
A Wale Optimization Algorithm for Distributed Flow
Shop with Batch Delivery
Qinghua Li

Shandong Normal University
Junqing Li ( lijunqing@lcu-cs.com)

Shandong Normal University https://orcid.org/0000-0002-3617-6708
Xinjie Zhang

Shandong Normal University
Biao Zhang

Liaocheng University

Research Article

Keywords: distributed �ow shop, batch delivery, wale optimization algorithm, local search.

Posted Date: July 27th, 2021

DOI: https://doi.org/10.21203/rs.3.rs-741608/v1

License:   This work is licensed under a Creative Commons Attribution 4.0 International License.
Read Full License

Version of Record: A version of this preprint was published at Soft Computing on August 21st, 2021. See
the published version at https://doi.org/10.1007/s00500-021-06099-0.

https://doi.org/10.21203/rs.3.rs-741608/v1
mailto:lijunqing@lcu-cs.com
https://orcid.org/0000-0002-3617-6708
https://doi.org/10.21203/rs.3.rs-741608/v1
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1007/s00500-021-06099-0

A Wale Optimization Algorithm for Distributed Flow Shop with Batch

Delivery

Abstract: In this study, a distributed flow shop scheduling
problem with batch delivery constraints is investigated. The
objective is to minimize the makespan and energy
consumptions simultaneously. To this end, a hybrid algorithm
combining the wale optimization algorithm (WOA) with local
search heuristics is developed. In the proposed algorithm,
each solution is represented by three vectors, namely a job
scheduling sequence vector, batch assignment vector, and a
factory assignment vector. Then, an efficient neighborhood
structure is applied in the proposed algorithm to enhance
search abilities. Furthermore, the simulated annealing
algorithm and clustering method are embedded to improve
the global search abilities of the algorithm. Finally, 30
instances are generated based on realistic application to test
the performance of the algorithm. After detailed comparisons
with three efficient algorithms, i.e., ABC-Y, ICA-K, and
IWOANS, the superiority of the proposed algorithm is verified.

Key words: distributed flow shop; batch delivery; wale
optimization algorithm; local search.

1 Introduction

With the rapid development of manufacturing, many
enterprises began to consider multiple factories working at
the same time which formed distributed scheduling (DS). In
DS, the distributed flow shop scheduling problem (DFSP) is
the most widely studied [1-13], where many types of
constraints have been researched, such as sequence-
dependent setup times [1,8], no-wait [2,12], no-idle [4],
stochastic time [6], release time [10], and random machines
breakdowns [13]. In addition, many types of objectives, such
as makespan, total cost, and average tardiness [3], total
tardiness [5], earliness/tardiness [11], are also minimized.
These studies considered different types of constraints and
objectives in DFSP, which can be closer to the reality.
However, most jobs should be assembled into different
groups of products, and deliver to different companies, where
the assembly constrains should be taken as a challenging
factor.

Nowadays, batch delivery has been used in various fields
[14-16]. Wang et al. [17] considered order selection and
assignment in the distributed problems. Yin et al. [18]
integrated production and batch delivery scheduling that
processed and delivered jobs together in batches. Qi et al. [19]
studied a two-agent scheduling problem with batch delivery.
Basir et al. [20] presented a batch delivery system on a two-
stage assembly flowshop. Noroozi et al. [21] considered a
third-party logistics distribution, where production
scheduling and batch delivery were combined. Jiang et al [22]
studied the scheduling problem to deliver the products to the
customers in batches. Kong et al. [23] proposed a Just-in-
Time strategy to precast construction in a batch delivery
problem. Kazemi et al. [24] considered batching delivery with
assembly flow shop scheduling. The batch delivery
procedures have also been researched by Agnetis et al. [25]

and Wang et al. [26]. However, less literature has considered
DFSP with batch delivery constraints.

Recent years, many types of meta-heuristics have been
developed for solving different optimization problems [27-
45]. Basir et al. [27] presented a bi-level improved genetic
algorithm to solve the two-stage assembly flow shop
scheduling problem with batch delivery system. Peng et al.
[29] developed an improved artificial bee colony algorithm
for a steelmaking casting process. Liao et al. [31] introduced
a particle swarm optimization algorithm for hybrid flow
shops. Several meta-heuristics have also been developed for
the permutation flow shop scheduling problem, such as a
population-based tabu search [34], a hybrid whale algorithm
[43]. For the distributed permutation flow shop scheduling
problem, Gao et al. [32] developed an efficient tabu search
algorithm. In addition, the whale optimization algorithm
(WOA), as an efficient swarm intelligent algorithm, has also
been applied for many optimization problems [41-45].

Based on the above discussed optimization problems and
meta-heuristics, we develop a hybrid algorithm combining
the wale optimization algorithm (WOA) with local search
heuristics to solve the distributed flow shop scheduling
problem with batch delivery constraints (DFSP-BD). The
main contributions are as follows: (1) a hybrid algorithm
combining the wale optimization algorithm (WOA) with local
search heuristics is developed; (2) each solution is
represented by two vectors, namely a job scheduling sequence
vector, and a two-dimensional vector to record the factory
assignment, and product assignment, respectively; (3) an
efficient neighborhood structure is applied in the proposed
algorithm to enhance search abilities; and (4) a simulated
annealing algorithm and clustering method are embedded, to
improve the global search abilities of the algorithm.

The remainder of this paper is organized as follows.
Section 2 gives the problem description. Section 3 introduces
the related algorithms. Section 4 describes the proposed
algorithm with all of the components. The computational
results and comparisons are reported in Section 5. Finally, the
last section presents the concluding remarks and future
research directions.

2 Problem description

The DFSP-BD is a typical realistic optimization problem,
which combines DFSP and batch delivery to customer
process. Therefore, two charging tasks should be solved, i.e.,
schedule jobs in the processing stage, and assign jobs in the
batch delivery stage. Fig. 1 shows a realistic example for the
considered problem.

In processing stage, first, a set of jobs {J1, J2, J3 ..., Jn} are
randomly assigned to a set of factories {F1, F2, F3 ..., Ff}.
Then, at each factory, the assigned jobs will be processed
through the same machine sequence. In the batch delivery
stage, each job is assigned to a certain batch, where all the
jobs in the same batch can be delivered to certain customers.
The assumptions are described as follows:
 All machines and jobs are ready at 0 time;

 Each machine can process only one job at a time;
 Each job can be processed at exactly one machine at a

time;
 Processing overlap is not permitted, i.e., all operations

belonging to the same jobs should be processed one by
one.

 Each job should be assigned to exactly one batch.
 All jobs belonging to the same batch should be delivered

at the same time.
 Each job should be assigned to exactly one factory.

M1 M2 Mm...F1

F2

Ff

.
.
.

Batch Delivery stage

...

Batch 1

Batch 2

Batch n

Customer 1

Customer 2

Customer f

...

Finished product

Processing stage

M1 M2 Mm...

M1 M2 Mm...

Mk Machine k in a DFSP

Released
jobs

Fig.1 Illustration of a realistic DFSP-BD problem.

2.1 Problem formulation

The notations and decision variables are given in Table 1.
Table 1 Notations and decision variables

Index

j job index, j=1, 2, …, n

i machine index, i=1, 2…, m

f factory index, f=1, 2, …, F

l, s batch type

v speed, v=1, 2, …, S

n the number of jobs

m the number of machines

F the number of factories

p the number of the batch

S the number of speeds

pts standard batch delivery time of batch

tji standard process time of jobs

M a large number

,i vppf

The EC per unit time of machine i in factory f running
at speed v

i
spf

The EC of the machine i at stand-by mode per unit time
in factory f

PPP
Unit operation energy consumption of machine in
batch delivery stage

SPP
Standby energy consumption of machine in batch
delivery stage

, ,k j f
X

In the factory f, job j is processed immediately after job
k

,j fY

The job j is in factory f

, ,j i fc

The completion time of job i on machine j in the
factory f

,l sZ

Binary value set to l, if l to be delivery just before each
product s

, ,j i vH

Binary value set to 1, if the processing speed of job j is
v on machine m

,s vFsv

Binary value set to 1, if the processing speed of product
s on the machine is v

,j ip

The actual processing time

s
pp

The actual batch delivery time

f
c

The end time of factory f

s
CA

The total completion times of processing and batch
delivery

maxc

The maximum completion times

PEC The processing energy consumption

SEC The standby energy consumption

EC The total energy consumption

 Minimize:

 max* (1)*w C w EC  (1)

Subject to:

, ,
1

1
S

j i v

v

H




(2)

,
1

1
S

s v

v

F




(3)

, , , ,
1

* /
S

j i j i j i v

v

p t H v


 

(4)

,
1

* /
S

s s s v

v

pp pt F v


 

(5)

, ,
1

1, 1,... ,
F

k j f

f

X k n k j


  

(6)

, , 0
j j f

X 

(7)

, , , , ,
1

2*
n

k j f j k f j f

k

X X Y


 

(8)

, , , ,
1

1
F

k j f j k f

f

X X


 

(9)

, ,
1 1

1
F n

k j f

f j

X
 



(10)

,
1

1
n

j f

j

Y




(11)

,
1

1
F

j f

f

Y




(12)

0, ,
1

1
n

j f

j

X




(13)

,1, ,1 ,* (1)j f j j fc p M Y  

(14)

, , , 1, , ,*(1)
j i f j i f j i j f

c c p M Y   

(15)

, , , , , , ,(1)*j i f j i f j i k j fc c p X M   

(16)

, , ,* (1)f j m f j fc c M Y  

(17)

,
1

1
p

l s

l

Z




(18)

,
1

1
p

l s

s

Z




(19)

, , 1l s s lZ Z 

(20)

, , ,

,

(1) *

(1) *

s j m f j s s

j f

CA c G M pp

Y M

   

 

(21)

,*(1)
s l s l s

CA CA pp M Z   

(22)

, , 0
j i f

c 

(23)

, , , ,
1 1 1

,
1 1

* *

* *

n m S

j i v j i i v

j i v

p S

s s v v

s v

PEC H P ppf

pp Fsv ppp

  

 









(24)

, ,
1 1 1

max 1
2

(*)*

()

F m n

f j i j f i

f i j

p

s

s

SEC c p Y spf

c CA pp

  



 

 

 



(25)

EC PEC SEC  (26)

The objective function (1) is to minimize the weighted sum
of makespan and total energy consumption. Constraint (2)
indicates that each job has a unique processing speed on each
machine. Constraint (3) indicates that the processing speed of
each product s on the machine is unique. Constraint (4)
calculates the processing speed of each job on each machine.
Constraint (5) calculates the processing speed of each batch
on each machine. Constraints (6) - (10) restrict that two jobs
belonging to the same factory should have a unique
processing sequence relationship. The constraint (11) means
that each factory allocates at least one job. Constraint (12)
indicates that any job can only be assigned to one factory.
Constraint (13) restricts that each factory has at least one job.
Constraint (14) calculates the makespan of the first operation
of each job. Constraint (15) indicates that there is no overlap
between processes. Constraint (16) indicates that the
processing between two adjacent jobs in each factory is not
allowed to overlap. Constraint (17) calculates the makespan
of each factory. Constraint (18) ensures that there is only one
previous product (l) to be delivered just before each product
s. Constraint (19) ensures that no more than one product (s)
can be processed after each product. Constraint (20) checks
that a product to be delivered cannot be both a predecessor
and successor of another product to be delivered at the same
time. Constraint (21) indicates that every product s will not
start the batch delivery stage until all work on the last machine
(M) has been completed. Constraint (22) restricts no overlap
between the batches, determines that if the batch s is to be
delivery immediately after the batch l, the operation of the
batch l must end before the operation of the batch s begins.
Constraint (23) limits the range of decision variables.
Constraints (24-26) calculate the total energy consumption.

2.3 Problem illustration

Given a simple DFSP-BD problem, there are 2 factories, 7
jobs, and 2 machines in each factory. All the jobs should be
delivered to 2 customers with 3 batches. Table 2 gives the
processing times and batch deliver times, and Fig. 2 shows
the resulted Gantt chart for the example.

Table 2. Processing times for the example.

Customer Job
Processing time

Batch delivery time
M1 M2

C1

J1 4 6
5

J2 2 6
J7 3 5

4
J6 5 2

C2

J4
J3
J5

5
6
4

3
4
2

6

C1

M2

M1

M1

M2

3

2

53

4

51

1

42

 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32

Factory 1

Factory 2

C2

7

7

6

6

2 1

4 53

7 6

Batch Delivery

Fig. 2 Gantt chart for the example.

It can be seen from Fig. 2 that: (1) four jobs including J1,
J3, J5, and J6 are processed in the first factory, while the
following three jobs, i.e., J2, J4, and J7, have been assigned to
the second factory; and (2) all the jobs belonging to the same
batch should be assembled into a batch to deliver to the given
customer. For example, J1 and J2 are assigned to batch 1 to
dispatch to customer 1.

3 The canonical WOA

The WOA algorithm, proposed by Mirjalili and Lewis [35],
is inspired by the process of whales to prey food. In the
canonical WOA, two typical procedures including bubbling
and encircling are embedded to perform the searching tasks.

3.1 Framework of the canonical WOA

The framework of WOA is described in Algorithm 1.
Algorithm 1 The whale optimization algorithm (WOA)
Input: a population
Output: the best solution

1. initial Population Xi (=1, 2…, n)

2. compute the search agent fitness value
3. *X = search agent of the lowest fitness value
4. While (t < the max iterations)
5. for each search agent

6. if (0.5p ) then

7. if (| | 1A ) then

8.
*

1t t
X X A D   

9. else if (| | 1A ) then

10. *
1t rand

X X A D   

11. end

13. else if (0.5p ) then

14. *
1 ' cos(2)+bl

t t
X D e l X   

15. end

16. end
17. Repair the search agents
18. compute the fitness of each search agent and update *

X

19. end

3.2 Bubbling and encircling procedure

Whales swim around their prey and update the location of
the search agent according to the best location of the search
agent. Encircling the prey mechanism can be defined as
follows:

 (27)

 (28)

 (29)

 (30)

where t is the current iteration number, *
t

X is the current

best solution, tX is the position vector and K is a coefficient.

D is a distance ranging between *
t

X and t
X . A is randomly

selected between [,]a a , and r is a random number from

[0,1] .

The whale attacks the prey by spiral upgrading way and the
process can be defined as follows:

 (31)

 (32)

where D’ is a distance value between *
t

X and t
X , b is a

i

* | |
t t

D K X X  
*

1
t t

X X A D   

 2A a r a  
 2K r 

*
1 ' (2)bl

t t
X D e cos l X    

*' | |
t t

D X X 

constant to define the shape of the logarithmic spiral, l is a

value range between [-1,1] .
The probability of encircling the prey and spiral bubble-net

attacking are 50%, respectively. The model is as follows:

 (33)

3.3 Exploration phase

The exploration phase can be defined as:

 (34)

 (35)

where *
rand

X is a random whale individual which is selected

from the current population.

4 The proposed algorithm

4.1 Solution representation

In DFSP-BD, we used three vectors to represent each
solution, which is shown in Fig.3. The first vector, named
factory assignment vector, assigns each job to a certain factory.
The second vector, named scheduling vector, arranges the
processing order of the jobs in the assigned factory. The last
vector assembles several different jobs into the given batch. As
shown in Fig.3, different colors represent different products. J1
and J2 belong to P2, J3 and J4 belong to P1, the rest of jobs
belong to the P3. Four jobs, i.e., J1, J3, J5, and J6 are processing
in F1, and three jobs, i.e., J2, J4, and J7 are processing in F2.

J6 J2 J1 J4J5J3

batch delivery vector

B2 B1 B3

2 2 1 1 21

factory assignment vector

J1 J2 J4J3 J5 J6

f1

f2

J1 J3 J5 J6

J2 J4

fF

J7

... ...

Jn

job scheduling vector

Fig. 3 Solution representation in DFSP-BD

4.2 Neighborhood structures

To balance the global and local search abilities, four types
of neighborhood structures are developed. The neighborhood
structure is given in Algorithm 2.
4.2.1 Swap different products in a batch

This method aims to swap different products in a randomly
selected batch. The detailed steps are as follows: (1) first,
randomly select a batch and two products (e.g., P5 and P7); and
(2) select better positions for the selected products with the
minimum completion time. Fig. 4 shows an example to swap
two products in a selected batch.

Fig. 4 Swap different products in a batch

4.2.2 Swap different jobs in a factory

This method aims to swap different jobs in a randomly
selected factory. The detailed steps are as follows: (1) select
the factory with the maximum completion time as the critical
factory; (2) and randomly select two jobs in the selected
factory; and (3) swap the two selected jobs and update the
current solution if the newly-generated solution is better. Fig.
6 shows the swap procedure of this approach.

Fig. 5 Swap different jobs in a factory

Algorithm 2 Local search strategy

Input: two position A and B
Output: the best sequence S
1. The initialized number R, R = rand () %4
2. case 0: Job insertion approach

4. Set job scheduling in each factory f1, f2 and f3
if jobs scheduling in each factory >1 do

5.
6. Insert jobs of f1 into f2 and f3
7. end if
8. break

9. case 1: Swap different products in a batch
10. Randomly select a batch scheduling b1
11. if b1>1 do

12.
looks for two good insert position, and swap the two
products in b1

13. end if
14. break

15. case 2: Swap different jobs in a factory
16. if f1>1 do

17.
 Step1. randomly select a factory f1, and selected two

positions p1 and p2 from the job scheduling
Step2. swap the two jobs in the two positions

18. end if

19. break
20. case 3: Swap different jobs in different factories
21. if f1 and f2>1 do

22.
 Step1. randomly select two factory f1 and f2, selected two

positions p1 and p2 from the job scheduling
Step2. swap the two jobs in the two positions

23. end if
24. break

4.2.3 Swap different jobs in different factories

This method aims to swap different jobs in different
factories. The detailed steps are as follows: (1) randomly select
two jobs from two different factories; and (2) swap the two
selected jobs and update the current solution if the newly-
generated solution is better. Fig. 7 shows the procedure of this
approach.

Fig. 6 Swap different jobs in different factories

4.2.4 Job insertion approach

The job insertion approach aims to delete jobs from the
critical factory and insert them into other factories. The

*

1 *

 0.5

' (2) 0.5

t

t bl

t

X A D if p
X

D e cos l X if p






  


  

* | |
rand t

D K X X  
*

1
t rand

X X A D   

P5 P6 P7

P6P7 P5

J1 J3 J5 J6

J1 J3J5 J6

J1 J3 J5 J6

J2 J4 J7

f1

f2 J1

J3

J5

J6J2

J4

J7f1

f2

detailed steps are as follows: (1) firstly, select a factory with
the maximum completion time as the critical factory; (2)
secondly, insert all jobs of the critical factory into other
factories; and (3) during the insertion of deleted jobs to other
factories, the newly-generated solutions are evaluated and the
best one will be selected to update the current individual.

Critical Factory

J7J2 J4J8Factory 2 Factory 3

Factory 1

Has minimum completion time when
J1 is inserted into position 4

Factory 2 Factory 3 J1

Intermediate array

Has minimum completion time
when J3 is inserted into position 2

Intermediate array

J3

Has minimum completion time
when J5 is inserted into position 5

Take factory 1 as critical factory

J1 J3 J5 J6

J1 J3 J5 J6

J7J2Factory 2 Factory 3 J4J8

J3 J5 J6

J4J8J7J2

J5 J6

Factory
 3

J1 J4J8J2 J7Factory
2

Intermediate array

J3

9

Has minimum completion time
when J6 is inserted into position 1

J5

J6

Factory
3

J1 J4J8J2 J7Factory
2

J3 J5J6

Factory 3

J1 J4J8J2 J7

Factory 2

1 2 3 4 5 6Position

1 2 3 4 5 6 7Position

1 2 3 4 5 6 7 8
Positio

n

1 2 3 4 5 6 7 8Position

Final
Factory

Fig. 7 Insert jobs in factories

4.3 K-means discretization exploitation phase

The K-means discretization method is an iterative clustering
analysis algorithm and it is applied to divide the population into
several sub-populations. In exploitation phase, bubble-net
attacking of the whale as a cluster of sub-populations, which
can find locally optimal solution in each cluster. The main steps
of K-means discretization method are as follows:

Step 1. Divide the data into K groups, and K center
individuals are randomly selected as the initial clustering
centers.

Step 2. Calculate the distance between each individual and
each seed clustering center, and each individual is assigned to
the nearest clustering center. Cluster centers and the
individuals assigned to them represent a cluster. The distance

is calculated by 2

i i iD = (S - C) , Where i
S is a dimension of

solution and i
C is a dimension of center, i

D is the distance

between i
S and i

C .

Step 3. Each cluster center of the cluster will be
recalculated according to the existing individuals in the
cluster.

Step 4. The above process will be repeated until a
termination condition is met.

4.4 SA-based local search acceptance criterion

The SA-based acceptance criterion is embedded to enhance
the global search abilities of the proposed algorithm. The
detailed steps are given as follows:

Step 1. Compared the values of the neighboring solution

n
X and the best solution found so far best

X , if ()
n

E X <

()
best

E X , replace best
X with n

X directly.

Step 2. if ()
n

E X > ()
best

E X , accept n
X with probability of

() ()/(, ,) best nE x E x T

best nP x x T e
 , where T stands for temperature,

which determines the probability of acceptance. The
calculation process of T is shown in formula (36), and the
parameter decreases continuously during the iteration.

 1 1

10

m n
ij

i j
p

Temperature T
n m

  
 

 
 (36)

4.5 Framework of the proposed algorithm

The framework of the proposed algorithm is described in
Algorithm 3.

Algorithm 3 The improved whale optimization algorithm (IWOANS)
Input: an initialized population P
Output: the best solution S

1.
The initialized population F is divided into k subpopulations by
K-means algorithm i.e. P= {p�,p�,…,p�} (c.f. subsection 4.3)

2. Calculated the fitness value i for each subpopulation ��
3. While the termination condition is not satisfied

4. if (0.5p ) then

5.
 Perform the WOA with encircling the prey stage

(c.f. subsection 3.1)

6. if (| | 1A ) then

7.
Perform the SA-based local search (c.f.
subsection 4.4)

8. else if (| | 1A ) then

9.
 Perform the WOA with searching for the prey

(c.f. subsection 3.2)
10. end

11. else if (0.5p ) then

12.
Perform the WOA with spiral bubble-net attacking
stage (c.f. subsection 3.1)

13.
Local search is performed and SA is embedded (c.f.
subsection 4.3)

14. end
15. end

16.
Perform the SA-based local search acceptance criterion (c.f.
subsection 4.5)

17. end
18. Output the best solution found so far

5 Numerical experiments

5.1. Experimental instances

To test the efficiency of the IWOANS in solving DFSP-BT,
we generate 30 different scales of instances, where in the
number of jobs is {20,50,80,100,200}, the number of machines
is {2,5,8}, and the number of factories is {2, 5}, respectively.

5.2. Effectiveness of CPLEX

For evaluating the performance of IWOANS, the exact solver
IBM ILOG CPLEX 12.7.1 is used to calculate the MIP model.
The comparison experiment results are shown in Table 3. For
the first column is problem scale which contains the number of
jobs, machines and factories. The best value of each instance is
illustrated in second column, the next two columns are
minimum fitness value of IWOANS and CPLEX, and the last
two columns are percentage deviation difference obtained by
each algorithm with respect to the corresponding optimal value,
the calculation formula is given at (37):

 (37)

where fc represents the best solution generated by IWOANS or
CPLEX; fb represents the best solution between IWOANS and
CPLEX.

From the Table 3, it can be observed that: (1) under 6
instances, IWOANS obtains a higher solution quality, while
CPLEX has worse performance; and (2) compared with the last
row, the average of IWOANS is less than CPLEX.

Table 3 Comparison between CPLEX and IWOANS

Ins Best
Min fitness dev

IWOANS CPLEX
IWOA

NS
CPLE

X
ins_5_5_2 294.81 294.81 299.60 0.00 0.016
ins_5_5_3 221.00 221.00 246.20 0.00 0.014
ins_6_5_2 309.19 309.19 310.60 0.00 0.005
ins_5_5_3 292.86 292.86 315.40 0.00 0.076
ins_8_4_2 320.47 320.47 335.60 0.00 0.047
ins_8_4_3 298.23 298.23 301.20 0.00 0.009

avg 289.43 289.43 301.43 0.00 0.028

5.3. Sensitivity analysis

In this subsection, to analysis the sensitivity, we set two
experiments: performance changes under different parameters
and performance of the algorithm at different scales. Details are
shown below.
5.3.1 Performance changes under different parameters

In this paper, there are two parameters, namely, the
temperature (T), and population group numbers (N). We set five
levels of two parameters to obtain experimental data, and
analyze for a better group of parameters.

As shown in Table 4, the different values of the two
parameters are combined. Thus, the influence of these two
parameters on the performance of the algorithm is analyzed
using DOE’s Taguchi method. An orthogonal array L16 (42) is
used to analyze the parameters at four-factor levels. Each
parameter group is run independently 30 times to get the
average value, which is the response variable (RV). The RV for
the 16 groups of parameters is listed in Table 4, and the
parameters are analyzed by the line graph in Fig.8. From Table
5 and line graph Fig.8, when the parameter T is at the first level
and N is at the first level, the result is the best, and the
parameters T and N were set to 0.1 and 0.9, respectively.

Table 4 The parameter values.

Parameter
Values

1 2 3 4
T 0.1 0.3 0.5 0.7
N 3 6 9 10

Fig.8 The factor level trend of the two parameters.

Table 5 Orthogonal array and RV values.

Experiment number Factor RV
 T N
1 0.1 3 1822.76
2 0.1 6 1892.69
3 0.1 9 1893.34
4 0.1 10 1894.67
5 0.3 3 1892.02
6 0.3 6 1891.24
7 0.3 9 1908.07
8 0.3 10 1894.51
9 0.5 3 1900.18
10 0.5 6 1899.58
11 0.5 9 1898.97
12 0.5 10 1899.16
13 0.7 3 1827.29
14 0.7 6 1825.13
15 0.7 9 1826.56
16 0.7 10 1826.73

5.3.2 Performance of the algorithm at different scales

In this section, in order to show clearly and directly the
superiority of the IWOANS in solving DFSP-BD, we construct
experiments to compare the three algorithms on DFSP-BD.

To verify the performance of IWOANS in solving DFSP with
batch delivery constraints, the other two typical algorithms
were compared with the IWOANS: ABC algorithm (ABC-Y)
was proposed by Yurtkuran in 2018; ICA algorithm (ICA-K)
was proposed by Kazemi in 2017, respectively. The main
reasons for selecting these compare algorithms are as follows:
(1) for the IWOANS algorithm, first, in the initialization part of
the IWOANS algorithm, neighborhood structures are proposed,
and a local search strategy based on whale swarm optimization
algorithm is used to enhance the local search abilities; then, the
convergence of the algorithm is analyzed, and it is proved that
the algorithm has convergence both locally and globally; (2) for
the ICA-K algorithm, which include initialization, assimilation,
revolution, and colony exchange phases. In ICA-K, one or
more colonies of the weakest empires are generally moved to
other empires through the empire competition mechanism,
which has robust local search ability and faster convergence
speed, but it is easier to fall into the local optimization than the
WOA; (3) for the ABC-Y algorithm, it can find high-quality
honey source with high efficiency in any environment, and also
can adapt to the change of environment, there are three main
parts of the ABC-Y algorithm: the onlooker bee, the employed
bee and the scout bee, where the employed bees and onlookers
are used to perform exploitation tasks and the scout bees are
designed for performing exploration tasks.

The results are recorded in Table 6 which show that the
performance of all three contrast algorithms on scale 20 is far

() / 100%
c b b

dev f f f  

superior to other scales. Moreover, except for the scale 20, the
algorithm outperforms the other comparative algorithms on
any other scale.

5.4. Effectiveness of Neighborhood structures

For test the efficiency of the IWOA with local search strategy
(IWOANS), we compared IWOANS and the IWOA without local
search strategy (IWOA) in Table 7. Through two algorithms,
30 instances are run independently for 30 times, and the
maximum, minimum and average values are obtained. And
then obtained the best value and the dev.

As shown in Table 7, the first column is problem scale which
contains the number of jobs, machines and factories. The best
value of each instance is presented in second column, the next
two columns are minimum fitness value of two algorithms, and
the last two columns are the values of percentage deviation
obtained by each algorithm with respect to the corresponding
optimal value, the calculation formula is given at (37).

Table 7 Comparisons of IWOANS and IWOA

Ins Best
Min fitness dev

IWOANS IWOA
IWOA

NS
IWOA

20-2-2 432.54 432.54 544.54 0.00 20.57

20-2-5 507.62 507.62 662.04 0.00 23.32

20-2-8 613.81 613.81 763.42 0.00 19.60

20-5-2 369.47 369.47 369.49 0.00 0.01

20-5-5 467.78 467.78 467.84 0.00 0.01

20-5-8 569.82 569.82 589.89 0.00 3.40

50-2-2 1014.74 1014.74 1336.34 0.00 24.07

50-2-5 1043.07 1043.07 1434.31 0.00 27.28

50-2-8 1172.63 1172.63 1655.01 0.00 29.15

50-5-2 849.88 849.88 942.69 0.00 9.85

50-5-5 987.63 987.63 1114.89 0.00 11.41

50-5-8 1061.40 1061.40 1253.54 0.00 15.33

80-2-2 1674.59 1674.59 2306.60 0.00 27.40

80-2-5 1651.03 1651.03 2531.86 0.00 34.79

80-2-8 1755.69 1755.69 2443.77 0.00 28.16

80-5-2 1334.64 1334.64 1601.08 0.00 16.64

80-5-5 1465.17 1465.17 1666.84 0.00 12.10

80-5-8 1531.57 1531.57 1920.47 0.00 20.25

100-2-2 2097.55 2097.55 2808.03 0.00 25.30

100-2-5 2091.65 2091.65 2994.88 0.00 30.16

100-2-8 2180.19 2180.19 3229.81 0.00 32.50

100-5-2 1631.66 1631.66 1910.11 0.00 14.58

100-5-5 1750.76 1750.76 2009.31 0.00 12.87

100-5-8 1809.80 1809.80 2199.73 0.00 17.73

200-2-2 4439.25 4439.25 6032.87 0.00 26.42

200-2-5 4251.25 4251.25 6216.12 0.00 31.61

200-2-8 4272.08 4272.08 6072.29 0.00 29.65

200-5-2 3385.87 3385.87 4409.08 0.00 23.21

200-5-5 3331.87 3331.87 4315.98 0.00 22.80

200-5-8 3461.11 3461.11 4496.65 0.00 23.03

avg 1773.54 1773.54 2343.32 0.00 20.44

Fig.9 Means and 95% LSD interval for compared IWOANS and IWOA

It can be seen from Table 7: (1) for 30 instances, IWOANS
have 30 best solutions, while IWOA only have 3 best solutions;
and (2) compared with the last row, the average of IWOANS is
far less than IWOA.

To verify the performance with compared IWOA, an
ANOVA chart is generated. Fig.9 presents compared result
with dev values of the two compared algorithms. The average
dev value of 30 instances is calculated. Under the 95%
confidence interval, if p-value <0.05, the performance of the
algorithm is significantly better than other algorithms,
according to the multi-factor analysis of variance (ANOVA)
theory. Through the Fig.6 can be seen, the p-value is 2.20022e-
17 which is far less than 0.05, showing the proposed algorithm
has better performance.

5.5. Comparisons with other efficient algorithms

The experimental results are shown in Table 8. The first
column represents the scale of 30 instances. The second
column is the optimal value of each example run; the next three
columns give the best solution of each algorithm after 30
independent experiments. The last three columns are the
deviations calculated by each algorithm. It can be seen from
Table 8 that: (1) Among the 30 instances, the IWOANS
algorithm has 28 optimal solution, while the ABC-Y algorithm
has only 8 optimal solutions and the ICA-K algorithm has only
1 optimal solution. (2) Compared with the last line, the mean
values of IWOANS and ICA-K are close to each other, and both
are far less than the ABC-Y algorithm.

In order to further prove the superiority of the IWOANS,
Fig.10 illustrates the compared result of ABC-Y algorithm and
IWOANS. From the p-value=1.07668e-06 which is far less than
0.05, showing the proposed algorithm has better performance.

Four instances were randomly selected to further analyze the
performance of IWOANS and ICA-K. And the convergence
curve which drawn based on the experimental data as shown in
Fig. 11. The results show that IWOANS is far superior to ICA-
K. As shown in these convergence curves, the IWOANS shows
better convergence abilities for the considered the DFSP with
batch delivery constraint.

As shown in Fig.12, the Gantt chart contains two customers
and four batches, and has 20 jobs, 8 machines, 5 factories. Each
rectangle corresponds to a job, and the color represent different
batches.

Fig.10 Means and 95% LSD interval for compared algorithms

Fig.11 (a). 20-5-8 convergence Fig.11 (b). 100-2-8 convergence

Fig.11(c). 100-5-5 convergence Fig.11 (d). 200-5-2 convergence

Table 6 Comparisons of Performance of algorithms at different scales

Scales Best
Min fitness dev

IWOANS ABC-Y ICA-K IWOANS ABC-Y ICA-K

20 493.51 493.51 492.71 496.05 0.15 0.00 0.48

50 1021.56 1021.56 1083.84 1106.80 0.00 5.22 6.87

80 1568.78 1568.78 1748.02 1794.54 0.00 9.11 11.62

100 1926.94 1926.94 2192.32 2248.08 0.00 10.65 13.07

200 3856.91 3856.91 4758.81 4812.30 0.00 18.02 19.06

avg 1773.38 1773.54 2055.14 2091.554 0.03 8.6 10.22

Fig.12. Gantt chart for the best solution of the instance 20-8-5-2

Table 8 Comparisons of IWOANS and other algorithms

Ins Best
Min fitness dev

IWOANS ABC-Y ICA-K IWOANS ABC-
Y

ICA-K

20-2-2 432.54 432.54 432.55 434.95 0.00 0.00 0.55

20-2-5 507.62 507.62 504.43 514.84 0.63 0.00 1.40

20-2-8 613.81 613.81 612.19 619.41 0.26 0.00 0.90

20-5-2 369.47 369.47 369.47 369.48 0.00 0.00 0.00

20-5-5 467.78 467.78 467.79 467.78 0.00 0.00 0.00

20-5-8 569.82 569.82 569.85 569.83 0.00 0.01 0.00

50-2-2 1014.74 1014.74 1168.34 1205.14 0.00 13.15 15.80

50-2-5 1043.07 1043.07 1160.68 1209.50 0.00 10.13 13.76

50-2-8 1172.63 1172.63 1275.05 1327.08 0.00 8.03 11.64

50-5-2 849.88 849.88 849.89 849.89 0.00 0.00 0.00

50-5-5 987.63 987.63 987.65 987.66 0.00 0.00 0.00

50-5-8 1061.40 1061.40 1061.44 1061.50 0.00 0.00 0.01

80-2-2 1674.59 1674.59 2021.82 2017.82 0.00 17.17 17.01

80-2-5 1651.03 1651.03 2043.86 2098.29 0.00 19.22 21.32

80-2-8 1755.69 1755.69 2014.91 2083.69 0.00 12.87 15.74

80-5-2 1334.64 1334.64 1394.65 1442.66 0.00 4.30 7.49

80-5-5 1465.17 1465.17 1474.81 1522.02 0.00 0.65 3.74

80-5-8 1531.57 1531.57 1538.04 1602.78 0.00 0.42 4.44

100-2-2 2097.55 2097.55 2533.61 2594.44 0.00 17.21 19.15

100-2-5 2091.65 2091.65 2598.88 2652.45 0.00 19.52 21.14

100-2-8 2180.19 2180.19 2680.16 2703.52 0.00 18.65 19.36

100-5-2 1631.66 1631.66 1711.68 1751.67 0.00 4.67 6.85

100-5-5 1750.76 1750.76 1792.45 1864.44 0.00 2.33 6.10

100-5-8 1809.80 1809.80 1837.14 1921.98 0.00 1.49 5.84

200-2-2 4439.25 4439.25 5747.23 5662.46 0.00 22.76 21.60

200-2-5 4251.25 4251.25 5612.87 5738.51 0.00 24.26 25.92

200-2-8 4272.08 4272.08 5496.89 5551.39 0.00 22.28 23.04

200-5-2 3385.87 3385.87 3980.29 4043.49 0.00 14.93 16.26

200-5-5 3331.87 3331.87 3894.35 3902.32 0.00 14.44 14.62

200-5-8 3461.11 3461.11 3821.21 3975.61 0.00 9.42 12.94

avg 1773.38 1773.54 2055.14 2091.55 0.03 8.60 0.55

6 Conclusion

In this study, a distributed flowshop scheduling problem
with batch delivery constraint is solved. The problem can be
applied to the field of garment processing. The processed
products are delivered to customers in batches according to
customer needs. One-stop service not only shortens the time
of garment processing, but also improves the efficiency. To
solve this problem, a whale swarm optimization algorithm is
employed. Moreover, the algorithm can be used in a wide
range of fields, such as distributed scheduling, flexible job
shop, distribution network, power systems, etc. In this
research, a wale optimization algorithm (IWOA) combined
with neighborhood structure is utilized to solve the problem.
Then, the local search strategy is applied in the proposed
algorithm to enhance search ability. Furthermore, the SA and
clustering method are embedded, to improve the performance
of the algorithm. Finally, comparisons algorithms with ABC-
Y and ICA-K, IWOANS has the best performance.

In the future, next works are mainly developed as follows:
(1) considering distribute flow shop problem with fuzzy
constraint; (2) studying more accurate energy consumption in
batch delivery; (3) combining the proposed algorithm with
other kinds of problems, such as the parallel machine
scheduling problem; and (4) proposing better optimization
algorithms or more strategies to solve the current problem.

Acknowledgements This research is partially supported by
major basic research projects in Shandong (ZR2018ZB0419),
and a Grant of Key Laboratory of Intelligent Optimization
and Control with Big Data.

Compliance with ethical standards

Conflict of interest the authors declare that they have no
conflict of interest.

Human and animal rights this article does not contain any
studies with human participants or animals performed by any
of the authors.

References

[1] Hatami S, Ruiz R, Andrs-Romano C. Heuristics and
metaheuristics for the distributed assembly permutation
flowshop scheduling problem with s uence dependent
setup times. International Journal of Production
Economics, 2015, 169: 76-88.

[2] Ji M, Yang Y, Duan W, et al. Scheduling of no-wait
stochastic distributed assembly flowshop by hybrid PSO.
IEEE Congress on Evolutionary Computation (CEC).
IEEE, 2016: 2649-2654.

[3] Rifai A P, Nguyen H T, Dawal S Z M. Multi-objective
adaptive large neighborhood search for distributed
reentrant permutation flow shop scheduling. Applied

Soft Computing, 2016, 40: 42-57.
[4] Ying K C, Lin S W, Cheng C Y, et al. Iterated reference

greedy algorithm for solving distributed no-idle
permutation flowshop scheduling problems. Computers
Industrial Engineering, 2017, 110: 413-423.

[5] Deng J, Wang L. A competitive memetic algorithm for
multi-objective distributed permutation flow shop
scheduling problem. Swarm and evolutionary
computation, 2017, 32:121-131.

[6] Gonzalez-Neira E M, Ferone D, Hatami S, et al. A
biased-randomized simheuristic for the distributed
assembly permutation flowshop problem with stochastic
processing times. Simulation Modelling Practice and
Theory, 2017, 79: 23-36.

[7] Bargaoui, Hafewa, Olfa Belkahla Driss, and Khaled
Ghdira. A novel chemical reaction optimization for the
distributed permutation flowshop scheduling problem
with makespan criterion. Computers Industrial
Engineering, 2017, 111: 239-250.

[8] Zhang G, Xing K. Memetic social spider optimization
algorithm for scheduling two-stage assembly flowshop
in a distributed environment. Computers Industrial
Engineering, 2018, 125: 423-433.

[9] Sheikha Shaya, Komakib G.M., Kayvanfar Vahid. Multi
objective two-stage assembly flow shop with release
time. Computers Industrial Engineering, 2018, 124:
276-292.

[10] Zhang G, Xing K, Cao F. Discrete differential evolution
algorithm for distributed blocking flowshop scheduling
with makespan criterion. Engineering Applications of
Artificial Intelligence, 2018, 76:96-107.

[11] Li J Q, Duan P, Cao J, et al. A hybrid Pareto-based tabu
search for the distributed flexible job shop scheduling
problem with E/T criteria. IEEE Access, 2018, 6: 58883-
58897.

[12] Shao W, Pi D, Shao Z. A Pareto-Based Estimation of
Distribution Algorithm for Solving Multiobjective
Distributed No-Wait Flow-Shop Scheduling Problem
With S uenceDependent Setup Time. IEEE Transactions
on Automation Science and Engineering, 2019.

[13] Seidgar H, Fazlollahtabar H, Zandieh M, et al.
Scheduling two-stage assembly flow shop with random
machines breakdowns: integrated new self-adapted
differential evolutionary and simulation approach. soft
computing, 2019: 1-25.

[14] Marandi F, Ghomi S M T F. Network configuration
multi-factory scheduling with batch delivery: A
learning-oriented simulated annealing approach.
Computers Industrial Engineering, 2019, 132: 293-310.

[15] Shen L, Gupta J N D, Buscher U. Flow shop batching
and scheduling with s uencedependent setup times.
Journal of Scheduling, 2014, 17(4):353-370.

[16] Akbalik A, Rapine C. Lot sizing problem with multi-
mode replenishment and batch delivery. Omega, 2018,
81: 123-133.

[17] Wang S, Wu R, Chu F, et al. Variable neighborhood
search-based methods for integrated hybrid flow shop
scheduling with distribution. soft computing, 2019: 1-20.

[18] Yin Y, Wang Y, Cheng T C E, et al. Two-agent single-
machine scheduling to minimize the batch delivery cost.
Computers Industrial Engineering, 2016, 92: 16-30.

[19] Qi X, Yuan J. A further study on two-agent scheduling
on an unbounded serial-batch machine with batch
delivery cost. Computers Industrial Engineering, 2017,
111: 458-462.

[20] Basir S A, Mazdeh M M, Namakshenas M. Bi-level
genetic algorithms for a two-stage assembly flow-shop
scheduling problem with batch delivery system.
Computers Industrial Engineering, 2018, 126: 217-231.

[21] Noroozi A, Mazdeh M M, Heydari M, et al.
Coordinating order acceptance and integrated
production-distribution scheduling with batch delivery
considering Third Party Logistics distribution. Journal
of manufacturing systems, 2018, 46: 29-45.

[22] Jiang T, Zhang C, Sun Q M. Green job shop scheduling
problem with discrete whale optimization algorithm.
IEEE Access, 2019, 7: 43153-43166.

[23] Kong L, Li H, Luo H, et al. Sustainable performance of
just-in-time (JIT) management in time-dependent batch
delivery scheduling of precast construction. Journal of
cleaner production, 2018, 193: 684-701.

[24] Kazemi H, Mazdeh M M, Rostami M. The two stage
assembly flow-shop scheduling problem with batching
and delivery. Engineering Applications of Artificial
Intelligence, 2017, 63: 98-107.

[25] Agnetis A, Aloulou M A, Fu L L. Production and
interplant batch delivery scheduling: Dominance and
cooperation. International Journal of Production
Economics, 2016, 182:38-49.

[26] Wang K, Luo H, Liu F, et al. Permutation flow shop
scheduling with batch delivery to multiple customers in
supply chains. IEEE Transactions on Systems, Man, and
Cybernetics: Systems, 2017, 48(10): 1826-1837.

[27] Basir, Saeedeh Ahmadi, Mohammad Mahdavi Mazdeh,
and Mohammad Namakshenas. Bi-level genetic
algorithms for a two-stage assembly flow-shop
scheduling problem with batch delivery system.
Computers Industrial Engineering, 2018, 126:217-231.

[28] Karaboga, D., Gorkemli, B., Ozturk, C., Karaboga, N..
A comprehensive survey: artificial bee colony (ABC)
algorithm and applications. Artificial Intelligence
Review, 2014, 42, 21-57.

[29] Peng K, Pan Q K, Gao L, et al. An improved artificial
bee colony algorithm for realworld hybrid flowshop
rescheduling in steelmaking-refining-continuous
casting process. Computers Industrial Engineering,
2018, 122: 235-250.

[30] Yurtkuran A, Yagmahan B, Emel E. A novel artificial
bee colony algorithm for the workforce scheduling and
balancing problem in sub-assembly lines with limited
buffers. Applied Soft Computing, 2018, 73:767-782.

[31] Liao C J, Tjandradjaja E, Chung T P. An approach using
particle swarm optimization and bottleneck heuristic to
solve hybrid flow shop scheduling problem. Applied
Soft Computing, 2012, 12(6): 1755-1764.

[32] Gao J, Chen R, Deng W. An efficient tabu search
algorithm for the distributed permutation flowshop
scheduling problem. International Journal of Production
Research, 2013, 51(3): 641-651.

[33] Chen T L, Cheng C Y, Chou Y H. Multi-objective
genetic algorithm for energy-efficient hybrid flow shop
scheduling with lot streaming. Annals of Operations

Research, 2018: 1-24.
[34] Ark O A. Population-based Tabu search with

evolutionary strategies for permutation flow shop
scheduling problems under effects of position-
dependent learning and linear deterioration. Soft
Computing, 2020.

[35] Mirjalili, S., and Lewis, A. The whale optimization
algorithm. Advances in engineering software, 2016,
95:51-67.

[36] Prakash, D. B., and Lakshminarayana, C. Optimal siting
of capacitors in radial distribution network using whale
optimization algorithm. Alexandria Engineering Journal,
2017, 56(4): 499-509.

[37] Prakash, D. B., and Lakshminarayana, C. Multiple DG
placements in radial distributionsystem for multi
objectives using Whale Optimization Algorithm.
Alexandria engineering journal, 2018, 57(4): 2797-2806.

[38] Hasanien, H. M. Performance improvement of
photovoltaic power systems using an optimal control
strategy based on whale optimization algorithm. Electric
Power Systems Research, 2018, 157:168-176.

[39] Sun Y, Wang X, Chen Y, et al. A modified whale
optimization algorithm for large-scale global
optimization problems. Expert Systems with
Applications, 2018, 114: 563-577.

[40] Nasiri J, Khiyabani F M. A whale optimization
algorithm (WOA) approach for clustering. Cogent
Mathematics Statistics, 2018, 5(1): 1483565.

[41] Fu M, Zhonghua H, Zhijun G, et al. Whale optimization
algorithm for flexible flow shop scheduling with setup
times. 2017 9th International Conference on Modelling,
Identification and Control (ICMIC). IEEE, 2017: 157-
162.

[42] Mafarja M M, Mirjalili S. Hybrid whale optimization
algorithm with simulated annealing for feature selection.
Neurocomputing, 2017, 260: 302-312.

[43] Abdel-Basset M, Manogaran G, El-Shahat D, et al. A
hybrid whale optimization algorithm based on local
search strategy for the permutation flow shop
scheduling problem. Future Generation Computer
Systems, 2018, 85: 129-145.

[44] Jiang T, Zhang C, Zhu H, et al. Energy-efficient
scheduling for a job shop using an improved whale
optimization algorithm. Mathematics, 2018, 6(11): 220.

[45] Luan F, Cai Z, Wu S, et al. Improved Whale Algorithm
for Solving the Flexible Job Shop Scheduling Problem.
Mathematics, 2019, 7(5): 384.

[46] Kirkpatrick S, Gelatt C D, Vecchi M P. Optimization by
simulated annealing. Science, 1983, 220(4598):671-680.

[47] Seidgar H, Kiani M, Abedi M, et al. An efficient
imperialist competitive algorithm for scheduling in the
two-stage assembly flow shop problem. International
Journal of Production Research, 2014, 52(4): 1240-1256.

