Skip to main content
Log in

Parameter-free and cooperative local search algorithms for graph colouring

  • Optimization
  • Published:
Soft Computing Aims and scope Submit manuscript

Abstract

Parameter-free algorithms are of an increasing interest in applications that require out-of-the-box solving techniques. For instance, scheduling in volatile environments or control parameters optimisation often requires flexible solving approaches without the need to tune or retune the parameters. In addition, parameter-free algorithms are usually beneficial in solving previously unexplored real-world problem instances. In this paper, we propose a parameter-free local search strategy to solve graph colouring, which is the underlying problem for a number of scheduling applications. Two variants of parameter-free local search are computationally investigated: PFLS-A and PFLS-B. Both of these algorithms are based on accepting strictly improving moves and operating as a random walk if no strictly improving move is found. PFLS-A and PFLS-B differ in randomised versus systematic exploration of the neighbourhood of the current solution. Their cooperative variant CPFLS is also proposed. We compare the results of these three algorithms to the results obtained by 13 other local search methods from the literature. CPFLS provides better or equal results as the other local search algorithms in \(67.25\%\) of per-instance comparisons. This is without employing any explicit or implicit parameters that are usually used in metaheuristics. This hints the promising nature of parameter-free metaheuristics not only for this problem but also metaheuristics in general.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability and material

The DIMACS datasets used in this research are publicly available and provided by a third party. The complex network instances can be found at https://davidchalupa.github.io/research/data/networks.html.

References

  • Afshar M (2010) A parameter free continuous ant colony optimization algorithm for the optimal design of storm sewer networks: constrained and unconstrained approach. Adv Eng Softw 41(2):188–195

    Article  MATH  Google Scholar 

  • Al-Adwan A, Mahafzah BA, Sharieh A (2018) Solving traveling salesman problem using parallel repetitive nearest neighbor algorithm on OTIS-hypercube and OTIS-mesh optoelectronic architectures. J Supercomput 74(1):1–36

    Article  Google Scholar 

  • Al-Adwan A, Sharieh A, Mahafzah BA (2019) Parallel heuristic local search algorithm on OTIS hyper hexa-cell and OTIS mesh of trees optoelectronic architectures. Appl Intell 49(2):661–688

    Article  Google Scholar 

  • Avanthay C, Hertz A, Zufferey N (2003) A variable neighborhood search for graph coloring. Eur J Oper Res 151(2):379–388

    Article  MathSciNet  MATH  Google Scholar 

  • Bandyopadhyay A, Dhar AK, Basu S (2020) Graph coloring: a novel heuristic based on trailing path - properties, perspective and applications in structured networks. Soft Comput 24(1):603–625

    Article  MATH  Google Scholar 

  • Blöchliger I, Zufferey N (2008) A graph coloring heuristic using partial solutions and a reactive tabu scheme. Comput Oper Res 35(3):960–975

    Article  MathSciNet  MATH  Google Scholar 

  • Brélaz D (1979) New methods to color vertices of a graph. Commun ACM 22(4):251–256

    Article  MathSciNet  MATH  Google Scholar 

  • Burke EK, McCollum B, Meisels A, Petrovic S, Qu R (2007) A graph-based hyper-heuristic for educational timetabling problems. Eur J Oper Res 176(1):177–192

    Article  MathSciNet  MATH  Google Scholar 

  • Chakrabarti D (2004) Autopart: parameter-free graph partitioning and outlier detection. European conference on principles of data mining and knowledge discovery. Springer, Berlin, pp 112–124

    Google Scholar 

  • Chalupa D (2011) Population-based and learning-based metaheuristic algorithms for the graph coloring problem. In: Lanzi PL, Krasnogor N (eds) Proceedings of the 13th annual conference on Genetic and evolutionary computation, ACM, New York, NY, GECCO ’11, Dublin, Ireland, pp 465–472

  • Chalupa D (2018) On transitions in the behaviour of tabu search algorithm TabuCol for graph colouring. J Exp Theor Artif Intell 30(1):53–69

    Article  Google Scholar 

  • Chalupa D, Balaghan P, Hawick KA, Gordon NA (2017) Computational methods for finding long simple cycles in complex networks. Knowl-Based Syst 125:96–107

    Article  Google Scholar 

  • Chalupa D, Hawick KA, Walker JA (2018) Hybrid bridge-based memetic algorithms for finding bottlenecks in complex networks. Big Data Res 14:68–80

    Article  Google Scholar 

  • Chen L, Peng J, Ralescu DA (2019) Uncertain vertex coloring problem. Soft Comput 23(4):1337–1346

    Article  MATH  Google Scholar 

  • Cheng C, Li S, Lin Y (2019) Self-adaptive parameters in differential evolution based on fitness performance with a perturbation strategy. Soft Comput 23(9):3113–3128

    Article  Google Scholar 

  • Chiarandini M, Stützle T, et al (2002) An application of iterated local search to graph coloring problem. In: Proceedings of the computational symposium on graph coloring and its generalizations, pp 112–125

  • Chiarandini M, Dumitrescu I, Stützle T (2018) Stochastic local search algorithms for the graph colouring problem. Handbook of approximation algorithms and metaheuristics. Chapman & Hall, CRC, Boca Raton, FL, USA

    Google Scholar 

  • Do NAD, Nielsen IE, Chen G, Nielsen P (2016) A simulation-based genetic algorithm approach for reducing emissions from import container pick-up operation at container terminal. Ann Oper Res 242(2):285–301

    Article  MathSciNet  MATH  Google Scholar 

  • Eskandari-Khanghahi M, Tavakkoli-Moghaddam R, Taleizadeh AA, Amin SH (2018) Designing and optimizing a sustainable supply chain network for a blood platelet bank under uncertainty. Eng Appl Artif Intell 71:236–250

    Article  Google Scholar 

  • Galinier P, Hao JK (1999) Hybrid evolutionary algorithms for graph coloring. J Comb Optim 3(4):379–397

    Article  MathSciNet  MATH  Google Scholar 

  • Galinier P, Hertz A (2006) A survey of local search methods for graph coloring. Comput Oper Res 33(9):2547–2562

    Article  MathSciNet  MATH  Google Scholar 

  • Galinier P, Hamiez JP, Hao JK, Porumbel D (2013) Recent advances in graph vertex coloring. Handbook of optimization. Springer, Berlin, pp 505–528

  • Giaro K, Kubale M, Obszarski P (2009) A graph coloring approach to scheduling of multiprocessor tasks on dedicated machines with availability constraints. Discr Appl Math 157(17):3625–3630

    Article  MathSciNet  MATH  Google Scholar 

  • Girvan M, Newman MEJ (2002) Community structure in social and biological networks. Proc Natl Acad Sci 99(12):7821–7826

    Article  MathSciNet  MATH  Google Scholar 

  • Hao JK, Wu Q (2012) Improving the extraction and expansion method for large graph coloring. Discr Appl Math 160(16–17):2397–2407

    Article  MathSciNet  MATH  Google Scholar 

  • Hao JK, Dorne R, Galinier P (1998) Tabu search for frequency assignment in mobile radio networks. J Heuristics 4(1):47–62

    Article  MATH  Google Scholar 

  • Held S, Cook W, Sewell EC (2012) Maximum-weight stable sets and safe lower bounds for graph coloring. Math Program Comput 4(4):363–381

    Article  MathSciNet  MATH  Google Scholar 

  • Hertz A, de Werra D (1987) Using tabu search techniques for graph coloring. Computing 39(4):345–351

    Article  MathSciNet  MATH  Google Scholar 

  • Hertz A, Plumettaz M, Zufferey N (2008) Variable space search for graph coloring. Discr Appl Math 156(13):2551–2560

    Article  MathSciNet  MATH  Google Scholar 

  • Johnson DS, Trick M (1996) Cliques, coloring, and satisfiability: second DIMACS implementation challenge. American Mathematical Society, Providence, RI

    Book  MATH  Google Scholar 

  • Johnson DS, Aragon CR, McGeoch LA, Schevon C (1991) Optimization by simulated annealing: an experimental evaluation; part II, graph coloring and number partitioning. Oper Res 39(3):378–406

    Article  MATH  Google Scholar 

  • Karp RM (1972) Reducibility among combinatorial problems. In: Miller R, Thatcher J (eds) Proceedings of a symposium on the complexity of computer computations. Plenum Press, New York, pp 85–103

    Chapter  Google Scholar 

  • Keogh E, Lonardi S, Ratanamahatana CA (2004) Towards parameter-free data mining. In: Proceedings of the tenth ACM SIGKDD International conference on Knowledge discovery and data mining, ACM, pp 206–215

  • Khandekar N, Joshi V (2020) Zero-divisor graphs and total coloring conjecture. Soft Comput 24(24):18273–18285

    Article  Google Scholar 

  • Knuth DE (1993) The Stanford GraphBase: a platform for combinatorial computing. Addison-Wesley, Reading, MA

    MATH  Google Scholar 

  • Leitão P, Restivo F (2006) Adacor: a holonic architecture for agile and adaptive manufacturing control. Comput Ind 57(2):121–130

    Article  Google Scholar 

  • Lewis R, Thompson J, Mumford C, Gillard J (2012) A wide-ranging computational comparison of high-performance graph colouring algorithms. Comput Oper Res 39(9):1933–1950

    Article  MathSciNet  MATH  Google Scholar 

  • Li Z, Janardhanan MN, Tang Q, Nielsen P (2016) Co-evolutionary particle swarm optimization algorithm for two-sided robotic assembly line balancing problem. Adv Mech Eng 8(9):1687814016667907

    Article  Google Scholar 

  • Lopez TT, Schaeffer E, Domiguez-Diaz D, Dominguez-Carrillo G (2017) Structural effects in algorithm performance: A framework and a case study on graph coloring. In: Computing conference, 2017, IEEE, pp 101–112

  • Lü Z, Hao JK (2010) A memetic algorithm for graph coloring. Eur J Oper Res 203(1):241–250

    Article  MathSciNet  MATH  Google Scholar 

  • Lusseau D, Schneider K, Boisse OJ, Haase P, Slooten E, Dawson SM (2003) The bottlenose dolphin community of doubtful sound features a large proportion of long-lasting associations. Behav Ecol Sociobiol 54(4):396–405

    Article  Google Scholar 

  • Mahafzah BA (2011) Parallel multithreaded IDA* heuristic search: algorithm design and performance evaluation. Int J Parall, Emerg Distrib Syst 26(1):61–82

    Article  MathSciNet  MATH  Google Scholar 

  • Mahafzah BA (2014) Performance evaluation of parallel multithreaded A* heuristic search algorithm. J Inf Sci 40(3):363–375

    Article  Google Scholar 

  • Mahafzah BA, Jabri R, Murad O (2021) Multithreaded scheduling for program segments based on chemical reaction optimizer. Soft Comput 25(4):2741–2766

    Article  Google Scholar 

  • Mendes ND, Casimiro AC, Santos PM, Sá-Correia I, Oliveira AL, Freitas AT (2006) Musa: a parameter free algorithm for the identification of biologically significant motifs. Bioinformatics 22(24):2996–3002

    Article  Google Scholar 

  • Moalic L, Gondran A (2015) The new memetic algorithm HEAD for graph coloring: an easy way for managing diversity. In: Ochoa G, Chicano F (eds) Evol Comput Comb Optim, vol 9026. Lecture notes in computer science. Springer, pp 173–183

  • Newman MEJ (2006) Finding community structure in networks using the eigenvectors of matrices. Phys Rev E 74(036104):1–19

    MathSciNet  Google Scholar 

  • Porumbel DC, Hao JK, Kuntz P (2010) A search space “cartography” for guiding graph coloring heuristics. Comput Oper Res, 37(4):769–778

  • Porumbel DC, Hao JK, Kuntz P (2013) Informed reactive tabu search for graph coloring. Asia-Pacific J Oper Res 30(04):1350010

    Article  MathSciNet  MATH  Google Scholar 

  • Ruiz R, Stützle T (2007) A simple and effective iterated greedy algorithm for the permutation flowshop scheduling problem. Eur J Oper Res 177(3):2033-2049

    Article  MATH  Google Scholar 

  • Salwinski L, Miller CS, Smith AJ, Pettit FK, Bowie JU, Eisenberg D (2004) The database of interacting proteins: 2004 update. Nucl Acids Res 32(suppl 1):D449–D451

    Article  Google Scholar 

  • Sawai H, Kizu S (1998) Parameter-free genetic algorithm inspired by “disparity theory of evolution” . In: International conference on parallel problem solving from nature. Springer, Berlin, pp 702–711

  • Sevinc E, Dokeroglu T (2020) A novel parallel local search algorithm for the maximum vertex weight clique problem in large graphs. Soft Comput 24(5):3551–3567

    Article  Google Scholar 

  • Steger-Jensen K, Hvolby HH, Nielsen P, Nielsen I (2011) Advanced planning and scheduling technology. Prod Plann Control 22(8):800–808

    Article  Google Scholar 

  • Sun G, Lan Y, Zhao R (2019) Differential evolution with gaussian mutation and dynamic parameter adjustment. Soft Comput 23(5):1615–1642

    Article  Google Scholar 

  • Sun J, Garibaldi JM, Hodgman C (2012) Parameter estimation using metaheuristics in systems biology: a comprehensive review. IEEE/ACM Trans Comput Biol Bioinform (TCBB) 9(1):185–202

    Article  Google Scholar 

  • Sun W, Hao JK, Lai X, Wu Q (2018) Adaptive feasible and infeasible tabu search for weighted vertex coloring. Inf Sci 466:203–219

    Article  MathSciNet  MATH  Google Scholar 

  • Titiloye O, Crispin A (2011) Quantum annealing of the graph coloring problem. Discr Optim 8(2):376–384

    Article  MathSciNet  MATH  Google Scholar 

  • Titiloye O, Crispin A (2012) Parameter tuning patterns for random graph coloring with quantum annealing. PLoS ONE 7(11):e50060

    Article  Google Scholar 

  • Watts DJ, Strogatz SH (1998) Collective dynamics of “small-world” networks. Nature 393(6684):440–442

  • Wang W, Hao JK, Wu Q (2018) Tabu search with feasible and infeasible searches for equitable coloring. Eng Appl Artif Intell 71:1–14

  • Yang T, Zhang R, Cheng X, Yang L (2017) Graph coloring based resource sharing (GCRS) scheme for D2D communications underlaying full-duplex cellular networks. IEEE Trans Veh Technol 66(8):7506–7517

    Article  Google Scholar 

  • Zachary WW (1977) An information flow model for conflict and fission in small groups. J Anthropol Res 33:452–473

    Article  Google Scholar 

  • Zhou Y, Duval B, Hao JK (2018) Improving probability learning based local search for graph coloring. Appl Soft Comput 65:542–553

    Article  Google Scholar 

  • Zufferey N, Amstutz P, Giaccari P (2008) Graph colouring approaches for a satellite range scheduling problem. J Sched 11(4):263–277

    Article  MathSciNet  MATH  Google Scholar 

Download references

Funding

No funding was received to assist with the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David Chalupa.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Code availability

The source code is available upon request.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chalupa, D., Nielsen, P. Parameter-free and cooperative local search algorithms for graph colouring. Soft Comput 25, 15035–15050 (2021). https://doi.org/10.1007/s00500-021-06347-3

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00500-021-06347-3

Keywords

Navigation