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A Wale Optimization Algorithm for Distributed Flow Shop with Batch 

Delivery 
 

Abstract: In this study, a distributed flow shop scheduling 
problem with batch delivery constraints is investigated. The 
objective is to minimize the makespan and energy 
consumptions simultaneously. To this end, a hybrid algorithm 
combining the wale optimization algorithm (WOA) with local 
search heuristics is developed. In the proposed algorithm, 
each solution is represented by three vectors, namely a job 
scheduling sequence vector, batch assignment vector, and a 
factory assignment vector. Then, an efficient neighborhood 
structure is applied in the proposed algorithm to enhance 
search abilities. Furthermore, the simulated annealing 
algorithm and clustering method are embedded to improve 
the global search abilities of the algorithm. Finally, 30 
instances are generated based on realistic application to test 
the performance of the algorithm. After detailed comparisons 
with three efficient algorithms, i.e., ABC-Y, ICA-K, and 
IWOANS, the superiority of the proposed algorithm is verified. 

Key words: distributed flow shop; batch delivery; wale 
optimization algorithm; local search. 

1 Introduction 

With the rapid development of manufacturing, many 
enterprises began to consider multiple factories working at 
the same time which formed distributed scheduling (DS). In 
DS, the distributed flow shop scheduling problem (DFSP) is 
the most widely studied [1-13], where many types of 
constraints have been researched, such as sequence-
dependent setup times [1,8], no-wait [2,12], no-idle [4], 
stochastic time [6], release time [10], and random machines 
breakdowns [13]. In addition, many types of objectives, such 
as makespan, total cost, and average tardiness [3], total 
tardiness [5], earliness/tardiness [11], are also minimized. 
These studies considered different types of constraints and 
objectives in DFSP, which can be closer to the reality. 
However, most jobs should be assembled into different 
groups of products, and deliver to different companies, where 
the assembly constrains should be taken as a challenging 
factor. 

Nowadays, batch delivery has been used in various fields 
[14-16]. Wang et al. [17] considered order selection and 
assignment in the distributed problems. Yin et al. [18] 
integrated production and batch delivery scheduling that 
processed and delivered jobs together in batches. Qi et al. [19] 
studied a two-agent scheduling problem with batch delivery. 
Basir et al. [20] presented a batch delivery system on a two-
stage assembly flowshop. Noroozi et al. [21] considered a 
third-party logistics distribution, where production 
scheduling and batch delivery were combined. Jiang et al [22] 
studied the scheduling problem to deliver the products to the 
customers in batches. Kong et al. [23] proposed a Just-in-
Time strategy to precast construction in a batch delivery 
problem. Kazemi et al. [24] considered batching delivery with 
assembly flow shop scheduling. The batch delivery 
procedures have also been researched by Agnetis et al. [25] 

and Wang et al. [26]. However, less literature has considered 
DFSP with batch delivery constraints. 

Recent years, many types of meta-heuristics have been 
developed for solving different optimization problems [27-
45]. Basir et al. [27] presented a bi-level improved genetic 
algorithm to solve the two-stage assembly flow shop 
scheduling problem with batch delivery system. Peng et al. 
[29] developed an improved artificial bee colony algorithm 
for a steelmaking casting process. Liao et al. [31] introduced 
a particle swarm optimization algorithm for hybrid flow 
shops. Several meta-heuristics have also been developed for 
the permutation flow shop scheduling problem, such as a 
population-based tabu search [34], a hybrid whale algorithm 
[43]. For the distributed permutation flow shop scheduling 
problem, Gao et al. [32] developed an efficient tabu search 
algorithm. In addition, the whale optimization algorithm 
(WOA), as an efficient swarm intelligent algorithm, has also 
been applied for many optimization problems [41-45].  

Based on the above discussed optimization problems and 
meta-heuristics, we develop a hybrid algorithm combining 
the wale optimization algorithm (WOA) with local search 
heuristics to solve the distributed flow shop scheduling 
problem with batch delivery constraints (DFSP-BD). The 
main contributions are as follows: (1) a hybrid algorithm 
combining the wale optimization algorithm (WOA) with local 
search heuristics is developed; (2) each solution is 
represented by two vectors, namely a job scheduling sequence 
vector, and a two-dimensional vector to record the factory 
assignment, and product assignment, respectively; (3) an 
efficient neighborhood structure is applied in the proposed 
algorithm to enhance search abilities; and (4) a simulated 
annealing algorithm and clustering method are embedded, to 
improve the global search abilities of the algorithm. 

The remainder of this paper is organized as follows. 
Section 2 gives the problem description. Section 3 introduces 
the related algorithms. Section 4 describes the proposed 
algorithm with all of the components. The computational 
results and comparisons are reported in Section 5. Finally, the 
last section presents the concluding remarks and future 
research directions. 

2 Problem description 

The DFSP-BD is a typical realistic optimization problem, 
which combines DFSP and batch delivery to customer 
process. Therefore, two charging tasks should be solved, i.e., 
schedule jobs in the processing stage, and assign jobs in the 
batch delivery stage. Fig. 1 shows a realistic example for the 
considered problem. 

In processing stage, first, a set of jobs {J1, J2, J3 ..., Jn} are 
randomly assigned to a set of factories {F1, F2, F3 ..., Ff}. 
Then, at each factory, the assigned jobs will be processed 
through the same machine sequence. In the batch delivery 
stage, each job is assigned to a certain batch, where all the 
jobs in the same batch can be delivered to certain customers. 
The assumptions are described as follows: 
 All machines and jobs are ready at 0 time; 



 

 Each machine can process only one job at a time;  
 Each job can be processed at exactly one machine at a 

time; 
 Processing overlap is not permitted, i.e., all operations 

belonging to the same jobs should be processed one by 
one. 

 Each job should be assigned to exactly one batch. 
 All jobs belonging to the same batch should be delivered 

at the same time. 
 Each job should be assigned to exactly one factory. 

M1 M2 Mm...F1
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Ff

.
.
.

Batch Delivery stage

...

Batch 1

Batch 2

Batch n

Customer 1

Customer 2 

Customer f

...

Finished product
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M1 M2 Mm...

M1 M2 Mm...

Mk Machine k in a DFSP

Released 
jobs

Fig.1 Illustration of a realistic DFSP-BD problem. 

2.1 Problem formulation 

The notations and decision variables are given in Table 1. 
Table 1 Notations and decision variables 

Index 

j job index, j=1, 2, …, n 

i machine index, i=1, 2…, m 

f factory index, f=1, 2, …, F 

l, s batch type 

v speed, v=1, 2, …, S 

n the number of jobs 

m the number of machines 

F the number of factories 

p the number of the batch 

S the number of speeds 

pts standard batch delivery time of batch 

tji standard process time of jobs 

M a large number 

,i vppf
 

The EC per unit time of machine i in factory f running 
at speed v 

i
spf

 
The EC of the machine i at stand-by mode per unit time 
in factory f 

PPP 
Unit operation energy consumption of machine in 
batch delivery stage 

SPP 
Standby energy consumption of machine in batch 
delivery stage 

, ,k j f
X

 
In the factory f, job j is processed immediately after job 
k 

,j fY
 

The job j is in factory f 

, ,j i fc
 

The completion time of job i on machine j in the 
factory f 

,l sZ
 

Binary value set to l, if l to be delivery just before each 
product s 

, ,j i vH
 

Binary value set to 1, if the processing speed of job j is 
v on machine m 

,s vFsv
 

Binary value set to 1, if the processing speed of product 
s on the machine is v 

,j ip
 

The actual processing time 

s
pp

 
The actual batch delivery time 

f
c

 
The end time of factory f 

s
CA

 
The total completion times of processing and batch 
delivery 

maxc
 

The maximum completion times 

PEC The processing energy consumption 

SEC The standby energy consumption 

EC The total energy consumption 

  Minimize: 
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EC PEC SEC   (26) 

The objective function (1) is to minimize the weighted sum 
of makespan and total energy consumption. Constraint (2) 
indicates that each job has a unique processing speed on each 
machine. Constraint (3) indicates that the processing speed of 
each product s on the machine is unique. Constraint (4) 
calculates the processing speed of each job on each machine. 
Constraint (5) calculates the processing speed of each batch 
on each machine. Constraints (6) - (10) restrict that two jobs 
belonging to the same factory should have a unique 
processing sequence relationship. The constraint (11) means 
that each factory allocates at least one job. Constraint (12) 
indicates that any job can only be assigned to one factory. 
Constraint (13) restricts that each factory has at least one job. 
Constraint (14) calculates the makespan of the first operation 
of each job. Constraint (15) indicates that there is no overlap 
between processes. Constraint (16) indicates that the 
processing between two adjacent jobs in each factory is not 
allowed to overlap. Constraint (17) calculates the makespan 
of each factory. Constraint (18) ensures that there is only one 
previous product (l) to be delivered just before each product 
s. Constraint (19) ensures that no more than one product (s) 
can be processed after each product. Constraint (20) checks 
that a product to be delivered cannot be both a predecessor 
and successor of another product to be delivered at the same 
time. Constraint (21) indicates that every product s will not 
start the batch delivery stage until all work on the last machine 
(M) has been completed. Constraint (22) restricts no overlap 
between the batches, determines that if the batch s is to be 
delivery immediately after the batch l, the operation of the 
batch l must end before the operation of the batch s begins. 
Constraint (23) limits the range of decision variables. 
Constraints (24-26) calculate the total energy consumption.  

2.3 Problem illustration 

Given a simple DFSP-BD problem, there are 2 factories, 7 
jobs, and 2 machines in each factory. All the jobs should be 
delivered to 2 customers with 3 batches. Table 2 gives the 
processing times and batch deliver times, and Fig. 2 shows 
the resulted Gantt chart for the example.  

Table 2. Processing times for the example. 

Customer Job 
Processing time 

Batch delivery time 
M1 M2 

C1 

J1 4 6 
5 

J2 2 6 
J7 3 5 

4 
J6 5 2 

 
C2 

 

J4 
J3 
J5 

5 
6 
4 

3 
4 
2 

6 

C1

M2

M1

M1

M2

3

2

53

4

51

1

42

  0           2        4        6        8       10      12      14      16      18      20      22      24      26      28      30      32      

Factory 1

Factory 2

C2

7

7

6

6

2 1

4 53

7 6

Batch Delivery

 
Fig. 2 Gantt chart for the example. 

It can be seen from Fig. 2 that: (1) four jobs including J1, 
J3, J5, and J6 are processed in the first factory, while the 
following three jobs, i.e., J2, J4, and J7, have been assigned to 
the second factory; and (2) all the jobs belonging to the same 
batch should be assembled into a batch to deliver to the given 
customer. For example, J1 and J2 are assigned to batch 1 to 
dispatch to customer 1. 

3 The canonical WOA 

The WOA algorithm, proposed by Mirjalili and Lewis [35], 
is inspired by the process of whales to prey food. In the 
canonical WOA, two typical procedures including bubbling 
and encircling are embedded to perform the searching tasks.  

3.1 Framework of the canonical WOA 

The framework of WOA is described in Algorithm 1. 
Algorithm 1 The whale optimization algorithm (WOA) 
Input: a population 
Output: the best solution 

1. initial Population Xi ( =1, 2…, n) 

2. compute the search agent fitness value 
3. *X = search agent of the lowest fitness value 
4. While (t < the max iterations) 
5.  for each search agent 

6.   if ( 0.5p  ) then 

7.    if (| | 1A  ) then 

8.     
*

1t t
X X A D     

9.    else if (| | 1A  ) then 

10.     *
1t rand

X X A D     

11.   end  

13.   else if ( 0.5p  ) then 

14.    *
1 ' cos(2 )+bl

t t
X D e l X     

15.   end  

16.  end  
17.  Repair the search agents 
18.  compute the fitness of each search agent and update *

X  

19. end  

3.2 Bubbling and encircling procedure 

Whales swim around their prey and update the location of 
the search agent according to the best location of the search 
agent. Encircling the prey mechanism can be defined as 
follows: 

 
 (27) 

 
 (28) 

  (29) 

  (30) 

where t is the current iteration number, *
t

X is the current 

best solution, tX is the position vector and K is a coefficient. 

D is a distance ranging between *
t

X  and t
X . A is randomly 

selected between [ , ]a a  , and r  is a random number from 

[0,1] .  

The whale attacks the prey by spiral upgrading way and the 
process can be defined as follows: 

  (31) 

  (32) 

where D’ is a distance value between *
t

X  and t
X  , b  is a 

i

*  | |
t t

D K X X  
*

1    
t t

X X A D   

   2A a r a  
   2K r 

*
1   ' (2 )bl

t t
X D e cos l X    

*' | |
t t

D X X 



 

constant to define the shape of the logarithmic spiral, l  is a 

value range between [-1,1] .  
The probability of encircling the prey and spiral bubble-net 

attacking are 50%, respectively. The model is as follows: 

  (33) 

3.3 Exploration phase 

The exploration phase can be defined as: 

  (34) 

  (35) 

where *
rand

X is a random whale individual which is selected 

from the current population. 

4 The proposed algorithm 

4.1 Solution representation 

In DFSP-BD, we used three vectors to represent each 
solution, which is shown in Fig.3. The first vector, named 
factory assignment vector, assigns each job to a certain factory. 
The second vector, named scheduling vector, arranges the 
processing order of the jobs in the assigned factory. The last 
vector assembles several different jobs into the given batch. As 
shown in Fig.3, different colors represent different products. J1 
and J2 belong to P2, J3 and J4 belong to P1, the rest of jobs 
belong to the P3. Four jobs, i.e., J1, J3, J5, and J6 are processing 
in F1, and three jobs, i.e., J2, J4, and J7 are processing in F2.  

J6 J2 J1 J4J5J3

batch delivery vector 

B2 B1 B3

2 2 1 1 21

factory assignment vector 

J1 J2 J4J3 J5 J6

f1

f2

J1 J3 J5 J6

J2 J4

fF

J7

... ...

Jn

job scheduling vector 

 

Fig. 3 Solution representation in DFSP-BD 

4.2 Neighborhood structures 

To balance the global and local search abilities, four types 
of neighborhood structures are developed. The neighborhood 
structure is given in Algorithm 2. 
4.2.1 Swap different products in a batch  

This method aims to swap different products in a randomly 
selected batch. The detailed steps are as follows: (1) first, 
randomly select a batch and two products (e.g., P5 and P7); and 
(2) select better positions for the selected products with the 
minimum completion time. Fig. 4 shows an example to swap 
two products in a selected batch. 

 
Fig. 4 Swap different products in a batch 

4.2.2 Swap different jobs in a factory 

This method aims to swap different jobs in a randomly 
selected factory. The detailed steps are as follows: (1) select 
the factory with the maximum completion time as the critical 
factory; (2) and randomly select two jobs in the selected 
factory; and (3) swap the two selected jobs and update the 
current solution if the newly-generated solution is better. Fig. 
6 shows the swap procedure of this approach. 

 
Fig. 5 Swap different jobs in a factory 

Algorithm 2 Local search strategy 

Input: two position A and B  
Output: the best sequence S 
1. The initialized number R, R = rand () %4 
2. case 0: Job insertion approach 

4.  Set job scheduling in each factory f1, f2 and f3 
if jobs scheduling in each factory >1 do 

5.  
6.   Insert jobs of f1 into f2 and f3 
7.  end if  
8. break  

9. case 1: Swap different products in a batch 
10.  Randomly select a batch scheduling b1 
11.  if b1>1 do 

12.   
looks for two good insert position, and swap the two 
products in b1 

13.  end if  
14. break 

15. case 2: Swap different jobs in a factory 
16.  if f1>1 do 

17. 
  Step1. randomly select a factory f1, and selected two 

positions p1 and p2 from the job scheduling  
Step2. swap the two jobs in the two positions 

18.  end if  

19. break 
20. case 3: Swap different jobs in different factories 
21.  if f1 and f2>1 do 

22. 
  Step1. randomly select two factory f1 and f2, selected two 

positions p1 and p2 from the job scheduling 
Step2. swap the two jobs in the two positions 

23.  end if  
24. break 

4.2.3 Swap different jobs in different factories 

This method aims to swap different jobs in different 
factories. The detailed steps are as follows: (1) randomly select 
two jobs from two different factories; and (2) swap the two 
selected jobs and update the current solution if the newly-
generated solution is better. Fig. 7 shows the procedure of this 
approach. 

  

Fig. 6 Swap different jobs in different factories 

4.2.4 Job insertion approach 

The job insertion approach aims to delete jobs from the 
critical factory and insert them into other factories. The 
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detailed steps are as follows: (1) firstly, select a factory with 
the maximum completion time as the critical factory; (2) 
secondly, insert all jobs of the critical factory into other 
factories; and (3) during the insertion of deleted jobs to other 
factories, the newly-generated solutions are evaluated and the 
best one will be selected to update the current individual. 

Critical Factory

J7J2 J4J8Factory 2 Factory 3
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Has minimum completion time when 
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Intermediate array
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Fig. 7 Insert jobs in factories 

4.3 K-means discretization exploitation phase 

The K-means discretization method is an iterative clustering 
analysis algorithm and it is applied to divide the population into 
several sub-populations. In exploitation phase, bubble-net 
attacking of the whale as a cluster of sub-populations, which 
can find locally optimal solution in each cluster. The main steps 
of K-means discretization method are as follows: 

Step 1. Divide the data into K groups, and K center 
individuals are randomly selected as the initial clustering 
centers.  

Step 2. Calculate the distance between each individual and 
each seed clustering center, and each individual is assigned to 
the nearest clustering center. Cluster centers and the 
individuals assigned to them represent a cluster. The distance 

is calculated by 2

i i iD = (S - C ) , Where i
S is a dimension of 

solution and i
C is a dimension of center, i

D is the distance 

between i
S and i

C .  

Step 3. Each cluster center of the cluster will be 
recalculated according to the existing individuals in the 
cluster.  

Step 4. The above process will be repeated until a 
termination condition is met.  

4.4 SA-based local search acceptance criterion 

The SA-based acceptance criterion is embedded to enhance 
the global search abilities of the proposed algorithm. The 
detailed steps are given as follows: 

Step 1. Compared the values of the neighboring solution

n
X  and the best solution found so far best

X , if  ( )
n

E X <

( )
best

E X , replace best
X with n

X directly.  

Step 2. if ( )
n

E X > ( )
best

E X , accept n
X with probability of

( ) ( )/( , , ) best nE x E x T

best nP x x T e
 , where T stands for temperature, 

which determines the probability of acceptance. The 
calculation process of T is shown in formula (36), and the 
parameter decreases continuously during the iteration. 

             1 1

10

m n
ij

i j
p

Temperature T
n m

  
 

 
         (36) 

4.5 Framework of the proposed algorithm 

The framework of the proposed algorithm is described in 
Algorithm 3. 

Algorithm 3 The improved whale optimization algorithm (IWOANS) 
Input: an initialized population P 
Output: the best solution S 

1. 
The initialized population F is divided into k subpopulations by 
K-means algorithm i.e. P= {p�,p�,…,p�} (c.f. subsection 4.3) 

2. Calculated the fitness value i for each subpopulation �� 
3. While the termination condition is not satisfied 

4.   if ( 0.5p  ) then 

5. 
   Perform the WOA with encircling the prey stage 

(c.f. subsection 3.1)  

6.    if (| | 1A  ) then 

7.     
Perform the SA-based local search (c.f. 
subsection 4.4)  

8.    else if (| | 1A  ) then 

9.   
  Perform the WOA with searching for the prey 

(c.f. subsection 3.2)  
10.   end  

11.   else if ( 0.5p  ) then 

12.    
Perform the WOA with spiral bubble-net attacking 
stage (c.f. subsection 3.1)  

13.    
Local search is performed and SA is embedded (c.f. 
subsection 4.3)  

14.   end  
15.  end  

16.  
Perform the SA-based local search acceptance criterion (c.f. 
subsection 4.5) 

17. end  
18. Output the best solution found so far 

5 Numerical experiments 

5.1. Experimental instances  

To test the efficiency of the IWOANS in solving DFSP-BT, 
we generate 30 different scales of instances, where in the 
number of jobs is {20,50,80,100,200}, the number of machines 
is {2,5,8}, and the number of factories is {2, 5}, respectively. 



 

5.2. Effectiveness of CPLEX 

For evaluating the performance of IWOANS, the exact solver 
IBM ILOG CPLEX 12.7.1 is used to calculate the MIP model. 
The comparison experiment results are shown in Table 3. For 
the first column is problem scale which contains the number of 
jobs, machines and factories. The best value of each instance is 
illustrated in second column, the next two columns are 
minimum fitness value of IWOANS and CPLEX, and the last 
two columns are percentage deviation difference obtained by 
each algorithm with respect to the corresponding optimal value, 
the calculation formula is given at (37): 

             (37) 

where fc represents the best solution generated by IWOANS or 
CPLEX; fb represents the best solution between IWOANS and 
CPLEX. 

From the Table 3, it can be observed that: (1) under 6 
instances, IWOANS obtains a higher solution quality, while 
CPLEX has worse performance; and (2) compared with the last 
row, the average of IWOANS is less than CPLEX. 

Table 3 Comparison between CPLEX and IWOANS 

Ins Best 
Min fitness dev 

IWOANS CPLEX 
IWOA

NS 
CPLE

X 
ins_5_5_2 294.81  294.81  299.60  0.00  0.016  
ins_5_5_3 221.00  221.00  246.20  0.00  0.014  
ins_6_5_2 309.19  309.19  310.60  0.00  0.005  
ins_5_5_3 292.86  292.86  315.40  0.00  0.076  
ins_8_4_2 320.47  320.47  335.60  0.00  0.047  
ins_8_4_3 298.23  298.23  301.20  0.00  0.009  

avg 289.43  289.43  301.43  0.00  0.028  

5.3. Sensitivity analysis 

In this subsection, to analysis the sensitivity, we set two 
experiments: performance changes under different parameters 
and performance of the algorithm at different scales. Details are 
shown below. 
5.3.1 Performance changes under different parameters 

In this paper, there are two parameters, namely, the 
temperature (T), and population group numbers (N). We set five 
levels of two parameters to obtain experimental data, and 
analyze for a better group of parameters. 

As shown in Table 4, the different values of the two 
parameters are combined. Thus, the influence of these two 
parameters on the performance of the algorithm is analyzed 
using DOE’s Taguchi method. An orthogonal array L16 (42) is 
used to analyze the parameters at four-factor levels. Each 
parameter group is run independently 30 times to get the 
average value, which is the response variable (RV). The RV for 
the 16 groups of parameters is listed in Table 4, and the 
parameters are analyzed by the line graph in Fig.8. From Table 
5 and line graph Fig.8, when the parameter T is at the first level 
and N is at the first level, the result is the best, and the 
parameters T and N were set to 0.1 and 0.9, respectively. 

Table 4 The parameter values. 

Parameter 
Values 

1 2 3 4 
T 0.1 0.3 0.5 0.7 
N 3 6 9 10 

 

 

 

Fig.8 The factor level trend of the two parameters. 

Table 5 Orthogonal array and RV values. 

Experiment number Factor  RV 
 T N  
1 0.1 3 1822.76 
2 0.1 6 1892.69 
3 0.1 9 1893.34 
4 0.1 10 1894.67 
5 0.3 3 1892.02 
6 0.3 6 1891.24 
7 0.3 9 1908.07 
8 0.3 10 1894.51 
9 0.5 3 1900.18 
10 0.5 6 1899.58 
11 0.5 9 1898.97 
12 0.5 10 1899.16 
13 0.7 3 1827.29 
14 0.7 6 1825.13 
15 0.7 9 1826.56 
16 0.7 10 1826.73 

5.3.2 Performance of the algorithm at different scales 

In this section, in order to show clearly and directly the 
superiority of the IWOANS in solving DFSP-BD, we construct 
experiments to compare the three algorithms on DFSP-BD.  

To verify the performance of IWOANS in solving DFSP with 
batch delivery constraints, the other two typical algorithms 
were compared with the IWOANS: ABC algorithm (ABC-Y) 
was proposed by Yurtkuran in 2018; ICA algorithm (ICA-K) 
was proposed by Kazemi in 2017, respectively. The main 
reasons for selecting these compare algorithms are as follows: 
(1) for the IWOANS algorithm, first, in the initialization part of 
the IWOANS algorithm, neighborhood structures are proposed, 
and a local search strategy based on whale swarm optimization 
algorithm is used to enhance the local search abilities; then, the 
convergence of the algorithm is analyzed, and it is proved that 
the algorithm has convergence both locally and globally; (2) for 
the ICA-K algorithm, which include initialization, assimilation, 
revolution, and colony exchange phases. In ICA-K, one or 
more colonies of the weakest empires are generally moved to 
other empires through the empire competition mechanism, 
which has robust local search ability and faster convergence 
speed, but it is easier to fall into the local optimization than the 
WOA; (3) for the ABC-Y algorithm, it can find high-quality 
honey source with high efficiency in any environment, and also 
can adapt to the change of environment, there are three main 
parts of the ABC-Y algorithm: the onlooker bee, the employed 
bee and the scout bee, where the employed bees and onlookers 
are used to perform exploitation tasks and the scout bees are 
designed for performing exploration tasks. 

The results are recorded in Table 6 which show that the 
performance of all three contrast algorithms on scale 20 is far 

( ) / 100%
c b b

dev f f f  



 

superior to other scales. Moreover, except for the scale 20, the 
algorithm outperforms the other comparative algorithms on 
any other scale. 

5.4. Effectiveness of Neighborhood structures 

For test the efficiency of the IWOA with local search strategy 
(IWOANS), we compared IWOANS and the IWOA without local 
search strategy (IWOA) in Table 7. Through two algorithms, 
30 instances are run independently for 30 times, and the 
maximum, minimum and average values are obtained. And 
then obtained the best value and the dev.  

As shown in Table 7, the first column is problem scale which 
contains the number of jobs, machines and factories. The best 
value of each instance is presented in second column, the next 
two columns are minimum fitness value of two algorithms, and 
the last two columns are the values of percentage deviation 
obtained by each algorithm with respect to the corresponding 
optimal value, the calculation formula is given at (37). 

Table 7 Comparisons of IWOANS and IWOA 

Ins Best 
Min fitness dev 

IWOANS IWOA 
IWOA 

NS 
IWOA 

20-2-2 432.54 432.54 544.54 0.00 20.57 

20-2-5 507.62 507.62 662.04 0.00 23.32 

20-2-8 613.81 613.81 763.42 0.00 19.60 

20-5-2 369.47 369.47 369.49 0.00 0.01 

20-5-5 467.78 467.78 467.84 0.00 0.01 

20-5-8 569.82 569.82 589.89 0.00 3.40 

50-2-2 1014.74 1014.74 1336.34 0.00 24.07 

50-2-5 1043.07 1043.07 1434.31 0.00 27.28 

50-2-8 1172.63 1172.63 1655.01 0.00 29.15 

50-5-2 849.88 849.88 942.69 0.00 9.85 

50-5-5 987.63 987.63 1114.89 0.00 11.41 

50-5-8 1061.40 1061.40 1253.54 0.00 15.33 

80-2-2 1674.59 1674.59 2306.60 0.00 27.40 

80-2-5 1651.03 1651.03 2531.86 0.00 34.79 

80-2-8 1755.69 1755.69 2443.77 0.00 28.16 

80-5-2 1334.64 1334.64 1601.08 0.00 16.64 

80-5-5 1465.17 1465.17 1666.84 0.00 12.10 

80-5-8 1531.57 1531.57 1920.47 0.00 20.25 

100-2-2 2097.55 2097.55 2808.03 0.00 25.30 

100-2-5 2091.65 2091.65 2994.88 0.00 30.16 

100-2-8 2180.19 2180.19 3229.81 0.00 32.50 

100-5-2 1631.66 1631.66 1910.11 0.00 14.58 

100-5-5 1750.76 1750.76 2009.31 0.00 12.87 

100-5-8 1809.80 1809.80 2199.73 0.00 17.73 

200-2-2 4439.25 4439.25 6032.87 0.00 26.42 

200-2-5 4251.25 4251.25 6216.12 0.00 31.61 

200-2-8 4272.08 4272.08 6072.29 0.00 29.65 

200-5-2 3385.87 3385.87 4409.08 0.00 23.21 

200-5-5 3331.87 3331.87 4315.98 0.00 22.80 

200-5-8 3461.11 3461.11 4496.65 0.00 23.03 

avg 1773.54 1773.54 2343.32 0.00 20.44 

 
Fig.9 Means and 95% LSD interval for compared IWOANS and IWOA 

It can be seen from Table 7: (1) for 30 instances, IWOANS 
have 30 best solutions, while IWOA only have 3 best solutions; 
and (2) compared with the last row, the average of IWOANS is 
far less than IWOA. 

To verify the performance with compared IWOA, an 
ANOVA chart is generated. Fig.9 presents compared result 
with dev values of the two compared algorithms. The average 
dev value of 30 instances is calculated. Under the 95% 
confidence interval, if p-value <0.05, the performance of the 
algorithm is significantly better than other algorithms, 
according to the multi-factor analysis of variance (ANOVA) 
theory. Through the Fig.6 can be seen, the p-value is 2.20022e-
17 which is far less than 0.05, showing the proposed algorithm 
has better performance.     

5.5. Comparisons with other efficient algorithms 

The experimental results are shown in Table 8. The first 
column represents the scale of 30 instances. The second 
column is the optimal value of each example run; the next three 
columns give the best solution of each algorithm after 30 
independent experiments. The last three columns are the 
deviations calculated by each algorithm. It can be seen from 
Table 8 that: (1) Among the 30 instances, the IWOANS 
algorithm has 28 optimal solution, while the ABC-Y algorithm 
has only 8 optimal solutions and the ICA-K algorithm has only 
1 optimal solution. (2) Compared with the last line, the mean 
values of IWOANS and ICA-K are close to each other, and both 
are far less than the ABC-Y algorithm. 

In order to further prove the superiority of the IWOANS, 
Fig.10 illustrates the compared result of ABC-Y algorithm and 
IWOANS. From the p-value=1.07668e-06 which is far less than 
0.05, showing the proposed algorithm has better performance.    

Four instances were randomly selected to further analyze the 
performance of IWOANS and ICA-K. And the convergence 
curve which drawn based on the experimental data as shown in 
Fig. 11. The results show that IWOANS is far superior to ICA-
K. As shown in these convergence curves, the IWOANS shows 
better convergence abilities for the considered the DFSP with 
batch delivery constraint.  

As shown in Fig.12, the Gantt chart contains two customers 
and four batches, and has 20 jobs, 8 machines, 5 factories. Each 
rectangle corresponds to a job, and the color represent different 
batches.  

 



 

 
Fig.10 Means and 95% LSD interval for compared algorithms 

  
Fig.11 (a). 20-5-8 convergence Fig.11 (b). 100-2-8 convergence 

  
Fig.11(c). 100-5-5 convergence Fig.11 (d). 200-5-2 convergence 

 
Table 6 Comparisons of Performance of algorithms at different scales 

Scales Best 
Min fitness dev 

IWOANS ABC-Y ICA-K IWOANS ABC-Y ICA-K 

20 493.51  493.51  492.71  496.05  0.15  0.00  0.48  

50 1021.56  1021.56  1083.84  1106.80  0.00  5.22  6.87  

80 1568.78  1568.78  1748.02  1794.54  0.00  9.11  11.62  

100 1926.94  1926.94  2192.32  2248.08  0.00  10.65  13.07  

200 3856.91  3856.91  4758.81  4812.30  0.00  18.02  19.06  

avg  1773.38 1773.54 2055.14 2091.554 0.03 8.6 10.22 



 

 
Fig.12. Gantt chart for the best solution of the instance 20-8-5-2 

Table 8 Comparisons of IWOANS and other algorithms 

Ins Best 
Min fitness dev 

IWOANS ABC-Y ICA-K IWOANS ABC-
Y 

ICA-K 

20-2-2 432.54 432.54 432.55 434.95 0.00 0.00 0.55 

20-2-5 507.62 507.62 504.43 514.84 0.63 0.00 1.40 

20-2-8 613.81 613.81 612.19 619.41 0.26 0.00 0.90 

20-5-2 369.47 369.47 369.47 369.48 0.00 0.00 0.00 

20-5-5 467.78 467.78 467.79 467.78 0.00 0.00 0.00 

20-5-8 569.82 569.82 569.85 569.83 0.00 0.01 0.00 

50-2-2 1014.74 1014.74 1168.34 1205.14 0.00 13.15 15.80 

50-2-5 1043.07 1043.07 1160.68 1209.50 0.00 10.13 13.76 

50-2-8 1172.63 1172.63 1275.05 1327.08 0.00 8.03 11.64 

50-5-2 849.88 849.88 849.89 849.89 0.00 0.00 0.00 

50-5-5 987.63 987.63 987.65 987.66 0.00 0.00 0.00 

50-5-8 1061.40 1061.40 1061.44 1061.50 0.00 0.00 0.01 

80-2-2 1674.59 1674.59 2021.82 2017.82 0.00 17.17 17.01 

80-2-5 1651.03 1651.03 2043.86 2098.29 0.00 19.22 21.32 

80-2-8 1755.69 1755.69 2014.91 2083.69 0.00 12.87 15.74 

80-5-2 1334.64 1334.64 1394.65 1442.66 0.00 4.30 7.49 

80-5-5 1465.17 1465.17 1474.81 1522.02 0.00 0.65 3.74 

80-5-8 1531.57 1531.57 1538.04 1602.78 0.00 0.42 4.44 

100-2-2 2097.55 2097.55 2533.61 2594.44 0.00 17.21 19.15 

100-2-5 2091.65 2091.65 2598.88 2652.45 0.00 19.52 21.14 

100-2-8 2180.19 2180.19 2680.16 2703.52 0.00 18.65 19.36 

100-5-2 1631.66 1631.66 1711.68 1751.67 0.00 4.67 6.85 

100-5-5 1750.76 1750.76 1792.45 1864.44 0.00 2.33 6.10 

100-5-8 1809.80 1809.80 1837.14 1921.98 0.00 1.49 5.84 

200-2-2 4439.25 4439.25 5747.23 5662.46 0.00 22.76 21.60 

200-2-5 4251.25 4251.25 5612.87 5738.51 0.00 24.26 25.92 

200-2-8 4272.08 4272.08 5496.89 5551.39 0.00 22.28 23.04 

200-5-2 3385.87 3385.87 3980.29 4043.49 0.00 14.93 16.26 

200-5-5 3331.87 3331.87 3894.35 3902.32 0.00 14.44 14.62 

200-5-8 3461.11 3461.11 3821.21 3975.61 0.00 9.42 12.94 

avg  1773.38 1773.54 2055.14 2091.55 0.03 8.60 0.55 



 

6 Conclusion 

In this study, a distributed flowshop scheduling problem 
with batch delivery constraint is solved. The problem can be 
applied to the field of garment processing. The processed 
products are delivered to customers in batches according to 
customer needs. One-stop service not only shortens the time 
of garment processing, but also improves the efficiency. To 
solve this problem, a whale swarm optimization algorithm is 
employed. Moreover, the algorithm can be used in a wide 
range of fields, such as distributed scheduling, flexible job 
shop, distribution network, power systems, etc. In this 
research, a wale optimization algorithm (IWOA) combined 
with neighborhood structure is utilized to solve the problem. 
Then, the local search strategy is applied in the proposed 
algorithm to enhance search ability. Furthermore, the SA and 
clustering method are embedded, to improve the performance 
of the algorithm. Finally, comparisons algorithms with ABC-
Y and ICA-K, IWOANS has the best performance. 

In the future, next works are mainly developed as follows: 
(1) considering distribute flow shop problem with fuzzy 
constraint; (2) studying more accurate energy consumption in 
batch delivery; (3) combining the proposed algorithm with 
other kinds of problems, such as the parallel machine 
scheduling problem; and (4) proposing better optimization 
algorithms or more strategies to solve the current problem. 
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