Abstract
Similarity measure (SM) formulas are very useful tool for Multi-criteria decision-making (MCDM) problems, machine learning, medical diagnosis, psychology, etc. In this paper, some SM methods are introduced under single-valued type-2 neutrosophic (SVT2N) information, based on the Dice and Jaccard vector measures. Also, Cosine and weighted Cosine SMs between two SVT2N sets are defined for SVT2NSs. Then, motivated by the idea of vector measures, Hybrid SM and weighted Hybrid SM are developed by combining Dice and Cosine SMs. After then, a decision-making method is put forward based on technique for order of preference by similarity to ideal solution (TOPSIS) method. Immediately after, a real example is given to indicate the practicality and effectiveness of the proposed measures. In here, Hybrid SMs are discussed for different values of \(\lambda \) and compared with the Hybrid SMs and weighted Hybrid SMs in their own. Furthermore, a comparative analysis is made based on the TOPSIS among the vector measures, distance measures and Hybrid SMs and the agreement between the results with other measures shows that the Hybrid SM is strong and essential to minimize error margin for decision makers.



Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.Availability of data and materials
Enquiries about data availability should be directed to the authors.
References
Abdel-Basset M, Saleh M, Gamal A, Smarandache F (2019) An approach of topsis technique for developing supplier selection with group decision making under type-2 neutrosophic number. Appl Soft Comput 77:438–452
Atanassov KT (1994) New operations defined over the intuitionistic fuzzy sets. Fuzzy Sets Syst 61(2):137–142
Chi P, Liu P (2013) An extended topsis method for the multiple attribute decision making problems based on interval neutrosophic set. Neutrosoph Sets Syst 1(1):63–70
Dengfeng L, Chuntian C (2002) New similarity measures of intuitionistic fuzzy sets and application to pattern recognitions. Pattern Recogn Lett 23(1–3):221–225
Dice LR (1945) Measures of the amount of ecologic association between species. Ecology 26(3):297–302
Grzegorzewski P (2004) Distances between intuitionistic fuzzy sets and/or interval-valued fuzzy sets based on the hausdorff metric. Fuzzy Sets Syst 148(2):319–328
Hung W-L, Yang M-S (2004) Similarity measures between type-2 fuzzy sets. Int J Uncertain Fuzz Knowl Based Syst 12(06):827–841
Hwang C-M, Yang M-S, Hung W-L, Lee ES (2011) Similarity, inclusion and entropy measures between type-2 fuzzy sets based on the sugeno integral. Math Comput Model 53(9–10):1788–1797
Jaccard P (1901) Distribution de la flore alpine dans le bassin des dranses et dans quelques régions voisines. Bull Soc Vaudoise Sci Nat 37:241–272
John R, Innocent P, Barnes M (1998) Type 2 fuzzy sets and neuro-fuzzy clustering of radiographic tibia images. In: 1998 IEEE international conference on fuzzy systems proceedings. IEEE world congress on computational intelligence (Cat. No. 98CH36228), vol 2. IEEE, pp 1373–1376
Jun Y (2014) Vector similarity measures of hesitant fuzzy sets and their multiple attribute decision making. Econ Comput Econ Cybern Stud Res 48(4)
Karaaslan F, Hunu F (2020) Type-2 single-valued neutrosophic sets and their applications in multi-criteria group decision making based on topsis method. J Ambient Intell Humaniz Comput 11(10):4113–4132
Karaaslan F, Özlü Ş (2020) Correlation coefficients of dual type-2 hesitant fuzzy sets and their applications in clustering analysis. Int J Intell Syst 35(7):1200–1229
Liao H, Xu Z, Zeng X-J (2014) Distance and similarity measures for hesitant fuzzy linguistic term sets and their application in multi-criteria decision making. Inf Sci 271:125–142
Liu H-W (2005) New similarity measures between intuitionistic fuzzy sets and between elements. Math Comput Model 42(1–2):61–70
Liu P, Wang Y (2014) Multiple attribute decision-making method based on single-valued neutrosophic normalized weighted bonferroni mean. Neural Comput Appl 25(7):2001–2010
Liu P, Chu Y, Li Y, Chen Y (2014) Some generalized neutrosophic number hamacher aggregation operators and their application to group decision making. Int J Fuzzy Syst 16(2)
Mitchell H (2006) Correlation coefficient for type-2 fuzzy sets. Int J Intell Syst 21(2):143–153
Mitchell H (2006) Ranking type-2 fuzzy numbers. IEEE Trans Fuzzy Syst 14(2):287–294
Mizumoto M, Tanaka K (1976) Some properties of fuzzy sets of type 2. Inf Control 31(4):312–340
Mizumoto M, Tanaka K (1981) Fuzzy sets and type 2 under algebraic product and algebraic sum. Fuzzy Sets Syst 5(3):277–290
Nieminen J (1977) On the algebraic structure of fuzzy sets of type 2. Kybernetika 13(4):261–273
Özlü Ş, Karaaslan F (2020) Some distance measures for type 2 hesitant fuzzy sets and their applications to multi-criteria group decision-making problems. Soft Comput 24(13):9965–9980
Pramanik S, Mondal K (2015) Some rough neutrosophic similarity measure and their application to multi attribute decision making. Global J Eng Sci Res Manag 2(7):61–74
Salton G, McGill MJ (1983) Introduction to modern information retrieval. Mcgraw-Hill
Singh P (2014) Some new distance measures for type-2 fuzzy sets and distance measure based ranking for group decision making problems. Front Comp Sci 8(5):741–752
Smarandache F (2001) First international conference on neutrosophy, neutrosophic logic, set, probability and statistics. Florentin Smarandache 4
Turksen IB (1986) Interval valued fuzzy sets based on normal forms. Fuzzy Sets Syst 20(2):191–210
Wagenknecht M, Hartmann K (1988) Application of fuzzy sets of type 2 to the solution of fuzzy equations systems. Fuzzy Sets Syst 25(2):183–190
Wang H, Madiraju P, Zhang Y, Sunderraman R (2004) Interval neutrosophic sets. arXiv preprint math/0409113
Wang H, Smarandache F, Zhang Y, Sunderraman R (2010) Single valued neutrosophic sets. Infinite study
Wu D, Mendel JM (2009) A comparative study of ranking methods, similarity measures and uncertainty measures for interval type-2 fuzzy sets. Inf Sci 179(8):1169–1192
Xu X, Zhang L, Wan Q (2012) A variation coefficient similarity measure and its application in emergency group decision-making. Syst Eng Proc 5:119–124
Yager RR (1980) Fuzzy subsets of type ii in decisions. Cybern Syst 10(1–3):137–159
Ye J (2014) Vector similarity measures of simplified neutrosophic sets and their application in multicriteria decision making. Infinite Study
Ye J (2012) Multicriteria decision-making method using the dice similarity measure between expected intervals of trapezoidal fuzzy numbers. J Decis Syst 21(4):307–317
Ye J (2012) Multicriteria decision-making method using the dice similarity measure based on the reduct intuitionistic fuzzy sets of interval-valued intuitionistic fuzzy sets. Appl Math Model 36(9):4466–4472
Ye J (2013a) Multicriteria decision-making method using the correlation coefficient under single-valued neutrosophic environment. Int J Gen Syst 42(4):386–394
Ye J (2013b) Another form of correlation coefficient between single valued neutrosophic sets and its multiple attribute decision-making method. Neutrosoph Sets Syst 1(1):8–12
Ye J (2014) Similarity measures between interval neutrosophic sets and their applications in multicriteria decision-making. J Intell Fuzzy Syst 26(1):165–172
Ye J (2014a) Single valued neutrosophic cross-entropy for multicriteria decision making problems. Appl Math Model 38(3):1170–1175
Ye J (2014b) A multicriteria decision-making method using aggregation operators for simplified neutrosophic sets. J Intell Fuzzy Syst 26(5):2459–2466
Ye J (2015) Multiple attribute decision-making method based on the possibility degree ranking method and ordered weighted aggregation operators of interval neutrosophic numbers. J Intell Fuzzy Syst 28(3):1307–1317
Ye J (2016) Similarity measures of intuitionistic fuzzy sets based on cosine function for the decision making of mechanical design schemes. J Intell Fuzzy Syst 30(1):151–158
Ye J (2016) The generalized dice measures for multiple attribute decision making under simplified neutrosophic environments. J Intell Fuzzy Syst 31(1):663–671
Ye S, Ye J (2014) Dice similarity measure between single valued neutrosophic multisets and its application in medical diagnosis. Neutrosoph Sets Syst 6(1):9
Zadeh LA (1996) Fuzzy sets. In: Zadeh LA (ed) Fuzzy sets, fuzzy logic, and fuzzy systems: selected papers. World Scientific, pp 394–432
Funding
The authors have not disclosed any funding.
Author information
Authors and Affiliations
Ethics declarations
Conflict of Interest
The authors declare that they have no conflict of interest.
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
A Appendices
A Appendices
1.1 A.1
-
(P1)
Since \(\mathfrak {A}\) and \(\mathfrak {B}\) are SVT2NSs, it is open that \(\mathbb {D}_{SVT2NS}(\mathfrak {A}, \mathfrak {B})\ge 0\). Then, let us prove that \(\mathbb {D}_{SVT2NS}(\mathfrak {A}, \mathfrak {B})\le 1\). Since \( x^2+y^2\ge 2xy\), we have for all \(\tau _i\in \mathfrak {X} (i=1,2,\ldots ,n)\)
$$\begin{aligned}&(\mathfrak {t}_{\mathfrak {A}_p}(\tau _i))^2+(\mathfrak {t}_{\mathfrak {B}_p}(\tau _i))^2\ge 2 \mathfrak {t}_{\mathfrak {A}_p}(\tau _i) \mathfrak {t}_{\mathfrak {B}_p}(\tau _i)\\&\quad (\mathfrak {t}_{\mathfrak {A}_s}(\tau _i))^2+(\mathfrak {t}_{\mathfrak {B}_s}(\tau _i))^2\ge 2\mathfrak {t}_{\mathfrak {A}_s}(\tau _i)\mathfrak {t}_{\mathfrak {B}_s}(\tau _i)\\&\quad (\mathfrak {h}_{\mathfrak {A}_p}(\tau _i))^2+(\mathfrak {h}_{\mathfrak {B}_p}(\tau _i))^2\ge 2 \mathfrak {h}_{\mathfrak {A}_p}(\tau _i) \mathfrak {h}_{\mathfrak {B}_p}(\tau _i)\\&\quad (\mathfrak {h}_{\mathfrak {A}_s}(\tau _i))^2+(\mathfrak {h}_{\mathfrak {B}_s}(\tau _i))^2\ge 2 \mathfrak {h}_{\mathfrak {A}_s}(\tau _i) \mathfrak {h}_{\mathfrak {B}_s}(\tau _i)\\&\quad (\mathfrak {f}_{\mathfrak {A}_p}(\tau _i))^2+(\mathfrak {f}_{\mathfrak {B}_p}(\tau _i))^2\ge 2 \mathfrak {f}_{\mathfrak {A}_p}(\tau _i) \mathfrak {f}_{\mathfrak {B}_p}(\tau _i)\\&\quad (\mathfrak {f}_{\mathfrak {A}_s}(\tau _i))^2+(\mathfrak {f}_{\mathfrak {B}_s}(\tau _i))^2\ge 2 \mathfrak {f}_{\mathfrak {A}_s}(\tau _i) \mathfrak {f}_{\mathfrak {B}_s}(\tau _i). \end{aligned}$$and \(\forall \tau _i\in \mathfrak {X}\)
$$\begin{aligned} \mathbb {D}_{SVT2NS}(\mathfrak {A}, \mathfrak {B}) =\frac{\left[ \begin{array}{l}2 \mathfrak {t}_{\mathfrak {A}_p}(\tau _i) \mathfrak {t}_{\mathfrak {B}_p}(\tau _i)+2\mathfrak {t}_{\mathfrak {A}_s}(\tau _i) \mathfrak {t}_{\mathfrak {B}_s}(\tau _i)+\\ 2\mathfrak {h}_{\mathfrak {A}_p}(\tau _i)\mathfrak {h}_{\mathfrak {B}_p}(\tau _i) +2\mathfrak {h}_{\mathfrak {A}_s}(\tau _i)\mathfrak {h}_{\mathfrak {B}_s}(\tau _i)+\\ 2f_{\mathfrak {A}_p}(\tau _i)\mathfrak {f}_{\mathfrak {B}_p}(\tau _i)+2\mathfrak {f}_{\mathfrak {A}_s}(\tau _i)\mathfrak {f}_{\mathfrak {B}_s}(\tau _i)\\ \end{array}\right] }{\left[ \begin{array}{l} (\mathfrak {t}_{\mathfrak {A}_p}(\tau _i))^2+(\mathfrak {t}_{\mathfrak {B}_p}(\tau _i))^2+(\mathfrak {t}_{\mathfrak {A}_s}(\tau _i))^2+(\mathfrak {t}_{\mathfrak {B}_s}(\tau _i))^2\\ + (\mathfrak {h}_{\mathfrak {A}_p}(\tau _i))^2+(\mathfrak {h}_{\mathfrak {B}_p}(\tau _i))^2+(\mathfrak {h}_{\mathfrak {A}_s}(\tau _i))^2+(\mathfrak {h}_{\mathfrak {B}_s}(\tau _i))^2\\ + (\mathfrak {f}_{\mathfrak {A}_p}(\tau _i))^2+(\mathfrak {f}_{\mathfrak {B}_p}(\tau _i))^2+(\mathfrak {f}_{\mathfrak {A}_s}(\tau _i))^2+(\mathfrak {f}_{\mathfrak {B}_s}(\tau _i))^2 \end{array}\right] } \le 1. \end{aligned}$$Thus, for \(i=1,2,\ldots ,n\)
$$\begin{aligned}&=\frac{\left[ \begin{array}{l}2 \mathfrak {t}_{\mathfrak {A}_p}(\tau _1) \mathfrak {t}_{\mathfrak {B}_p}(\tau _1)+2\mathfrak {t}_{\mathfrak {A}_s}(\tau _1) \mathfrak {t}_{\mathfrak {B}_s}(\tau _1)+\\ 2\mathfrak {h}_{\mathfrak {A}_p}(\tau _1)\mathfrak {h}_{\mathfrak {B}_p}(\tau _1) +2\mathfrak {h}_{\mathfrak {A}_s}(\tau _1)\mathfrak {h}_{\mathfrak {B}_s}(\tau _1)+\\ 2\mathfrak {f}_{\mathfrak {A}_p}(\tau _1)\mathfrak {f}_{\mathfrak {B}_p}(\tau _1)+2\mathfrak {f}_{\mathfrak {A}_s}(\tau _1)\mathfrak {f}_{\mathfrak {B}_s}(\tau _1)\\ \end{array}\right] }{\left[ \begin{array}{l} (\mathfrak {t}_{\mathfrak {A}_p}(\tau _1))^2+(\mathfrak {t}_{\mathfrak {B}_p}(\tau _1))^2+(\mathfrak {t}_{\mathfrak {A}_s}(\tau _1))^2+(\mathfrak {t}_{\mathfrak {B}_s}(\tau _1))^2\\ + (\mathfrak {h}_{\mathfrak {A}_p}(\tau _1))^2+(\mathfrak {h}_{\mathfrak {B}_p}(\tau _1))^2+(\mathfrak {h}_{\mathfrak {A}_s}(\tau _1))^2+(\mathfrak {h}_{\mathfrak {B}_s}(\tau _1))^2\\ + (\mathfrak {f}_{\mathfrak {A}_p}(\tau _1))^2+(\mathfrak {f}_{\mathfrak {B}_p}(\tau _1))^2+(\mathfrak {f}_{\mathfrak {A}_s}(\tau _1))^2+(\mathfrak {f}_{\mathfrak {B}_s}(\tau _1))^2 \end{array}\right] } +\frac{\left[ \begin{array}{l}2 \mathfrak {t}_{\mathfrak {A}_p}(\tau _2) \mathfrak {t}_{\mathfrak {B}_p}(\tau _2)+2\mathfrak {t}_{\mathfrak {A}_s}(\tau _2) \mathfrak {t}_{\mathfrak {B}_s}(\tau _2)+\\ 2\mathfrak {h}_{\mathfrak {A}_p}(\tau _2)\mathfrak {h}_{\mathfrak {B}_p}(\tau _2) +2\mathfrak {h}_{\mathfrak {A}_s}(\tau _2)\mathfrak {h}_{\mathfrak {B}_s}(\tau _2)+\\ 2\mathfrak {f}_{\mathfrak {A}_p}(\tau _2)\mathfrak {f}_{\mathfrak {B}_p}(\tau _2)+2\mathfrak {f}_{\mathfrak {A}_s}(\tau _2)\mathfrak {f}_{\mathfrak {B}_s}(\tau _2)\\ \end{array}\right] }{\left[ \begin{array}{l} (\mathfrak {t}_{\mathfrak {A}_p}(\tau _2))^2+(\mathfrak {t}_{\mathfrak {B}_p}(\tau _2))^2+(\mathfrak {t}_{\mathfrak {A}_s}(\tau _2))^2+(\mathfrak {t}_{\mathfrak {B}_s}(\tau _2))^2\\ + (\mathfrak {h}_{\mathfrak {A}_p}(\tau _2))^2+(\mathfrak {h}_{\mathfrak {B}_p}(\tau _2))^2+(\mathfrak {h}_{\mathfrak {A}_s}(\tau _2))^2+(\mathfrak {h}_{\mathfrak {B}_s}(\tau _2))^2\\ + (\mathfrak {f}_{\mathfrak {A}_p}(\tau _2))^2+(\mathfrak {f}_{\mathfrak {B}_p}(\tau _2))^2+(\mathfrak {f}_{\mathfrak {A}_s}(\tau _2))^2+(\mathfrak {f}_{\mathfrak {B}_s}(\tau _2))^2 \end{array}\right] }\\&\quad + \vdots + \frac{\left[ \begin{array}{l}2 \mathfrak {t}_{\mathfrak {A}_p}(\tau _n) \mathfrak {t}_{\mathfrak {B}_p}(\tau _n)+2\mathfrak {t}_{\mathfrak {A}_s}(\tau _n) \mathfrak {t}_{\mathfrak {B}_s}(\tau _n)+\\ 2\mathfrak {h}_{\mathfrak {A}_p}(\tau _n)\mathfrak {h}_{\mathfrak {B}_p}(\tau _n) +2\mathfrak {h}_{\mathfrak {A}_s}(\tau _n)\mathfrak {h}_{\mathfrak {B}_s}(\tau _n)+\\ 2\mathfrak {f}_{\mathfrak {A}_p}(\tau _n)\mathfrak {f}_{\mathfrak {B}_p}(\tau _n)+2\mathfrak {f}_{\mathfrak {A}_s}(\tau _n)\mathfrak {f}_{\mathfrak {B}_s}(\tau _n)\\ \end{array}\right] }{\left[ \begin{array}{l} (\mathfrak {t}_{\mathfrak {A}_p}(\tau _n))^2+(\mathfrak {t}_{\mathfrak {B}_p}(\tau _n))^2+(\mathfrak {t}_{\mathfrak {A}_s}(\tau _n))^2+(\mathfrak {t}_{\mathfrak {B}_s}(\tau _n))^2\\ + (\mathfrak {h}_{\mathfrak {A}_p}(\tau _n))^2+(\mathfrak {h}_{\mathfrak {B}_p}(\tau _n))^2+(\mathfrak {h}_{\mathfrak {A}_s}(\tau _n))^2+(\mathfrak {h}_{\mathfrak {B}_s}(\tau _n))^2\\ + (\mathfrak {f}_{\mathfrak {A}_p}(\tau _n))^2+(\mathfrak {f}_{\mathfrak {B}_p}(\tau _n))^2+(\mathfrak {f}_{\mathfrak {A}_s}(\tau _n))^2+(\mathfrak {f}_{\mathfrak {B}_s}(\tau _n))^2 \end{array}\right] } \le 1+1+\cdots +1 \end{aligned}$$Then, if collection is made from side to side;
$$\begin{aligned}&\sum _{i=1}^n\frac{\left[ \begin{array}{l}2 \mathfrak {t}_{\mathfrak {A}_p}(\tau _i) \mathfrak {t}_{\mathfrak {B}_p}(\tau _i)+2\mathfrak {t}_{\mathfrak {A}_s}(\tau _i) \mathfrak {t}_{\mathfrak {B}_s}(\tau _i)+\\ 2\mathfrak {h}_{\mathfrak {A}_p}(\tau _i)\mathfrak {h}_{\mathfrak {B}_p}(\tau _i) +2\mathfrak {h}_{A _s}(\tau _i)\mathfrak {h}_{\mathfrak {B}_s}(\tau _i)+\\ 2\mathfrak {f}_{\mathfrak {A}_p}(\tau _i)\mathfrak {f}_{\mathfrak {B}_p}(\tau _i)+2\mathfrak {f}_{\mathfrak {A}_s}(\tau _i)\mathfrak {f}_{\mathfrak {B}_s}(\tau _i)\\ \end{array}\right] }{\left[ \begin{array}{l} (\mathfrak {t}_{\mathfrak {A}_p}(\tau _i))^2+(\mathfrak {t}_{\mathfrak {B}_p}(\tau _i))^2+(\mathfrak {t}_{\mathfrak {A}_s}(\tau _i))^2+(\mathfrak {t}_{\mathfrak {B}_s}(\tau _i))^2\\ + (\mathfrak {h}_{\mathfrak {A}_p}(\tau _i))^2+(\mathfrak {h}_{\mathfrak {B}_p}(\tau _i))^2+(\mathfrak {h}_{\mathfrak {A}_s}(\tau _i))^2+(\mathfrak {h}_{\mathfrak {B}_s}(\tau _i))^2\\ + (\mathfrak {f}_{\mathfrak {A}_p}(\tau _i))^2+(\mathfrak {f}_{\mathfrak {B}_p}(\tau _i))^2+(\mathfrak {f}_{\mathfrak {A}_s}(\tau _i))^2+(\mathfrak {f}_{\mathfrak {B}_s}(\tau _i))^2 \end{array}\right] }\le n \frac{1}{n}\sum _{i=1}^n\frac{\left[ \begin{array}{l}2 \mathfrak {t}_{\mathfrak {A}_p}(\tau _i) \mathfrak {t}_{\mathfrak {B}_p}(\tau _i)+2\mathfrak {t}_{\mathfrak {A}_s}(\tau _i) \mathfrak {t}_{\mathfrak {B}_s}(\tau _i)+\\ 2\mathfrak {h}_{\mathfrak {A}_p}(\tau _i)\mathfrak {h}_{\mathfrak {B}_p}(\tau _i) +2\mathfrak {h}_{\mathfrak {A}_s}(\tau _i)\mathfrak {h}_{\mathfrak {B}_s}(\tau _i)+\\ 2\mathfrak {f}_{\mathfrak {A}_p}(\tau _i)\mathfrak {f}_{\mathfrak {B}_p}(\tau _i)+2\mathfrak {f}_{\mathfrak {A}_s}(\tau _i)\mathfrak {f}_{\mathfrak {B}_s}(\tau _i)\\ \end{array}\right] }{\left[ \begin{array}{l} (\mathfrak {t}_{\mathfrak {A}_p}(\tau _i))^2+(\mathfrak {t}_{\mathfrak {B}_p}(\tau _i))^2+(\mathfrak {t}_{\mathfrak {A}_s}(\tau _i))^2+(\mathfrak {t}_{\mathfrak {B}_s}(\tau _i))^2\\ + (\mathfrak {h}_{\mathfrak {A}_p}(\tau _i))^2+(\mathfrak {h}_{\mathfrak {B}_p}(\tau _i))^2+(\mathfrak {h}_{\mathfrak {A}_s}(\tau _i))^2+(\mathfrak {h}_{\mathfrak {B}_s}(\tau _i))^2\\ + (\mathfrak {f}_{\mathfrak {A}_p}(\tau _i))^2+(\mathfrak {f}_{\mathfrak {B}_p}(\tau _i))^2+(\mathfrak {f}_{\mathfrak {A}_s}(\tau _i))^2+(\mathfrak {f}_{\mathfrak {B}_s}(\tau _i))^2 \end{array}\right] }\le 1 \end{aligned}$$ -
(P2)
if \(\mathfrak {A}=\mathfrak {B}\),
$$\begin{aligned}&\frac{1}{n}\sum _{i=1}^n\frac{\left[ \begin{array}{l}2 (\mathfrak {t}_{\mathfrak {A}_p}(\tau _i))^2+2(\mathfrak {t}_{\mathfrak {A}_s}(\tau _i))^2 + 2(\mathfrak {h}_{\mathfrak {A}_p}(\tau _i))^2 +2(\mathfrak {h}_{\mathfrak {A}_s}(\tau _i))^2+ 2(\mathfrak {f}_{\mathfrak {A}_p}(\tau _i))^2+2(\mathfrak {f}_{\mathfrak {A}_s}(\tau _i))^2 \end{array}\right] }{\left[ \begin{array}{l}2 (\mathfrak {t}_{\mathfrak {A}_p}(\tau _i))^2+2(\mathfrak {t}_{\mathfrak {A}_s}(\tau _i))^2 + 2(\mathfrak {h}_{\mathfrak {A}_p}(\tau _i))^2 +2(\mathfrak {h}_{\mathfrak {A}_s}(\tau _i))^2+ 2(\mathfrak {f}_{\mathfrak {A}_p}(\tau _i))^2+2(\mathfrak {f}_{\mathfrak {A}_s}(\tau _i))^2 \end{array}\right] }=1 \end{aligned}$$ -
(P3)
if \(\mathfrak {A}\) and \(\mathfrak {B}\) are swapped;
$$\begin{aligned}&\mathbb {D}_{SVT2NS}(\mathfrak {A}, \mathfrak {B}) =\frac{1}{n}\sum _{i=1}^n\frac{\left[ \begin{array}{l}2 \mathfrak {t}_{\mathfrak {A}_p}(\tau _i) \mathfrak {t}_{\mathfrak {B}_p}(\tau _i)+2\mathfrak {t}_{\mathfrak {A}_s}(\tau _i) \mathfrak {t}_{\mathfrak {B}_s}(\tau _i)+\\ 2\mathfrak {h}_{\mathfrak {A}_p}(\tau _i)\mathfrak {h}_{\mathfrak {B}_p}(\tau _i) +2\mathfrak {h}_{\mathfrak {A}_s}(\tau _i)\mathfrak {h}_{\mathfrak {B}_s}(\tau _i)+\\ 2\mathfrak {f}_{\mathfrak {A}_p}(\tau _i)\mathfrak {f}_{\mathfrak {B}_p}(\tau _i)+2\mathfrak {f}_{\mathfrak {A}_s}(\tau _i)\mathfrak {f}_{\mathfrak {B}_s}(\tau _i)\\ \end{array}\right] }{\left[ \begin{array}{l} (\mathfrak {t}_{\mathfrak {A}_p}(\tau _i))^2+(\mathfrak {t}_{\mathfrak {B}_p}(\tau _i))^2+(\mathfrak {t}_{\mathfrak {A}_s}(\tau _i))^2+(\mathfrak {t}_{\mathfrak {B}_s}(\tau _i))^2\\ + (\mathfrak {h}_{\mathfrak {A}_p}(\tau _i))^2+(\mathfrak {h}_{\mathfrak {B}_p}(\tau _i))^2+(\mathfrak {h}_{\mathfrak {A}_s}(\tau _i))^2+(\mathfrak {h}_{\mathfrak {B}_s}(\tau _i))^2\\ + (\mathfrak {f}_{\mathfrak {A}_p}(\tau _i))^2+(\mathfrak {f}_{\mathfrak {B}_p}(\tau _i))^2+(\mathfrak {f}_{\mathfrak {A}_s}(\tau _i))^2+(\mathfrak {f}_{\mathfrak {B}_s}(\tau _i))^2 \end{array}\right] }\\&\quad =\frac{1}{n}\sum _{i=1}^n\frac{\left[ \begin{array}{l}2 \mathfrak {t}_{\mathfrak {B}_p}(\tau _i) \mathfrak {t}_{\mathfrak {A}_p}(\tau _i)+2\mathfrak {t}_{\mathfrak {B}_s}(\tau _i) \mathfrak {t}_{\mathfrak {A}_s}(\tau _i)+\\ 2\mathfrak {h}_{\mathfrak {B}_p}(\tau _i)\mathfrak {h}_{\mathfrak {A}_p}(\tau _i) +2\mathfrak {h}_{\mathfrak {B}_s}(\tau _i)\mathfrak {h}_{\mathfrak {A}_s}(\tau _i)+\\ 2\mathfrak {f}_{\mathfrak {B}_p}(\tau _i)\mathfrak {f}_{\mathfrak {A}_p}(\tau _i)+2\mathfrak {f}_{\mathfrak {B}_s}(\tau _i)\mathfrak {f}_{\mathfrak {A}_s}(\tau _i)\\ \end{array}\right] }{\left[ \begin{array}{l} (\mathfrak {t}_{\mathfrak {B}_p}(\tau _i))^2+(\mathfrak {t}_{\mathfrak {A}_p}(\tau _i))^2+(\mathfrak {t}_{\mathfrak {B}_s}(\tau _i))^2+(\mathfrak {t}_{\mathfrak {A}_s}(\tau _i))^2\\ + (\mathfrak {h}_{\mathfrak {B}_p}(\tau _i))^2+(\mathfrak {h}_{\mathfrak {A}_p}(\tau _i))^2+(\mathfrak {h}_{\mathfrak {B}_s}(\tau _i))^2+(\mathfrak {h}_{\mathfrak {A}_s}(\tau _i))^2\\ + (\mathfrak {f}_{\mathfrak {B}_p}(\tau _i))^2+(\mathfrak {f}_{\mathfrak {A}_p}(\tau _i))^2+(\mathfrak {f}_{\mathfrak {B}_s}(\tau _i))^2+(\mathfrak {f}_{\mathfrak {A}_s}(\tau _i))^2 \end{array}\right] } =\mathbb {D}_{SVT2NS}(\mathfrak {B}, \mathfrak {A}). \end{aligned}$$
1.2 A.2
-
(P1)
Since \(\mathfrak {A}\) and \(\mathfrak {B}\) are SVT2NSs, it is open that \(\mathbb {J}_{SVT2NS}(\mathfrak {A}, \mathfrak {B})\ge 0\). Then, we need only show that \(\mathbb {J}_{SVT2NS}(\mathfrak {A}, \mathfrak {B})\le 1\). We know that for all \(x,y\in R\), \( x^2+y^2-xy\ge xy\), then for all \(\tau _i\in \mathfrak {X}\) we get
$$\begin{aligned}&(\mathfrak {t}_{\mathfrak {A}_p}(\tau _i))^2+(\mathfrak {t}_{\mathfrak {B}_p}(\tau _i))^2-\mathfrak {t}_{\mathfrak {A}_p}(\tau _i) \mathfrak {t}_{\mathfrak {B}_p}(\tau _i)\ge \mathfrak {t}_{\mathfrak {A}_p}(\tau _i) \mathfrak {t}_{\mathfrak {B}_p}(\tau _i)\\&\quad (\mathfrak {t}_{\mathfrak {A}_s}(\tau _i))^2+(\mathfrak {t}_{\mathfrak {B}_s}(\tau _i))^2-\mathfrak {t}_{\mathfrak {A}_s}(\tau _i)\mathfrak {t}_{\mathfrak {B}_s}(\tau _i)\ge \mathfrak {t}_{\mathfrak {A}_s}(\tau _i)\mathfrak {t}_{\mathfrak {B}_s}(\tau _i)\\&\quad (\mathfrak {h}_{\mathfrak {A}_p}(\tau _i))^2+(\mathfrak {h}_{\mathfrak {B}_p}(\tau _i))^2-\mathfrak {h}_{\mathfrak {A}_p}(\tau _i) \mathfrak {h}_{\mathfrak {B}_p}(\tau _i)\ge \mathfrak {h}_{\mathfrak {A}_p}(\tau _i) \mathfrak {h}_{\mathfrak {B}_p}(\tau _i)\\&\quad (\mathfrak {h}_{\mathfrak {A}_s}(\tau _i))^2+(\mathfrak {h}_{\mathfrak {B}_s}(\tau _i))^2-\mathfrak {h}_{\mathfrak {A}_s}(\tau _i) \mathfrak {h}_{\mathfrak {B}_s}(\tau _i)\ge \mathfrak {h}_{\mathfrak {A}_s}(\tau _i) \mathfrak {h}_{\mathfrak {B}_s}(\tau _i)\\&\quad (\mathfrak {f}_{\mathfrak {A}_p}(\tau _i))^2+(\mathfrak {f}_{\mathfrak {B}_p}(\tau _i))^2-\mathfrak {f}_{\mathfrak {A}_p}(\tau _i) \mathfrak {f}_{\mathfrak {B}_p}(\tau _i)\ge \mathfrak {f}_{\mathfrak {A}_p}(\tau _i) \mathfrak {f}_{\mathfrak {B}_p}(\tau _i)\\&\quad (\mathfrak {f}_{\mathfrak {A}_s}(\tau _i))^2+(\mathfrak {f}_{\mathfrak {B}_s}(\tau _i))^2-\mathfrak {f}_{\mathfrak {A}_s}(\tau _i) \mathfrak {f}_{\mathfrak {B}_s}(\tau _i)\ge \mathfrak {f}_{\mathfrak {A}_s}(\tau _i) \mathfrak {f}_{\mathfrak {B}_s}(\tau _i). \end{aligned}$$Therefore, for all \(\tau _i\in \mathfrak {X},\)
$$\begin{aligned}&\frac{\left[ \begin{array}{l} \mathfrak {t}_{\mathfrak {A}_p}(\tau _i) \mathfrak {t}_{\mathfrak {B}_p}(\tau _i)+\mathfrak {t}_{\mathfrak {A}_s}(\tau _i) \mathfrak {t}_{\mathfrak {B}_s}(\tau _i)+\\ \mathfrak {h}_{\mathfrak {A}_p}(\tau _i)\mathfrak {h}_{\mathfrak {B}_p}(\tau _i) +\mathfrak {h}_{\mathfrak {A}_s}(\tau _i)\mathfrak {h}_{\mathfrak {B}_s}(\tau _i)+\\ \mathfrak {f}_{\mathfrak {A}_p}(\tau _i)\mathfrak {f}_{\mathfrak {B}_p}(\tau _i)+\mathfrak {f}_{\mathfrak {A}_s}(\tau _i)\mathfrak {f}_{\mathfrak {B}_s}(\tau _i)\\ \end{array}\right] }{\left[ \begin{array}{l} (\mathfrak {t}_{\mathfrak {A}_p}(\tau _i))^2+(\mathfrak {t}_{\mathfrak {B}_p}(\tau _i))^2+(\mathfrak {t}_{\mathfrak {A}_s}(\tau _i))^2+(\mathfrak {t}_{\mathfrak {B}_s}(\tau _i))^2\\ + (\mathfrak {h}_{\mathfrak {A}_p}(\tau _i))^2+(\mathfrak {h}_{\mathfrak {B}_p}(\tau _i))^2+(\mathfrak {h}_{\mathfrak {A}_s}(\tau _i))^2+(\mathfrak {h}_{\mathfrak {B}_s}(\tau _i))^2\\ + (\mathfrak {f}_{\mathfrak {A}_p}(\tau _i))^2+(\mathfrak {f}_{\mathfrak {B}_p}(\tau _i))^2+(\mathfrak {f}_{\mathfrak {A}_s}(\tau _i))^2+(\mathfrak {f}_{\mathfrak {B}_s}(\tau _i))^2 \end{array}\right] -\left[ \begin{array}{l} \mathfrak {t}_{\mathfrak {A}_p}(\tau _i) \mathfrak {t}_{\mathfrak {B}_p}(\tau _i)\\ +\mathfrak {t}_{\mathfrak {A}_s}(\tau _i) \mathfrak {t}_{\mathfrak {B}_s}(\tau _i)\\ + \mathfrak {h}_{\mathfrak {A}_p}(\tau _i)\mathfrak {h}_{\mathfrak {B}_p}(\tau _i) \\ +\mathfrak {h}_{\mathfrak {A}_s}(\tau _i)\mathfrak {h}_{\mathfrak {B}_s}(\tau _i)\\ + \mathfrak {f}_{\mathfrak {A}_p}(\tau _i)\mathfrak {f}_{\mathfrak {B}_p}(\tau _i)\\ +\mathfrak {f}_{\mathfrak {A}_s}(\tau _i)\mathfrak {f}_{\mathfrak {B}_s}(\tau _i)\\ \end{array}\right] }\le 1 \end{aligned}$$and for \(i=1,2,\ldots ,n\);
$$\begin{aligned} \sum _{i=1}^n\frac{\left[ \begin{array}{l} \mathfrak {t}_{\mathfrak {A}_p}(\tau _i) \mathfrak {t}_{\mathfrak {B}_p}(\tau _i)+\mathfrak {t}_{\mathfrak {A}_s}(\tau _i) \mathfrak {t}_{\mathfrak {B}_s}(\tau _i)+\\ \mathfrak {h}_{\mathfrak {A}_p}(\tau _i)\mathfrak {h}_{\mathfrak {B}_p}(\tau _i) +\mathfrak {h}_{\mathfrak {A}_s}(\tau _i)\mathfrak {h}_{\mathfrak {B}_s}(\tau _i)+\\ \mathfrak {f}_{\mathfrak {A}_p}(\tau _i)\mathfrak {f}_{\mathfrak {B}_p}(\tau _i)+\mathfrak {f}_{\mathfrak {A}_s}(\tau _i)\mathfrak {f}_{\mathfrak {B}_s}(\tau _i)\\ \end{array}\right] }{\left[ \begin{array}{l} (\mathfrak {t}_{\mathfrak {A}_p}(\tau _i))^2+(\mathfrak {t}_{\mathfrak {B}_p}(\tau _i))^2+(\mathfrak {t}_{\mathfrak {A}_s}(\tau _i))^2+(\mathfrak {t}_{\mathfrak {B}_s}(\tau _i))^2\\ + (\mathfrak {h}_{\mathfrak {A}_p}(\tau _i))^2+(\mathfrak {h}_{\mathfrak {B}_p}(\tau _i))^2+(\mathfrak {h}_{\mathfrak {A}_s}(\tau _i))^2+(\mathfrak {h}_{\mathfrak {B}_s}(\tau _i))^2\\ + (\mathfrak {f}_{\mathfrak {A}_p}(\tau _i))^2+(\mathfrak {f}_{\mathfrak {B}_p}(\tau _i))^2+(\mathfrak {f}_{\mathfrak {A}_s}(\tau _i))^2+(\mathfrak {f}_{\mathfrak {B}_s}(\tau _i))^2 \end{array}\right] -\left[ \begin{array}{l} \mathfrak {t}_{\mathfrak {A}_p}(\tau _i) \mathfrak {t}_{\mathfrak {B}_p}(\tau _i)\\ +\mathfrak {t}_{\mathfrak {A}_s}(\tau _i) \mathfrak {t}_{\mathfrak {B}_s}(\tau _i)\\ + \mathfrak {h}_{\mathfrak {A}_p}(\tau _i)\mathfrak {h}_{\mathfrak {B}_p}(\tau _i)\\ +\mathfrak {h}_{\mathfrak {A}_s}(\tau _i)\mathfrak {h}_{\mathfrak {B}_s}(\tau _i)\\ + \mathfrak {f}_{\mathfrak {A}_p}(\tau _i)\mathfrak {f}_{\mathfrak {B}_p}(\tau _i)\\ +\mathfrak {f}_{\mathfrak {A}_s}(\tau _i)\mathfrak {f}_{\mathfrak {B}_s}(\tau _i)\\ \end{array}\right] }\le n. \end{aligned}$$It is conclude that if the operation is applied with \(\frac{1}{n}\); \(\mathbb {J}_{SVT2NS}(\mathfrak {A}, \mathfrak {B})=\)
$$\begin{aligned} \frac{1}{n}\sum _{i=1}^n\frac{\left[ \begin{array}{l} \mathfrak {t}_{\mathfrak {A}_p}(\tau _i) \mathfrak {t}_{\mathfrak {B}_p}(\tau _i)+\mathfrak {t}_{\mathfrak {A}_s}(\tau _i) \mathfrak {t}_{\mathfrak {B}_s}(\tau _i)+\\ \mathfrak {h}_{\mathfrak {A}_p}(\tau _i)\mathfrak {h}_{\mathfrak {B}_p}(\tau _i) +\mathfrak {h}_{\mathfrak {A}_s}(\tau _i)\mathfrak {h}_{\mathfrak {B}_s}(\tau _i)+\\ \mathfrak {f}_{\mathfrak {A}_p}(\tau _i)\mathfrak {f}_{\mathfrak {B}_p}(\tau _i)+\mathfrak {f}_{\mathfrak {A}_s}(\tau _i)\mathfrak {f}_{\mathfrak {B}_s}(\tau _i)\\ \end{array}\right] }{\left[ \begin{array}{l} (\mathfrak {t}_{\mathfrak {A}_p}(\tau _i))^2+(\mathfrak {t}_{\mathfrak {B}_p}(\tau _i))^2+(\mathfrak {t}_{\mathfrak {A}_s}(\tau _i))^2+(\mathfrak {t}_{\mathfrak {B}_s}(\tau _i))^2\\ + (\mathfrak {h}_{\mathfrak {A}_p}(\tau _i))^2+(\mathfrak {h}_{\mathfrak {B}_p}(\tau _i))^2+(\mathfrak {h}_{\mathfrak {A}_s}(\tau _i))^2+(\mathfrak {h}_{\mathfrak {B}_s}(\tau _i))^2\\ + (\mathfrak {f}_{\mathfrak {A}_p}(\tau _i))^2+(\mathfrak {f}_{\mathfrak {B}_p}(\tau _i))^2+(\mathfrak {f}_{\mathfrak {A}_s}(\tau _i))^2+(\mathfrak {f}_{\mathfrak {B}_s}(\tau _i))^2 \end{array}\right] -\left[ \begin{array}{l} \mathfrak {t}_{\mathfrak {A}_p}(\tau _i) \mathfrak {t}_{\mathfrak {B}_p}(\tau _i)\\ +\mathfrak {t}_{\mathfrak {A}_s}(\tau _i) \mathfrak {t}_{\mathfrak {B}_s}(\tau _i)\\ + \mathfrak {h}_{\mathfrak {A}_p}(\tau _i)\mathfrak {h}_{\mathfrak {B}_p}(\tau _i)\\ +\mathfrak {h}_{\mathfrak {A}_s}(\tau _i)\mathfrak {h}_{\mathfrak {B}_s}(\tau _i)\\ + \mathfrak {f}_{\mathfrak {A}_p}(\tau _i)\mathfrak {f}_{\mathfrak {B}_p}(\tau _i)\\ +\mathfrak {f}_{\mathfrak {A}_s}(\tau _i)\mathfrak {f}_{\mathfrak {B}_s}(\tau _i)\\ \end{array}\right] }\le 1. \end{aligned}$$ -
(P2)
if \(\mathfrak {A}=\mathfrak {B}\),
$$\begin{aligned}&\frac{1}{n}\sum _{i=1}^n\frac{\left[ \begin{array}{l} (\mathfrak {t}_{\mathfrak {A}_p}(\tau _i))^2+(\mathfrak {t}_{\mathfrak {A}_s}(\tau _i))^2 + (\mathfrak {h}_{\mathfrak {A}_p}(\tau _i))^2 +(\mathfrak {h}_{\mathfrak {A}_s}(\tau _i))^2+ (\mathfrak {f}_{\mathfrak {A}_p}(\tau _i))^2+(\mathfrak {f}_{\mathfrak {A}_s}(\tau _i))^2 \end{array}\right] }{\left[ \begin{array}{l} (\mathfrak {t}_{\mathfrak {A}_p}(\tau _i))^2+(\mathfrak {t}_{\mathfrak {A}_s}(\tau _i))^2 + (\mathfrak {h}_{\mathfrak {A}_p}(\tau _i))^2 +(\mathfrak {h}_{\mathfrak {A}_s}(\tau _i))^2+ (\mathfrak {f}_{\mathfrak {A}_p}(\tau _i))^2+(\mathfrak {f}_{\mathfrak {A}_s}(\tau _i))^2 \end{array}\right] }=1 \end{aligned}$$ -
(P3)
if SVNT2Ss \(\mathfrak {A},\mathfrak {B}\) are swapped;
$$\begin{aligned}&\mathbb {J}_{SVT2NS}(\mathfrak {A}, \mathfrak {B}) =\frac{1}{n}\sum _{i=1}^n\frac{\left[ \begin{array}{l} \mathfrak {t}_{\mathfrak {A}_p}(\tau _i) \mathfrak {t}_{\mathfrak {B}_p}(\tau _i)+\mathfrak {t}_{\mathfrak {A}_s}(\tau _i) \mathfrak {t}_{\mathfrak {B}_s}(\tau _i)+\\ \mathfrak {h}_{\mathfrak {A}_p}(\tau _i)\mathfrak {h}_{\mathfrak {B}_p}(\tau _i) +\mathfrak {h}_{\mathfrak {A}_s}(\tau _i)\mathfrak {h}_{\mathfrak {B}_s}(\tau _i)+\\ \mathfrak {f}_{\mathfrak {A}_p}(\tau _i)\mathfrak {f}_{\mathfrak {B}_p}(\tau _i)+\mathfrak {f}_{\mathfrak {A}_s}(\tau _i)\mathfrak {f}_{\mathfrak {B}_s}(\tau _i)\\ \end{array}\right] }{\left[ \begin{array}{l} (\mathfrak {t}_{\mathfrak {A}_p}(\tau _i))^2+(\mathfrak {t}_{\mathfrak {B}_p}(\tau _i))^2+(\mathfrak {t}_{\mathfrak {A}_s}(\tau _i))^2+(\mathfrak {t}_{\mathfrak {B}_s}(\tau _i))^2\\ + (\mathfrak {h}_{\mathfrak {A}_p}(\tau _i))^2+(\mathfrak {h}_{\mathfrak {B}_p}(\tau _i))^2+(\mathfrak {h}_{\mathfrak {A}_s}(\tau _i))^2+(\mathfrak {h}_{\mathfrak {B}_s}(\tau _i))^2\\ + (\mathfrak {f}_{\mathfrak {A}_p}(\tau _i))^2+(\mathfrak {f}_{\mathfrak {B}_p}(\tau _i))^2+(\mathfrak {f}_{\mathfrak {A}_s}(\tau _i))^2+(\mathfrak {f}_{\mathfrak {B}_s}(\tau _i))^2 \end{array}\right] -\left[ \begin{array}{l} \mathfrak {t}_{\mathfrak {A}_p}(\tau _i) \mathfrak {t}_{\mathfrak {B}_p}(\tau _i)\\ +\mathfrak {t}_{\mathfrak {A}_s}(\tau _i) \mathfrak {t}_{\mathfrak {B}_s}(\tau _i)\\ + \mathfrak {h}_{\mathfrak {A}_p}(\tau _i)\mathfrak {h}_{\mathfrak {B}_p}(\tau _i)\\ +\mathfrak {h}_{\mathfrak {A}_s}(\tau _i)\mathfrak {h}_{\mathfrak {B}_s}(\tau _i)\\ + \mathfrak {f}_{\mathfrak {A}_p}(\tau _i)\mathfrak {f}_{\mathfrak {B}_p}(\tau _i)\\ +\mathfrak {f}_{\mathfrak {A}_s}(\tau _i)\mathfrak {f}_{\mathfrak {B}_s}(\tau _i)\\ \end{array}\right] }\\&\quad =\frac{1}{n}\sum _{i=1}^n\frac{\left[ \begin{array}{l} \mathfrak {t}_{\mathfrak {B}_p}(\tau _i) \mathfrak {t}_{\mathfrak {A}_p}(\tau _i)+\mathfrak {t}_{\mathfrak {B}_s}(\tau _i) \mathfrak {t}_{\mathfrak {A}_s}(\tau _i)+\\ \mathfrak {h}_{\mathfrak {B}_p}(\tau _i)\mathfrak {h}_{\mathfrak {A}_p}(\tau _i) +\mathfrak {h}_{\mathfrak {B}_s}(\tau _i)\mathfrak {h}_{\mathfrak {A}_s}(\tau _i)+\\ \mathfrak {f}_{\mathfrak {B}_p}(\tau _i)\mathfrak {f}_{\mathfrak {A}_p}(\tau _i)+\mathfrak {f}_{\mathfrak {B}_s}(\tau _i)\mathfrak {f}_{\mathfrak {A}_s}(\tau _i)\\ \end{array}\right] }{\left[ \begin{array}{l} (\mathfrak {t}_{\mathfrak {B}_p}(\tau _i))^2+(\mathfrak {t}_{\mathfrak {A}_p}(\tau _i))^2+(\mathfrak {t}_{\mathfrak {B}_s}(\tau _i))^2+(\mathfrak {t}_{\mathfrak {A}_s}(\tau _i))^2\\ + (\mathfrak {h}_{\mathfrak {B}_p}(\tau _i))^2+(\mathfrak {h}_{\mathfrak {A}_p}(\tau _i))^2+(\mathfrak {h}_{\mathfrak {B}_s}(\tau _i))^2+(\mathfrak {h}_{\mathfrak {A}_s}(\tau _i))^2\\ + (\mathfrak {f}_{\mathfrak {B}_p}(\tau _i))^2+(\mathfrak {f}_{\mathfrak {A}_p}(\tau _i))^2+(\mathfrak {f}_{\mathfrak {B}_s}(\tau _i))^2+(\mathfrak {f}_{\mathfrak {A}_s}(\tau _i))^2 \end{array}\right] -\left[ \begin{array}{l} \mathfrak {t}_{\mathfrak {B}_p}(\tau _i) \mathfrak {t}_{\mathfrak {A}_p}(\tau _i)\\ +\mathfrak {t}_{\mathfrak {B}_s}(\tau _i) \mathfrak {t}_{\mathfrak {A}_s}(\tau _i)\\ + \mathfrak {h}_{\mathfrak {B}_p}(\tau _i)\mathfrak {h}_{\mathfrak {A}_p}(\tau _i)\\ +\mathfrak {h}_{\mathfrak {B}_s}(\tau _i)\mathfrak {h}_{\mathfrak {A}_s}(\tau _i)\\ + \mathfrak {f}_{\mathfrak {B}_p}(\tau _i)\mathfrak {f}_{\mathfrak {A}_p}(\tau _i)\\ +\mathfrak {f}_{\mathfrak {B}_s}(\tau _i)\mathfrak {f}_{\mathfrak {A}_s}(\tau _i)\\ \end{array}\right] }\\&\quad =\mathbb {J}_{SVT2NS}(\mathfrak {B}, \mathfrak {A}). \end{aligned}$$
1.3 A.3
-
(P1)
Since \(\mathfrak {A}\) and \(\mathfrak {B}\) are SVT2NSs, it is open that \(\mathbb {C}_{SVT2NS}(\mathfrak {A}, \mathfrak {B})\ge 0\). Thus, we need only show that \(\mathbb {C}_{SVT2NS}(\mathfrak {A}, \mathfrak {B})\le 1\). Here
$$\begin{aligned}&\sum _{i=1}^n\left[ \begin{array}{l} \mathfrak {t}_{\mathfrak {A}_p}(\tau _i) \mathfrak {t}_{\mathfrak {B}_p}(\tau _i)+\mathfrak {t}_{\mathfrak {A}_s}(\tau _i) \mathfrak {t}_{\mathfrak {B}_s}(\tau _i)+\mathfrak {h}_{\mathfrak {A}_p}(\tau _i)\mathfrak {h}_{\mathfrak {B}_p}(\tau _i)\\ +\mathfrak {h}_{\mathfrak {A}_s}(\tau _i)\mathfrak {h}_{\mathfrak {B}_s}(\tau _i)+\mathfrak {f}_{\mathfrak {A}_p}(\tau _i)\mathfrak {f}_{\mathfrak {B}_p}(\tau _i)+\mathfrak {f}_{\mathfrak {A}_s}(\tau _i)\mathfrak {f}_{\mathfrak {B}_s}(\tau _i)\\ \end{array}\right] =\left[ \begin{array}{l} \mathfrak {t}_{\mathfrak {A}_p}(\tau _1) \mathfrak {t}_{\mathfrak {B}_p}(\tau _1)+\mathfrak {t}_{\mathfrak {A}_s}(\tau _1) \mathfrak {t}_{\mathfrak {B}_s}(\tau _1)+\mathfrak {h}_{\mathfrak {A}_p}(\tau _1)\mathfrak {h}_{\mathfrak {B}_p}(\tau _1)\\ +\mathfrak {h}_{\mathfrak {A}_s}(\tau _1)\mathfrak {h}_{\mathfrak {B}_s}(\tau _1)+\mathfrak {f}_{\mathfrak {A}_p}(\tau _1) \mathfrak {f}_{\mathfrak {B}_p}(\tau _1)+\mathfrak {f}_{\mathfrak {A}_s}(\tau _1)\mathfrak {f}_{\mathfrak {B}_s}(\tau _1)\\ \end{array}\right] \\&\quad +\left[ \begin{array}{l} \mathfrak {t}_{\mathfrak {A}_p}(\tau _2) \mathfrak {t}_{\mathfrak {B}_p}(\tau _2)+\mathfrak {t}_{\mathfrak {A}_s}(\tau _2) \mathfrak {t}_{\mathfrak {B}_s}(\tau _2)+\mathfrak {h}_{\mathfrak {A}_p}(\tau _2)\mathfrak {h}_{\mathfrak {B}_p}(\tau _2)\\ +\mathfrak {h}_{\mathfrak {A}_s}(\tau _2)\mathfrak {h}_{\mathfrak {B}_s}(\tau _2)+\mathfrak {f}_{\mathfrak {A}_p}(\tau _2)\mathfrak {f}_{\mathfrak {B}_p}(\tau _2)+\mathfrak {f}_{\mathfrak {A}_s}(\tau _2)\mathfrak {f}_{\mathfrak {B}_s}(\tau _2)\\ \end{array}\right] + \vdots + \left[ \begin{array}{l} \mathfrak {t}_{\mathfrak {A}_p}(\tau _n) \mathfrak {t}_{\mathfrak {B}_p}(\tau _n)+\mathfrak {t}_{\mathfrak {A}_s}(\tau _n) \mathfrak {t}_{\mathfrak {B}_s}(\tau _n)+\mathfrak {h}_{\mathfrak {A}_p}(\tau _n)\mathfrak {h}_{\mathfrak {B}_p}(\tau _n)\\ +\mathfrak {h}_{\mathfrak {A}_s}(\tau _n)\mathfrak {h}_{\mathfrak {B}_s}(\tau _n)+\mathfrak {f}_{\mathfrak {A}_p}(\tau _2)\mathfrak {f}_{\mathfrak {B}_p}(\tau _n)+\mathfrak {f}_{\mathfrak {A}_s}(\tau _n)\mathfrak {f}_{\mathfrak {B}_s}(\tau _n)\\ \end{array}\right] . \end{aligned}$$By using Cauchy-Schwarz inequality, we can write the following inequality:
$$\begin{aligned}&(\mathbb {C}_{SVT2NS}(\mathfrak {A}, \mathfrak {B}))^2 \le \Big [(\mathfrak {t}_{\mathfrak {A}_p}(\tau _1))^2+ (\mathfrak {t}_{\mathfrak {A}_s}(\tau _1))^2+ (\mathfrak {h}_{\mathfrak {A}_p}(\tau _1))^2+ (\mathfrak {h}_{\mathfrak {A}_s}(\tau _1))^2+ (\mathfrak {f}_{\mathfrak {A}_p}(\tau _1))^2\\&\quad +(\mathfrak {f}_{\mathfrak {A}_s}(\tau _1))^2 + (\mathfrak {t}_{\mathfrak {A}_p}(\tau _2))^2 + (\mathfrak {t}_{\mathfrak {A}_s}(\tau _2))^2+ (\mathfrak {h}_{\mathfrak {A}_p}(\tau _2))^2+ (\mathfrak {h}_{\mathfrak {A}_s}(\tau _2))^2\\&\quad + (\mathfrak {f}_{\mathfrak {A}_p}(\tau _2))^2+ (\mathfrak {f}_{\mathfrak {A}_s}(\tau _2))^2 + \cdots + (\mathfrak {t}_{\mathfrak {A}_p}(\tau _n))^2+( \mathfrak {t}_{\mathfrak {A}_s}(\tau _n))^2+ (\mathfrak {h}_{\mathfrak {A}_p}(\tau _n))^2\\&\quad + (\mathfrak {h}_{\mathfrak {A}_s}(\tau _n))^2+( \mathfrak {f}_{\mathfrak {A}_p}(\tau _n))^2+ (\mathfrak {f}_{\mathfrak {A}_s}(\tau _n))^2\Big ]\times \Big [(\mathfrak {t}_{\mathfrak {B}_p}(\tau _1))^2+( \mathfrak {t}_{\mathfrak {B}_s}(\tau _1))^2\\&\quad + (\mathfrak {h}_{\mathfrak {B}_p}(\tau _1))^2+ (\mathfrak {h}_{\mathfrak {B}_s}(\tau _1))^2+ (\mathfrak {f}_{\mathfrak {B}_p}(\tau _1))^2+( \mathfrak {f}_{\mathfrak {B}_s}(\tau _1))^2 + (\mathfrak {t}_{\mathfrak {B}_p}(\tau _2))^2\\&\quad +( \mathfrak {t}_{\mathfrak {B}_s}(\tau _2))^2+( \mathfrak {h}_{\mathfrak {B}_p}(\tau _2))^2+ (\mathfrak {h}_{\mathfrak {B}_s}(\tau _2))^2+ (\mathfrak {f}_{\mathfrak {B}_p}(\tau _2))^2+ (\mathfrak {f}_{\mathfrak {B}_s}(\tau _2))^2 \\&\quad + \cdots + (\mathfrak {t}_{\mathfrak {B}_p}(\tau _n))^2+( \mathfrak {t}_{\mathfrak {B}_s}(\tau _n))^2( \mathfrak {h}_{\mathfrak {B}_p}(\tau _n))^2+( \mathfrak {h}_{\mathfrak {B}_s}(\tau _n))^2+( \mathfrak {f}_{\mathfrak {B}_p}(\tau _n))^2 +(\mathfrak {f}_{\mathfrak {B}_s}(\tau _n))^2\Big ]. \end{aligned}$$It is concluded that \(\mathbb {C}_{SVNT2FS}(\mathfrak {A}, \mathfrak {B})\le 1\).
-
(P2)
It can be easily indicated from below proofs.
-
(P3)
It can be made with similar way to below proofs.
1.4 A.4
-
(P1)
Since \(\mathfrak {A}\) and \(\mathfrak {B}\) are SVT2NSs, it is open that \(\mathbb {D}_{WSVNT2FS}(\mathfrak {A}, \mathfrak {B})\ge 0\). Then, we must only show that \(\mathbb {D}_{WSVT2NS}(\mathfrak {A}, \mathfrak {B})\le 1\). Since for all \(x, y\in R,\) \(x^2+y^2\ge 2xy\), for all \(\tau _i \in \mathfrak {X} (i=1,2,\ldots ,n)\),
$$\begin{aligned}&(\mathfrak {t}_{\mathfrak {A}_p}(\tau _i))^2+(\mathfrak {t}_{\mathfrak {B}_p}(\tau _i))^2\ge 2 \mathfrak {t}_{\mathfrak {A}_p}(\tau _i) \mathfrak {t}_{\mathfrak {B}_p}(\tau _i)\\&\quad (\mathfrak {t}_{\mathfrak {A}_s}(\tau _i))^2+(\mathfrak {t}_{\mathfrak {B}_s}(\tau _i))^2\ge 2\mathfrak {t}_{\mathfrak {A}_s}(\tau _i)\mathfrak {t}_{\mathfrak {B}_s}(\tau _i)\\&\quad (\mathfrak {h}_{\mathfrak {A}_p}(\tau _i))^2+(\mathfrak {h}_{\mathfrak {B}_p}(\tau _i))^2\ge 2 \mathfrak {h}_{\mathfrak {A}_p}(\tau _i) \mathfrak {h}_{\mathfrak {B}_p}(\tau _i)\\&\quad (\mathfrak {h}_{\mathfrak {A}_s}(\tau _i))^2+(\mathfrak {h}_{\mathfrak {B}_s}(\tau _i))^2\ge 2 \mathfrak {h}_{\mathfrak {A}_s}(\tau _i) \mathfrak {h}_{\mathfrak {B}_s}(\tau _i)\\&\quad (\mathfrak {f}_{\mathfrak {A}_p}(\tau _i))^2+(\mathfrak {f}_{\mathfrak {B}_p}(\tau _i))^2\ge 2 \mathfrak {f}_{\mathfrak {A}_p}(\tau _i) \mathfrak {f}_{\mathfrak {B}_p}(\tau _i)\\&\quad (\mathfrak {f}_{\mathfrak {A}_s}(\tau _i))^2+(\mathfrak {f}_{\mathfrak {B}_s}(\tau _i))^2\ge 2 \mathfrak {f}_{\mathfrak {A}_s}(\tau _i) \mathfrak {f}_{\mathfrak {B}_s}(\tau _i). \end{aligned}$$and
$$\begin{aligned} \frac{\left[ \begin{array}{l}2 \mathfrak {t}_{\mathfrak {A}_p}(\tau _i) \mathfrak {t}_{\mathfrak {B}_p}(\tau _i)+2\mathfrak {t}_{\mathfrak {A}_s}(\tau _i) \mathfrak {t}_{\mathfrak {B}_s}(\tau _i)+\\ 2\mathfrak {h}_{\mathfrak {A}_p}(\tau _i)\mathfrak {h}_{\mathfrak {B}_p}(\tau _i) +2\mathfrak {h}_{\mathfrak {A}_s}(\tau _i)\mathfrak {h}_{\mathfrak {B}_s}(\tau _i)+\\ 2\mathfrak {f}_{\mathfrak {A}_p}(\tau _i)\mathfrak {f}_{\mathfrak {B}_p}(\tau _i)+2\mathfrak {f}_{\mathfrak {A}_s}(\tau _i)\mathfrak {f}_{\mathfrak {B}_s}(\tau _i)\\ \end{array}\right] }{\left[ \begin{array}{l} (\mathfrak {t}_{\mathfrak {A}_p}(\tau _i))^2+(\mathfrak {t}_{\mathfrak {B}_p}(\tau _i))^2+(\mathfrak {t}_{\mathfrak {A}_s}(\tau _i))^2+(\mathfrak {t}_{\mathfrak {B}_s}(\tau _i))^2\\ + (\mathfrak {h}_{\mathfrak {A}_p}(\tau _i))^2+(\mathfrak {h}_{\mathfrak {B}_p}(\tau _i))^2+(\mathfrak {h}_{\mathfrak {A}_s}(\tau _i))^2+(\mathfrak {h}_{\mathfrak {B}_s}(\tau _i))^2\\ + (\mathfrak {f}_{\mathfrak {A}_p}(\tau _i))^2+(\mathfrak {f}_{\mathfrak {B}_p}(\tau _i))^2+(\mathfrak {f}_{\mathfrak {A}_s}(\tau _i))^2+(\mathfrak {f}_{\mathfrak {B}_s}(\tau _i))^2 \end{array}\right] } \le 1. \end{aligned}$$(-16)If the last inequality is adopted as \(\mathcal {D}_i, (i=1,2,\ldots ,n)\), for \(w_i\in [0,1]\), \(\sum _{i=1}^nw_i=1\) and \(\mathcal {D}_i\in [0,1]\) we get the following inequalities
$$\begin{aligned} w_1\mathcal {D}_1+w_2\mathcal {D}_2+\cdots +w_n\mathcal {D}_n\le w_1+w_2+\cdots +w_n=1 \end{aligned}$$and
$$\begin{aligned}&\sum _{i=1}^n(w_i)\mathcal {D}_i=\sum _{i=1}^n(w_i)\frac{\left[ \begin{array}{l}2 \mathfrak {t}_{\mathfrak {A}_p}(\tau _i) \mathfrak {t}_{\mathfrak {B}_p}(\tau _i)+2\mathfrak {t}_{\mathfrak {A}_s}(\tau _i) \mathfrak {t}_{\mathfrak {B}_s}(\tau _i)+\\ 2\mathfrak {h}_{\mathfrak {A}_p}(\tau _i)\mathfrak {h}_{\mathfrak {B}_p}(\tau _i) +2\mathfrak {h}_{\mathfrak {A}_s}(\tau _i)\mathfrak {h}_{\mathfrak {B}_s}(\tau _i)+\\ 2\mathfrak {f}_{\mathfrak {A}_p}(\tau _i)\mathfrak {f}_{\mathfrak {B}_p}(\tau _i)+2\mathfrak {f}_{\mathfrak {A}_s}(\tau _i)\mathfrak {f}_{\mathfrak {B}_s}(\tau _i)\\ \end{array}\right] }{\left[ \begin{array}{l} (\mathfrak {t}_{\mathfrak {A}_p}(\tau _i))^2+(\mathfrak {t}_{\mathfrak {B}_p}(\tau _i))^2+(\mathfrak {t}_{\mathfrak {A}_s}(\tau _i))^2+(\mathfrak {t}_{\mathfrak {B}_s}(\tau _i))^2\\ + (\mathfrak {h}_{\mathfrak {A}_p}(\tau _i))^2+(\mathfrak {h}_{\mathfrak {B}_p}(\tau _i))^2+(\mathfrak {h}_{\mathfrak {A}_s}(\tau _i))^2+(\mathfrak {h}_{\mathfrak {B}_s}(\tau _i))^2\\ + (\mathfrak {f}_{\mathfrak {A}_p}(\tau _i))^2+(\mathfrak {f}_{\mathfrak {B}_p}(\tau _i))^2+(\mathfrak {f}_{\mathfrak {A}_s}(\tau _i))^2+(\mathfrak {f}_{\mathfrak {B}_s}(\tau _i))^2 \end{array}\right] }\le 1 \end{aligned}$$ -
(P2)
If \(\mathfrak {A}=\mathfrak {B}\), for all \(\tau _i\in \mathfrak {X}\)
$$\begin{aligned} \frac{\left[ \begin{array}{l}2 (\mathfrak {t}_{\mathfrak {A}_p}(\tau _i))^2+2(\mathfrak {t}_{\mathfrak {A}_s}(\tau _i))^2 + 2(\mathfrak {h}_{\mathfrak {A}_p}(\tau _i))^2 +2(\mathfrak {h}_{\mathfrak {A}_s}(\tau _i))^2+ 2(\mathfrak {f}_{\mathfrak {A}_p}(\tau _i))^2+2(\mathfrak {f}_{\mathfrak {A}_s}(\tau _i))^2 \end{array}\right] }{\left[ \begin{array}{l}2 (\mathfrak {t}_{\mathfrak {A}_p}(\tau _i))^2+2(\mathfrak {t}_{\mathfrak {A}_s}(\tau _i))^2 + 2(\mathfrak {h}_{\mathfrak {A}_p}(\tau _i))^2 +2(\mathfrak {h}_{\mathfrak {A}_s}(\tau _i))^2+ 2(\mathfrak {f}_{\mathfrak {A}_p}(\tau _i))^2+2(\mathfrak {f}_{\mathfrak {A}_s}(\tau _i))^2 \end{array}\right] }\\ =1. \end{aligned}$$(-15)If we use notation \(\mathcal {P}_i\) \((i=1,2,\ldots ,n)\) for -15, we have
$$\begin{aligned} w_1\mathcal {P}_1+w_2\mathcal {P}_2+\cdots +w_n\mathcal {P}_n \le w_1+w_2+\cdots +w_n=1. \end{aligned}$$Thus,
$$\begin{aligned} \mathbb {D}_{WSVT2NS}(\mathfrak {A}, \mathfrak {B})=\sum _{i=1}^n (w_i)\mathcal {P}_i=1. \end{aligned}$$ -
(P3)
It can be easily indicated from below proofs.
1.5 A.5
-
(P1)
Since \(\mathfrak {A}\) and \(\mathfrak {B}\) are SVT2NSs, it is open that \(\mathbb {J}_{WSVNT2FS}(\mathfrak {A}, \mathfrak {B})\ge 0\). Then, we must show that \(\mathbb {J}_{WSVT2NS}(\mathfrak {A}, \mathfrak {B})\le 1\). For all \(x,y\in \mathbb {R}\), \( x^2+y^2-xy\ge xy\). Then for all \(\tau _i\in \mathfrak {X}\),
$$\begin{aligned}&(\mathfrak {t}_{\mathfrak {A}_p}(\tau _i))^2+(\mathfrak {t}_{\mathfrak {B}_p}(\tau _i))^2 -\mathfrak {t}_{\mathfrak {A}_p}(\tau _i) \mathfrak {t}_{\mathfrak {B}_p}(\tau _i)\ge \mathfrak {t}_{\mathfrak {A}_p}(\tau _i) \mathfrak {t}_{\mathfrak {B}_p}(\tau _i)\\&\quad (\mathfrak {t}_{\mathfrak {A}_s}(\tau _i))^2 +(\mathfrak {t}_{\mathfrak {B}_s}(\tau _i))^2-\mathfrak {t}_{\mathfrak {A}_s}(\tau _i)\mathfrak {t}_{\mathfrak {B}_s}(\tau _i)\ge \mathfrak {t}_{\mathfrak {A}_s}(\tau _i)\mathfrak {t}_{\mathfrak {B}_s}(\tau _i)\\&\quad (\mathfrak {h}_{\mathfrak {A}_p}(\tau _i))^2+(\mathfrak {h}_{\mathfrak {B}_p}(\tau _i))^2-\mathfrak {h}_{\mathfrak {A}_p}(\tau _i) \mathfrak {h}_{\mathfrak {B}_p}(\tau _i)\ge \mathfrak {h}_{\mathfrak {A}_p}(\tau _i) \mathfrak {h}_{\mathfrak {B}_p}(\tau _i)\\&\quad (\mathfrak {h}_{\mathfrak {A}_s}(\tau _i))^2+(\mathfrak {h}_{\mathfrak {B}_s}(\tau _i))^2-\mathfrak {h}_{\mathfrak {A}_s}(\tau _i) \mathfrak {h}_{\mathfrak {B}_s}(\tau _i)\ge \mathfrak {h}_{\mathfrak {A}_s}(\tau _i) \mathfrak {h}_{\mathfrak {B}_s}(\tau _i)\\&\quad (\mathfrak {f}_{\mathfrak {A}_p}(\tau _i))^2+(\mathfrak {f}_{\mathfrak {B}_p}(\tau _i))^2-\mathfrak {f}_{\mathfrak {A}_p}(\tau _i) \mathfrak {f}_{\mathfrak {B}_p}(\tau _i)\ge \mathfrak {f}_{\mathfrak {A}_p}(\tau _i) \mathfrak {f}_{\mathfrak {B}_p}(\tau _i)\\&\quad (\mathfrak {f}_{\mathfrak {A}_s}(\tau _i))^2+(\mathfrak {f}_{\mathfrak {B}_s}(\tau _i))^2-\mathfrak {f}_{\mathfrak {A}_s}(\tau _i) \mathfrak {f}_{\mathfrak {B}_s}(\tau _i)\ge \mathfrak {f}_{\mathfrak {A}_s}(\tau _i) \mathfrak {f}_{\mathfrak {B}_s}(\tau _i). \end{aligned}$$Thus,
$$\begin{aligned}&\frac{\left[ \begin{array}{l} \mathfrak {t}_{\mathfrak {A}_p}(\tau _i) \mathfrak {t}_{\mathfrak {B}_p}(\tau _i)+\mathfrak {t}_{\mathfrak {A}_s}(\tau _i) \mathfrak {t}_{\mathfrak {B}_s}(\tau _i)+\\ \mathfrak {h}_{\mathfrak {A}_p}(\tau _i)\mathfrak {h}_{\mathfrak {B}_p}(\tau _i) +\mathfrak {h}_{\mathfrak {A}_s}(\tau _i)\mathfrak {h}_{\mathfrak {B}_s}(\tau _i)+\\ \mathfrak {f}_{\mathfrak {A}_p}(\tau _i)\mathfrak {f}_{\mathfrak {B}_p}(\tau _i)+\mathfrak {f}_{\mathfrak {A}_s}(\tau _i)\mathfrak {f}_{\mathfrak {B}_s}(\tau _i)\\ \end{array}\right] }{\left[ \begin{array}{l} (\mathfrak {t}_{\mathfrak {A}_p}(\tau _i))^2+(\mathfrak {t}_{\mathfrak {B}_p}(\tau _i))^2+(\mathfrak {t}_{\mathfrak {A}_s}(\tau _i))^2+(\mathfrak {t}_{\mathfrak {B}_s}(\tau _i))^2\\ + (\mathfrak {h}_{\mathfrak {A}_p}(\tau _i))^2+(\mathfrak {h}_{\mathfrak {B}_p}(\tau _i))^2+(\mathfrak {h}_{\mathfrak {A}_s}(\tau _i))^2+(\mathfrak {h}_{\mathfrak {B}_s}(\tau _i))^2\\ + (\mathfrak {f}_{\mathfrak {A}_p}(\tau _i))^2+(\mathfrak {f}_{\mathfrak {B}_p}(\tau _i))^2+(\mathfrak {f}_{\mathfrak {A}_s}(\tau _i))^2+(\mathfrak {f}_{\mathfrak {B}_s}(\tau _i))^2 \end{array}\right] -\left[ \begin{array}{l} \mathfrak {t}_{\mathfrak {A}_p}(\tau _i) \mathfrak {t}_{\mathfrak {B}_p}(\tau _i)+\\ \mathfrak {t}_{\mathfrak {A}_s}(\tau _i) \mathfrak {t}_{\mathfrak {B}_s}(\tau _i)+\\ \mathfrak {h}_{\mathfrak {A}_p}(\tau _i)\mathfrak {h}_{\mathfrak {B}_p}(\tau _i) +\\ \mathfrak {h}_{\mathfrak {A}_s}(\tau _i)\mathfrak {h}_{\mathfrak {B}_s}(\tau _i)+\\ \mathfrak {f}_{\mathfrak {A}_p}(\tau _i)\mathfrak {f}_{\mathfrak {B}_p}(\tau _i)+\\ \mathfrak {f}_{\mathfrak {A}_s}(\tau _i)\mathfrak {f}_{\mathfrak {B}_s}(\tau _i)\\ \end{array}\right] } \le 1. \end{aligned}$$(-15)If equation -14 is denoted by \(\mathcal {J}_i (i=1,2,\ldots ,n)\), we have
$$\begin{aligned} w_1\mathcal {J}_1+w_2\mathcal {J}_2+\cdots w_n\mathcal {J}_n\le w_1+w_2+\cdots w_n=1. \end{aligned}$$Then,
$$\begin{aligned}&\mathbb {J}_{WSVT2NS}(\mathfrak {A}, \mathfrak {B})= \sum _{i=1}^n(w_i)\frac{\left[ \begin{array}{l} \mathfrak {t}_{\mathfrak {A}_p}(\tau _i) \mathfrak {t}_{\mathfrak {B}_p}(\tau _i)+\mathfrak {t}_{\mathfrak {A}_s}(\tau _i) \mathfrak {t}_{\mathfrak {B}_s}(\tau _i)+\\ \mathfrak {h}_{\mathfrak {A}_p}(\tau _i)\mathfrak {h}_{\mathfrak {B}_p}(\tau _i) +\mathfrak {h}_{\mathfrak {A}_s}(\tau _i)\mathfrak {h}_{\mathfrak {B}_s}(\tau _i)+\\ \mathfrak {f}_{\mathfrak {A}_p}(\tau _i)\mathfrak {f}_{\mathfrak {B}_p}(\tau _i)+\mathfrak {f}_{\mathfrak {A}_s}(\tau _i)\mathfrak {f}_{\mathfrak {B}_s}(\tau _i)\\ \end{array}\right] }{\left[ \begin{array}{l} (\mathfrak {t}_{\mathfrak {A}_p}(\tau _i))^2+(\mathfrak {t}_{\mathfrak {B}_p}(\tau _i))^2+(\mathfrak {t}_{\mathfrak {A}_s}(\tau _i))^2+(\mathfrak {t}_{\mathfrak {B}_s}(\tau _i))^2\\ + (\mathfrak {h}_{\mathfrak {A}_p}(\tau _i))^2+(\mathfrak {h}_{\mathfrak {B}_p}(\tau _i))^2+(\mathfrak {h}_{\mathfrak {A}_s}(\tau _i))^2+(\mathfrak {h}_{\mathfrak {B}_s}(\tau _i))^2\\ + (\mathfrak {f}_{\mathfrak {A}_p}(\tau _i))^2+(\mathfrak {f}_{\mathfrak {B}_p}(\tau _i))^2+(\mathfrak {f}_{\mathfrak {A}_s}(\tau _i))^2+(\mathfrak {f}_{\mathfrak {B}_s}(\tau _i))^2 \end{array}\right] -\left[ \begin{array}{l} \mathfrak {t}_{\mathfrak {A}_p}(\tau _i) \mathfrak {t}_{\mathfrak {B}_p}(\tau _i)+\\ \mathfrak {t}_{\mathfrak {A}_s}(\tau _i) \mathfrak {t}_{\mathfrak {B}_s}(\tau _i)+\\ \mathfrak {h}_{\mathfrak {A}_p}(\tau _i)\mathfrak {h}_{\mathfrak {B}_p}(\tau _i) +\\ \mathfrak {h}_{\mathfrak {A}_s}(\tau _i)\mathfrak {h}_{\mathfrak {B}_s}(\tau _i)+\\ \mathfrak {f}_{\mathfrak {A}_p}(\tau _i)\mathfrak {f}_{\mathfrak {B}_p}(\tau _i)+\\ \mathfrak {f}_{\mathfrak {A}_s}(\tau _i)\mathfrak {f}_{\mathfrak {B}_s}(\tau _i)\\ \end{array}\right] } \le 1 \end{aligned}$$ -
(P2)
It can be easily indicated below proofs.
-
(P3)
It is open from previous proofs.
1.6 A.6
-
(P1)
Since \(\mathfrak {A}\) and \(\mathfrak {B}\) are SVT2NSs, it is clear that \(Hyb_{SVT2NS}(\mathfrak {A}, \mathfrak {B})\ge 0\). Then, we must show that \(Hyb_{SVT2NS}(\mathfrak {A}, \mathfrak {B})\le 1\) as follow. \(\lambda \mathbb {D}_{SVT2NS}+(1-\lambda )\mathbb {C}_{SVT2NS}\le \lambda + (1-\lambda ) =1 \) from here \(Hyb_{SVT2NS}(\mathfrak {A}, \mathfrak {B})\le 1\) where \(0\le \mathbb {D}_{SVT2NS}\le 1\) and \(0\le \mathbb {C}_{SVT2NS}\le 1\) for \(\lambda \in [0,1]\).
-
(P2)
We know that each both SMs are open from below \(\mathbb {C}_{SVT2NS}=1\) and \(\mathbb {D}_{SVT2NS}=1\) for \(\mathfrak {t}_{\mathfrak {A}_p}(\tau _i)= \mathfrak {t}_{\mathfrak {B}_p}(\tau _i)\), \(\mathfrak {t}_{\mathfrak {A}_s}(\tau _i)= \mathfrak {t}_{\mathfrak {B}_s}(\tau _i)\), \(\mathfrak {h}_{\mathfrak {A}_p}(\tau _i)= \mathfrak {h}_{\mathfrak {B}_p}(\tau _i)\), \(\mathfrak {h}_{\mathfrak {A}_s}(\tau _i)= \mathfrak {h}_{\mathfrak {B}_s}(\tau _i)\), \(\mathfrak {f}_{\mathfrak {A}_p}(\tau _i)= \mathfrak {f}_{\mathfrak {B}_p}(\tau _i)\) and \(\mathfrak {f}_{\mathfrak {A}_s}(\tau _i)= \mathfrak {f}_{\mathfrak {B}_s}(\tau _i)\) and \(i=1,\ldots ,n\). Therefore, \(Hyb_{SVT2NS}(\mathfrak {A},\mathfrak {B})=1\).
-
(P3)
The both SMs provide symmetric property from below. So, \(Hyb_{SVT2NS}(\mathfrak {A},\mathfrak {B})\) carry symmetric property.
1.7 A.7
-
(P1)
Since \(\mathfrak {A}\) and \(\mathfrak {B}\) are SVT2NSs, it is open that \(Hyb_{WSVT2NS}(\mathfrak {A}, \mathfrak {B})\ge 0\). Then, we must prove that \(Hyb_{WSVT2NS}(\mathfrak {A}, \mathfrak {B})\le 1\) as follow. \(\lambda \mathbb {D}_{WSVT2NS}+(1-\lambda )\mathbb {C}_{SVT2NS}\le \lambda + (1-\lambda ) =1 \) from here \(Hyb_{WSVT2NS}(\mathfrak {A}, \mathfrak {B})\le 1\) where \(0\le \mathbb {D}_{WSVT2NS}\le 1\) and \(0\le \mathbb {C}_{WSVT2NS}\le 1\) for \(\lambda \in [0,1]\).
-
(P2)
We know that each both SMs are open from below \(\mathbb {C}_{WSVT2NS}=1\) and \(\mathbb {D}_{WSVT2NS}=1\) for \(\mathfrak {t}_{\mathfrak {A}_p}(\tau _i)= \mathfrak {t}_{\mathfrak {B}_p}(\tau _i)\), \(\mathfrak {t}_{\mathfrak {A}_s}(\tau _i)= \mathfrak {t}_{\mathfrak {B}_s}(\tau _i)\), \(\mathfrak {h}_{\mathfrak {A}_p}(\tau _i)= \mathfrak {h}_{\mathfrak {B}_p}(\tau _i)\), \(\mathfrak {h}_{\mathfrak {A}_s}(\tau _i)= \mathfrak {h}_{\mathfrak {B}_s}(\tau _i)\), \(\mathfrak {f}_{\mathfrak {A}_p}(\tau _i)= \mathfrak {f}_{\mathfrak {B}_p}(\tau _i)\) and \(\mathfrak {f}_{\mathfrak {A}_s}(\tau _i)= \mathfrak {f}_{\mathfrak {B}_s}(\tau _i)\) and \(i=1,\ldots ,n\). Therefore, \(Hyb_{WSVT2NS}(\mathfrak {A},\mathfrak {B})=1\).
-
(P3)
The both SMs provide symmetric property from below. So, \(Hyb_{WSVT2NS}(\mathfrak {A},\mathfrak {B})\) satisfies symmetric property.
Rights and permissions
About this article
Cite this article
Özlü, Ş., Karaaslan, F. Hybrid similarity measures of single-valued neutrosophic type-2 fuzzy sets and their application to MCDM based on TOPSIS. Soft Comput 26, 4059–4080 (2022). https://doi.org/10.1007/s00500-022-06824-3
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00500-022-06824-3