f), then $\left(X, 0_{\alpha}\right)$ is an $\mathcal{N}_{\epsilon^{-}}$ subset (resp., $\mathcal{N}_{\in \vee} q^{\text {-subset) }}$ of (X, f).
(2) If two point \mathcal{N}-structures $\left(X,(x * y)_{\alpha}\right)$ and $\left(X, y_{\beta}\right)$ are \mathcal{N}_{ϵ}-subsets of (X, f) then the point \mathcal{N}-structure $\left(X, x_{\alpha \vee \beta}\right)$ is an \mathcal{N}_{\in}-subset (resp., $\mathcal{N}_{\in \mathcal{q}}$-subset) of (X, f).

Lemma 3.10. Let (X, f) be an \mathcal{N}-structure. Then $f(0) \leq f(x)$ for all $x \in X$ if and only if $\left(X, 0_{\alpha}\right)$ is an \mathcal{N}_{ϵ}-subset of (X, f) whenever $\left(X, x_{\alpha}\right)$ is an \mathcal{N}_{ϵ}-subset of (X, f) for all $x \in X$ and $\alpha \in \Delta=[-1,0)$.

Proof. Assume that $f(0) \leq f(x)$ for all $x \in X$ and let $\alpha \in \Delta$ be such that $\left(X, x_{\alpha}\right)$ is an \mathcal{N}_{ϵ}-subset of (X, f). Then $f(0) \leq f(x) \leq \alpha$, and so $\left(X, 0_{\alpha}\right)$ is an \mathcal{N}_{ϵ}-subset of (X, f).

Conversely, suppose that $\left(X, 0_{\alpha}\right)$ is an $\mathcal{N}_{\epsilon^{-}}$subset of (X, f) when $\left(X, x_{\alpha}\right)$ is an $\mathcal{N}_{\epsilon^{-}}$ subset of (X, f) for all $x \in X$ and $\alpha \in \Delta=[-1,0)$. If we take $\beta=f(x)$ for any $x \in X$, then $\left(X, x_{\beta}\right)$ is an \mathcal{N}_{ϵ}-subset of (X, f), and thus $\left(X, 0_{\beta}\right)$ is an \mathcal{N}_{ϵ}-subset of (X, f). Hence $f(0) \leq \beta=f(x)$ for all $x \in X$.

Lemma 3.11. Given an \mathcal{N}-structure (X, f), the following are equivalent.
(1) $f(x) \leq \bigvee\{f(x * y), f(y)\}$ for all $x, y \in X$.
(2) For any $x, y \in X$ and $\alpha, \beta \in \Delta=[-1,0)$, if $\left(X,(x * y)_{\alpha}\right)$ and $\left(X, y_{\beta}\right)$ are \mathcal{N}_{ϵ}-subsets of (X, f), then $\left(X, x_{\alpha \vee \beta}\right)$ is an \mathcal{N}_{ϵ}-subset of (X, f).

Proof. Assume that $f(x) \leq \bigvee\{f(x * y), f(y)\}$ for all $x, y \in X$. Let $x, y \in X$ and $\alpha, \beta \in \Delta$ be such that $\left(X,(x * y)_{\alpha}\right)$ and $\left(X, y_{\beta}\right)$ are \mathcal{N}_{\in}-subsets of (X, f). Then $f(x * y) \leq \alpha$ and $f(y) \leq \beta$, which imply that

$$
f(x) \leq \bigvee\{f(x * y), f(y)\} \leq \alpha \vee \beta
$$

Hence $\left(X, x_{\alpha \vee \beta}\right)$ is an \mathcal{N}_{ϵ}-subset of (X, f).
Conversely, suppose (2) is valid. If we take $\alpha=f(x * y)$ and $\beta=f(y)$, then $\left(X,(x * y)_{\alpha}\right)$ and $\left(X, y_{\beta}\right)$ are \mathcal{N}_{ϵ}-subsets of (X, f). It follows that $\left(X, x_{\alpha \vee \beta}\right)$ is an \mathcal{N}_{ϵ}-subset of (X, f) and so that

$$
f(x) \leq \alpha \vee \beta=\bigvee\{f(x * y), f(y)\}
$$

This completes the proof.
Combining Lemmas 3.10 and 3.11, we have the following theorem.
Theorem 3.12. An \mathcal{N}-structure (X, f) is an \mathcal{N}-ideal of type (ϵ, ϵ) if and only if the following inequality is valid.

$$
\begin{equation*}
(\forall x, y \in X)(f(0) \leq f(x) \leq \bigvee\{f(x * y), f(y)\}) \tag{3.6}
\end{equation*}
$$

Definition 3.13. A soft \mathcal{N}-set (\mathcal{A}, Δ) over X is called a soft \mathcal{N}-ideal over X if it satisfies:

$$
\begin{equation*}
(\forall \alpha \in \Delta)(\mathcal{A}(\alpha) \neq \emptyset \Rightarrow \mathcal{A}(\alpha) \text { is an ideal of } X) . \tag{3.7}
\end{equation*}
$$

Example 3.14. Let $X=\{0, a, b, c, d\}$ be a $B C K$-algebra with the binary operation $*$ in Table 1.
Given $\Delta=[-1,0]$, let (\mathcal{A}, Δ) be a soft \mathcal{N}-set over X in which \mathcal{A} is given as follows:

$$
\mathcal{A}: \Delta \rightarrow \mathcal{P}(X), \alpha \mapsto \begin{cases}\{0\} & \text { if } \alpha=-1, \\ \{0,3\} & \text { if } \alpha \in(-1,-0.8), \\ \{0,4\} & \text { if } \alpha \in(-1,-0.8], \\ \{0,2,3\} & \text { if } \alpha \in(-0.8,-0.6], \\ \{0,3,4\} & \text { if } \alpha \in(-0.6,-0.4], \\ \{0,1,2,3\} & \text { if } \alpha \in(-0.4,-0.2], \\ \{0,1,3,4\} & \text { if } \alpha \in(-0.2,0]\end{cases}
$$

It is routine to verify that (\mathcal{A}, Δ) is a soft \mathcal{N}-ideal over X.

Table 1: Tabular representation of the binary operation *

$*$	0	a	b	c	d
0	0	0	0	0	0
a	a	0	a	a	a
b	b	b	0	b	b
c	c	c	c	0	c
d	d	d	d	d	0

Theorem 3.15. Given an \mathcal{N}-structure (X, f) and the soft \mathcal{N}_{ϵ}-set $\left(\mathcal{A}_{\epsilon}, \Delta\right)$, the following are equivalent:
(1) $\left(\mathcal{A}_{\in}, \Delta\right)$ is a soft \mathcal{N}-ideal over X for $\Delta=[-1,0)$.
(2) (X, f) is an \mathcal{N}-ideal of type (ϵ, \in).

Proof. Assume that $\left(\mathcal{A}_{\in}, \Delta\right)$ is a soft \mathcal{N}-ideal over X for $\Delta=[-1,0)$. If there exists $a \in X$ such that $f(0)>f(a)$, then we can take $\alpha \in \Delta$ such that $f(0)>\alpha \geq f(a)$. Thus $\left(X, 0_{\alpha}\right)$ is not an \mathcal{N}_{ϵ}-subset of (X, f), and so $0 \notin \mathcal{A}_{\in}(\alpha)$. This is a contradiction, and so $f(0) \leq f(x)$ for all $x \in X$. Suppose that there exist $a, b \in X$ such that $f(a)>\bigvee\{f(a * b), f(b)\}$. Taking $\beta=\bigvee\{f(a * b), f(b)\}$ implies that $\left(X,(a * b)_{\beta}\right)$ and $\left(X, b_{\beta}\right)$ are \mathcal{N}_{ϵ}-subsets of (X, f), that is, $a * b \in \mathcal{A}_{\in}(\beta)$ and $b \in \mathcal{A}_{\in}(\beta)$. Since $\mathcal{A}_{\in}(\beta)$ is an ideal of X, it follows that $a \in \mathcal{A}_{\in}(\beta)$. Hence $\left(X, a_{\beta}\right)$ is an \mathcal{N}_{ϵ}-subset of (X, f), and so $f(a) \leq \beta$. This is a contradiction, and therefore $f(x) \leq \bigvee\{f(x * y), f(y)\}$ for all $x, y \in X$. Hence (X, f) is an \mathcal{N}-ideal of type (ϵ, \in) by Theorem 3.12.

Conversely, assume that (X, f) is an \mathcal{N}-ideal of type (ϵ, ϵ) and let $\alpha \in \Delta$ be such that $\mathcal{A}_{\in}(\alpha) \neq \emptyset$. Then there exists $x \in \mathcal{A}_{\in}(\alpha)$, and so $\left(X, x_{\alpha}\right)$ is an \mathcal{N}_{ϵ}-subset of (X, f). It follows that $f(0) \leq f(x) \leq \alpha$ and so that $\left(X, 0_{\alpha}\right)$ is an \mathcal{N}_{ϵ}-subset of (X, f), that is, $0 \in \mathcal{A}_{\in}(\alpha)$. Let $x * y \in \mathcal{A}_{\in}(\alpha)$ and $y \in \mathcal{A}_{\in}(\alpha)$. Then $\left(X,(x * y)_{\alpha}\right)$ and $\left(X, y_{\alpha}\right)$ are \mathcal{N}_{ϵ}-subsets of (X, f). Thus $f(x * y) \leq \alpha$ and $f(y) \leq \alpha$. It follows from (3.6) that $f(x) \leq \bigvee\{f(x * y), f(y)\} \leq \alpha$. Hence $\left(X, x_{\alpha}\right)=\left(X, x_{\alpha \vee \alpha}\right)$ is an \mathcal{N}_{ϵ}-subset of (X, f), and so $x \in \mathcal{A}_{\in}(\alpha)$. Thus $\mathcal{A}_{\in}(\alpha)$ is an ideal of X for all $\alpha \in \Delta$, and therefore $\left(\mathcal{A}_{\in}, \Delta\right)$ is a soft \mathcal{N}-ideal over X for $\Delta=[-1,0)$.

Theorem 3.16. The soft \mathcal{N}_{q}-set $\left(\mathcal{A}_{q}, \Delta\right)$ is a soft \mathcal{N}-ideal over X for $\Delta=[-1,0)$ if and only if the \mathcal{N}-structure (X, f) is an \mathcal{N}-ideal of type (ϵ, \in).

Proof. Assume that (X, f) is an \mathcal{N}-ideal of type (ϵ, \in) and let $\alpha \in \Delta$ be such that $\mathcal{A}_{q}(\alpha) \neq \emptyset$. Then there exists $x \in \mathcal{A}_{q}(\alpha)$, and so $\left(X, x_{\alpha}\right)$ is an \mathcal{N}_{q}-subset of (X, f). If $0 \notin \mathcal{A}_{q}(\alpha)$, then $\left(X, 0_{q}\right)$ is not an \mathcal{N}_{q}-subset of (X, f) and so $f(0)+\alpha+1 \geq 0$. It follows from (3.6) that

$$
f(x)+\alpha+1 \geq f(0)+\alpha+1 \geq 0
$$

and so that $\left(X, x_{\alpha}\right)$ is not an \mathcal{N}_{q}-subset of (X, f). This is a contradiction, and thus $0 \in \mathcal{A}_{q}(\alpha)$. Let $x * y \in \mathcal{A}_{q}(\alpha)$ and $y \in \mathcal{A}_{q}(\alpha)$. Then $\left(X,(x * y)_{\alpha}\right)$ and $\left(X, y_{\alpha}\right)$ are $\mathcal{N}_{q^{-}}$ subsets of (X, f). If $\left(X, x_{\alpha}\right)$ is not an \mathcal{N}_{q}-subset of (X, f), then $f(x)+\alpha+1 \geq 0$. It follows from (3.6) that

$$
\bigvee\{f(x * y), f(y)\}+\alpha+1 \geq f(x)+\alpha+1 \geq 0
$$

Hence $f(x * y)+\alpha+1 \geq 0$ or $f(y)+\alpha+1 \geq 0$, that is, $\left(X,(x * y)_{\alpha}\right)$ is not an $\mathcal{N}_{q^{-}}$ subset of (X, f) or $\left(X, y_{\alpha}\right)$ is not an \mathcal{N}_{q}-subset of (X, f). This is a contradiction, and thus $x \in \mathcal{A}_{q}(\alpha)$. Therefore $\left(\mathcal{A}_{q}, \Delta\right)$ is a soft \mathcal{N}-ideal over X for $\Delta=[-1,0)$.

Conversely, suppose that the soft \mathcal{N}_{q}-set $\left(\mathcal{A}_{q}, \Delta\right)$ is a soft \mathcal{N}-ideal over X for $\Delta=$ $[-1,0)$. If $f(0)>f(a)$ for some $a \in X$, then there exists $\beta \in \Delta$ such that $f(0)+\beta+1 \geq 0$ and $f(a)+\beta+1<0$. Thus $\left(X, a_{\beta}\right)$ is an $\mathcal{N}_{q^{-}}$subset of (X, f), and so $\left(X, 0_{\beta}\right)$ is an $\mathcal{N}_{q^{-}}$ subset of (X, f). This is a contradiction, and therefore $f(0) \leq f(x)$ for all $x \in X$. Suppose that there exist $a, b \in X$ such that $f(a)>\bigvee\{f(a * b), f(b)\}$. Then $f(a)+\beta+1 \geq 0$ and $\bigvee\{f(a * b), f(b)\}+\beta+1<0$ for some $\beta \in \Delta$. Thus $f(a * b)+\beta+1<0$ and $f(b)+\beta+1<0$, that is, $\left(X,(a * b)_{\beta}\right)$ and $\left(X, b_{\beta}\right)$ are \mathcal{N}_{q}-subsets of (X, f). Hence $a * b \in \mathcal{A}_{q}(\beta)$ and $b \in \mathcal{A}_{q}(\beta)$. Since $\mathcal{A}_{q}(\beta)$ is an ideal of X, we have $a \in \mathcal{A}_{q}(\beta)$, that is, $\left(X, a_{\beta}\right)$ is an \mathcal{N}_{q}-subset of (X, f). This is a contradiction, and hence $f(x) \leq \bigvee\{f(x * y), f(y)\}$ for all $x, y \in X$. Using Theorem 3.12, (X, f) is an \mathcal{N}-ideal of type (ϵ, \in).

Theorem 3.17. Given an \mathcal{N}-structure (X, f) and the soft \mathcal{N}_{ϵ}-set $\left(\mathcal{A}_{\epsilon}, \Delta\right)$, the following are equivalent:
(1) (X, f) is an \mathcal{N}-ideal of type $(\in, \in \vee q)$.
(2) $\left(\mathcal{A}_{\epsilon}, \Delta\right)$ is a soft \mathcal{N}-ideal over X for $\Delta=[-0.5,0)$.

Proof. Assume that (X, f) is an \mathcal{N}-ideal of type $(\epsilon, \in \vee q)$. We first show that

$$
\begin{equation*}
(\forall x \in X)(f(0) \leq \bigvee\{f(x),-0.5\}) \tag{3.8}
\end{equation*}
$$

Suppose that $f(0)>f(x)>-0.5$. Then $f(0)>\alpha \geq f(x)$ for some $\alpha \in(-0.5,0)$, which implies that $\left(X, x_{\alpha}\right)$ is an \mathcal{N}_{ϵ}-subset of (X, f), but $\left(X, 0_{\alpha}\right)$ is not an \mathcal{N}_{ϵ}-subset of (X, f). Also, $\left(X, 0_{\alpha}\right)$ is not an \mathcal{N}_{q}-subset of (X, f) since $f(0)+\alpha+1 \geq 0$. Thus $\left(X, 0_{\alpha}\right)$ is not an $\mathcal{N}_{\in \vee q}$-subset of (X, f), a contradiction. Hence $f(0) \leq f(x)$ for all $x \in X$. Now if $f(x) \leq-0.5$, then $\left(X, x_{-0.5}\right)$ is an \mathcal{N}_{ϵ}-subset of (X, f) and so $\left(X, 0_{-0.5}\right)$ is an $\mathcal{N}_{\in \vee} q^{- \text {subset }}$ of (X, f). It follows that $f(0) \leq-0.5$ or $f(0)-0.5+1<0$ and so that $f(0) \leq-0.5$ because if not, then $f(0)-0.5+1>0$, a contradiction. Consequently, the condition (3.8) is valid. Let $\alpha \in \Delta=[-0.5,0)$. The condition (3.8) implies that $f(0) \leq \bigvee\{f(x),-0.5\}$ for all $x \in \mathcal{A}_{\in}(\alpha)$, and so

$$
f(0) \leq \bigvee\{f(x),-0.5\} \leq \bigvee\{\alpha,-0.5\}=\alpha
$$

that is, $\left(X, 0_{\alpha}\right)$ is an \mathcal{N}_{ϵ}-subset of (X, f). Hence $0 \in \mathcal{A}_{\in}(\alpha)$. Now we show that

$$
\begin{equation*}
(\forall x, y \in X)(f(x) \leq \bigvee\{f(x * y), f(y),-0.5\}) \tag{3.9}
\end{equation*}
$$

If $\bigvee\{f(x * y), f(y)\}>-0.5$, then $f(x) \leq \bigvee\{f(x * y), f(y)\}$. Otherwise, there exists $\beta \in(-0.5,0)$ such that $f(x)>\beta \geq \bigvee\{f(x * y), f(y)\}$. It follows that $\left(X,(x * y)_{\beta}\right)$ and $\left(X, y_{\beta}\right)$ are \mathcal{N}_{ϵ}-subsets of (X, f), but $\left(X, x_{\beta}\right)$ is not an \mathcal{N}_{ϵ}-subset of (X, f). Also $\left(X, x_{\beta}\right)$ is not an \mathcal{N}_{q}-subset of (X, f) because $f(x)+\beta+1>2 \beta+1>0$. Hence $\left(X, x_{\beta}\right)$ is not an $\mathcal{N}_{\in \mathcal{V} q}$-subset of (X, f), a contradiction. If $\bigvee\{f(x * y), f(y)\} \leq-0.5$, then $\left(X,(x * y)_{-0.5}\right)$ and $\left(X, y_{-0.5}\right)$ are \mathcal{N}_{\in}-subsets of (X, f). Thus $\left(X, x_{-0.5}\right)$ is an $\mathcal{N}_{\in \mathcal{V} q}$-subset of (X, f), and so $f(x) \leq-0.5$ or $f(x)-0.5+1<0$. It follows that $f(x) \leq-0.5$ because if $f(x)>-0.5$, then $f(x)-0.5+1>0$ which is a contradiction. Therefore $f(x) \leq \bigvee\{f(x * y), f(y),-0.5\}$ for all $x, y \in X$. Let $x, y \in X$ be such that $x * y \in \mathcal{A}_{\in}(\alpha)$ and $y \in \mathcal{A}_{\in}(\alpha)$. Then $\left(X,(x * y)_{\alpha}\right)$ and $\left(X, y_{\alpha}\right)$ are \mathcal{N}_{ϵ}-subsets of (X, f), and so $f(x * y) \leq \alpha$ and $f(y) \leq \alpha$. Using (3.9), we have

$$
f(x) \leq \bigvee\{f(x * y), f(y),-0.5\} \leq \bigvee\{\alpha,-0.5\}=\alpha
$$

Thus $\left(X, x_{\alpha}\right)$ is an \mathcal{N}_{ϵ}-subset of (X, f), and hence $x \in \mathcal{A}_{\in}(\alpha)$. Therefore $\left(\mathcal{A}_{\epsilon}, \Delta\right)$ is a soft \mathcal{N}-ideal over X for $\Delta=[-0.5,0)$.

Conversely, suppose that (2) is valid. If $f(0)>\bigvee\{f(a),-0.5\}$ for some $a \in X$, then there exists $\alpha \in \Delta$ such that $f(0)>\alpha \geq \bigvee\{f(a),-0.5\}$. Then $\alpha \in \Delta$ and $\left(X, a_{\alpha}\right)$ is an \mathcal{N}_{ϵ}-subset of (X, f). But $\left(X, 0_{\alpha}\right)$ is not an \mathcal{N}_{ϵ}-subset of (X, f), i.e., $0 \notin \mathcal{A}_{\in}(\alpha)$. This is a contradiction, and so $f(0) \leq \bigvee\{f(x),-0.5\}$ for all $x \in X$. Let $x \in X$ and $\alpha \in \Delta$ be such that $\left(X, x_{\alpha}\right)$ is an $\mathcal{N}_{\epsilon^{-}}$subset of (X, f). Then $f(x) \leq \alpha$. Suppose that $\left(X, 0_{\alpha}\right)$ is not an $\mathcal{N}_{\epsilon^{-}}$ subset of (X, f). Then $f(0)>\alpha$. If $f(x)>-0.5$, then $f(0) \leq \bigvee\{f(x),-0.5\}=f(x) \leq \alpha$
which is impossible. Thus $f(x) \leq-0.5$ and so

$$
f(0)+\alpha+1<2 f(0)+1 \leq 2 \bigvee\{f(x),-0.5\}+1=0,
$$

that is, $\left(X, 0_{\alpha}\right)$ is an \mathcal{N}_{q}-subset of (X, f). Hence $\left(X, 0_{\alpha}\right)$ is an $\mathcal{N}_{\in \mathfrak{V}}$-subset of (X, f). Assume that there exist $a, b \in X$ such that

$$
f(a)>\bigvee\{f(a * b), f(b),-0.5\}
$$

Taking $\alpha=\bigvee\{f(a * b), f(b),-0.5\}$ implies that $\alpha \in \Delta$, and $\left(X,(a * b)_{\alpha}\right)$ and $\left(X, b_{\alpha}\right)$ are \mathcal{N}_{ϵ}-subsets of (X, f). But $\left(X, a_{\alpha}\right)$ is not an \mathcal{N}_{ϵ}-subset of (X, f). This is a contradiction, and thus $f(x) \leq \bigvee\{f(x * y), f(y),-0.5\}$ for all $x, y \in X$. Let $x, y \in X$ and $\alpha, \beta \in \Delta$ be such that $\left(X,(x * y)_{\alpha}\right)$ and $\left(X, y_{\beta}\right)$ are \mathcal{N}_{ϵ}-subsets of (X, f), and suppose that $(X$, $\left.x_{\alpha \vee \beta}\right)$ is not an \mathcal{N}_{ϵ}-subset of (X, f). Then $f(x * y) \leq \alpha, f(y) \leq \beta$ and $f(x)>\alpha \vee \beta$. If $\bigvee\{f(x * y), f(y)\}>-0.5$, then

$$
f(x) \leq \bigvee\{f(x * y), f(y),-0.5\}=\bigvee\{f(x * y), f(y)\} \leq \alpha \vee \beta
$$

which is a contradiction. Thus $\bigvee\{f(x * y), f(y)\} \leq-0.5$, and so

$$
f(x)+(\alpha \vee \beta)+1<2 f(x)+1 \leq 2 \bigvee\{f(x * y), f(y),-0.5\}+1=0
$$

which shows that $\left(X, x_{\alpha \vee \beta}\right)$ is an \mathcal{N}_{q}-subset of (X, f). Thus $\left(X, x_{\alpha \vee \beta}\right)$ is an $\mathcal{N}_{\in \vee q}$-subset of (X, f). Consequently, (X, f) is an \mathcal{N}-ideal of type $(\epsilon, \in \vee q)$.

Conclusion

We have introduced \mathcal{N}-ideal of types (ϵ, \in) and $(\in, \in \vee q)$, soft \mathcal{N}_{ϵ}-set, soft \mathcal{N}_{q}-set, soft $\mathcal{N}_{\in \vee} q^{\text {-set, }}$ soft \mathcal{N}-subalgebra and soft \mathcal{N}-ideal in $B C K / B C I$-algebra.

We have considered characterizations of \mathcal{N}-subalgebra of types (ϵ, ϵ) and $(\epsilon, \in \vee q)$, \mathcal{N}-ideal of types (ϵ, \in) and $(\epsilon, \in \vee q)$, soft \mathcal{N}-subalgebra and soft \mathcal{N}-ideal.

4 Compliance with Ethical Standards

Conflict of Interest: Author declares that he has no conflict of interest.
Ethical approval: This article does not contain any studies with human participants or animals performed by the author.

Informed consent: Informed consent was obtained from all individual participants included in the study.

Author contributions: Conceptualization: Young Bae Jun, Hashem Bordbar; Methodology: Young Bae Jun, Hashem Bordbar; Formal analysis and investigation: Hashem Bordbar, Rajab Ali Borzooei, Borumand Saeid; Writing - original draft preparation: Hashem Bordbar; Writing - review and editing: Young Bae Jun; Resources: Hashem Bordbar; Supervision: Young Bae Jun.

References

[1] H. Bordbar, R. A. Borzooei, Y. B. Jun Uni-Soft Commutative Ideals and Closed UniSoft Ideals in BCI-Algebras New Mathematics and Natural Computation, Volume 14(2) (2018), Pages 235-247.
[2] H. Bordbar, H. Harizavi, Y. B. Jun, Uni-Soft Ideals in Coresiduated Lattices Sigma J Eng and Nat Sci 9 (1), 2018, 69-75
[3] H. Bordbar, M.M. Zahedi, Y. B. Jun, Ideals of IS-algebras based on \mathcal{N}-Structures Kragujevac Journal of Mathematics, Volume 42(4) (2018), Pages 631-641.
[4] Y. S. Huang, BCI-algebra, Science Press, Beijing, 2006.
[5] Y. B. Jun, M. S. Kang and C. H. Park, \mathcal{N}-subalgebras in BCK/BCI-algebras based on point \mathcal{N}-structures, Int. J. Math. Math. Sci. Volume 2010, Article ID 303412, 9 pages.
[6] Y. B. Jun, K. J. Lee and S. Z. Song, \mathcal{N}-ideals of BCK/BCI-algebras, J. Chungcheong Math. Soc. 22 (2009), 417-437.
[7] Y. B. Jun, M. A. Öztürk and E. H. Roh, \mathcal{N}-structures applied to closed ideals in BCH-algebras, Int. J. Math. Math. Sci. Volume 2010, Article ID 943565, 9 pages.
[8] Y. B. Jun, F. Smarandache, H. Bordbar Neutrosophic \mathcal{N}-Structures Applied to BCK/BCI-algebras, Information 2017, 8(4), 128
[9] Y. B. Jun, S. Z. Song, H. Bordbar Int-Soft Ideals of Pseudo MV-algebra, Bulletin of the Section of Logic Volume 47/1 (2018), pp. 1-14
[10] J. Meng and Y. B. Jun, BCK-algebras, Kyungmoon Sa Co., Seoul, 1994.

[^0]: *Corresponding author.

