Skip to main content
Log in

Novel robust stability analysis method for uncertain systems with interval time-varying delay

  • Application of soft computing
  • Published:
Soft Computing Aims and scope Submit manuscript

Abstract

Stability analysis of interval time-varying delay is of great significance to ensure the reliable control of industrial processes. Aim to improve the robust stability analysis performance for a class of linear systems with norm-bounded uncertainty and interval time-varying delay. In this paper, less conservative robust stability criterion is proposed based on augmented Lyapunov–Krasovskii functional (LKF) method and reciprocally convex combination. Firstly, the delay interval is divided into multiple non-equidistant subintervals by two-stage segmenting strategies and a new LKF comprising quadruple integral term is introduced for each subinterval. Secondly, a novel delay-dependent stability criterion in terms of linear matrix inequalities is proved by less conservative Wirtinger-based integral inequality approach. Two numerical comparative examples and an IEEE four-generator 11-bus power system are selected to verify the superiority of the proposed method. For the two numerical examples about closed-loop control systems and uncertain system with interval time-varying delays, the proposed robust stability criterion can enlarge the maximum allowable delay bound (MADB) about 28.4% and 67.4% than the best results in the previous literatures, respectively, and for the power system with four-generator 11-bus, The MADB in this paper is about 4.4% better than the best result in the previous literatures. All the above results show the effectiveness of the proposed approach.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

Enquiries about data availability should be directed to the authors.

References

  • Al-Zughaibi A, Jasim NF (2016) Control system design for fuel to air ratio in an internal combustion engine with unknown time delay and fuel fraction impinging manifold's wall. In: 2016 international conference for students on applied engineering (ICSAE), pp 137–141

  • An JY, Li ZY, Wang XM (2014) A novel approach to delay-fractional dependent stability criterion for linear systems with interval delay. ISA Trans 53:210–219

    Article  Google Scholar 

  • Ding LM, He Y, Wu M, Zhang ZM (2017) A novel delay partitioning method for stability analysis of interval time-varying delay systems. J Franklin Inst 354:1209–1219

    Article  MathSciNet  Google Scholar 

  • Efimov D, Aleksandrov A (2021) Analysis of robustness of homogeneous systems with time delays using Lyapunov–Krasovskii functionals. Int J Robust Nonlinear Control 31(9):3730–3746

    Article  MathSciNet  Google Scholar 

  • Farnam A, Esfanjani RM (2014) Improved stabilization method for networked control systems with variable transmission delays and packet dropout. ISA Trans 53(6):1746–1753

    Article  Google Scholar 

  • Farnam A, Esfanjani RM (2016) Improved linear matrix inequality approach to stability analysis of linear systems with interval time-varying delays. J Comput Appl Math 294:49–56

    Article  MathSciNet  Google Scholar 

  • Hou HZ, Yu XH, Fu Z (2021) Sliding mode control of networked control systems: an auxiliary matrices based approach. IEEE Trans Automat Contr. https://doi.org/10.1109/TAC.2021.3103882

    Article  MATH  Google Scholar 

  • Hui JJ, Kong XY, Zhang HX, Zhou X (2015) Delay-partitioning approach for systems with interval time-varying delay and nonlinear perturbations. J Comput Appl Math 281:74–81

    Article  MathSciNet  Google Scholar 

  • Kwon OM, Park MJ, Park JH, Lee SM (2016) Enhancement on stability criteria for linear systems with interval time-varying delays. Int J Control Autom Syst 14(1):12–20

    Article  Google Scholar 

  • Lee W, Park P (2014) Second-order reciprocally convex approach to stability of systems with interval time-varying delays. Appl Math Comput 229:245–253

    Article  MathSciNet  Google Scholar 

  • Li YB, Xue XQ (2016) Stability of uncertain neutral system with mixed time delays based on reciprocally convex combination approach. Control Decis 31(6):1105–1110

    MATH  Google Scholar 

  • Li X, Song S (2017) Stabilization of delay systems: delay-dependent impulsive control. IEEE Trans Automat Contr 62(1):406–411

    Article  MathSciNet  Google Scholar 

  • Li Y, Yin Y, Zhang D (2018) IMC-Based design for teleoperation systems with time delays. Int J of Control Autom 16(2):887–895

    Article  Google Scholar 

  • Liu PL (2013) Further improvement on delay-range-dependent stability results for linear systems with interval time-varying delays. ISA Trans 52(6):725–729

    Article  Google Scholar 

  • Ma J, Li JC, Li YN, Wang ZP (2014) Research on time delay upper-bound of power system wide-area damping controllers based on improved free-weighting matrices and generalized eigenvalue problem. Power Syst Prot Control 42(18):1–8

    Google Scholar 

  • Mazenc F, Malisoff M, Özbay H (2018) Stability and robustness analysis for switched systems with time-varying delays. SIAM J Control Optim 56(1):158–182

    Article  MathSciNet  Google Scholar 

  • Meng X, Lam J, Du B, Gao H (2010) A delay-partitioning approach to the Stability analysis of discrete-time systems. Automatica 46(3):610–614

    Article  MathSciNet  Google Scholar 

  • Qian W, Yuan M, Wang L, Bu XH, Yang JQ (2017) Stabilization of systems with interval time-varying delay based on delay decomposing approach. ISA Trans 70:1–6

    Article  Google Scholar 

  • Qian W, Yuan MM, Wang L, Chen YG, Yang JQ (2018) Robust stability criteria for uncertain systems with interval time-varying delay based on multi-integral functional approach. J Franklin Inst 355:849–861

    Article  MathSciNet  Google Scholar 

  • Qian W, Gao YS, Cheng YG, Yang JQ (2019a) The stability analysis of time-varying delayed systems based on new augmented vector method. J Franklin Inst 356:1268–1286

    Article  MathSciNet  Google Scholar 

  • Qian W, Wang CC, Fei SM (2019b) Stability Analysis and controller design of wide-area power system with interval time-varying delay. Trans China Electrotech Soc 34(17):3640–3650

    Google Scholar 

  • Rakkiyappan R, Latha VP, Zhu QX, Yao ZS (2017) Exponential synchronization of Markovian jumping chaotic neural networks with sampled-data and saturating actuators. Nonlinear Anal-Hybri 24:28–44

    Article  MathSciNet  Google Scholar 

  • Ramakrishnan K, Ray G (2011) Robust stability criteria for uncertain linear systems with interval time-varying delay. J Control Theory Appl 9(4):559–566

    Article  MathSciNet  Google Scholar 

  • Ranganayakulu R, Babu GUB, Rao AS (2019) Analytical design of enhanced fractional filter PID controller for improved disturbance rejection of second order plus time delay processes. Chem Prod Process Model 14(1):1–22. https://doi.org/10.1515/cppm-2018-0012

    Article  Google Scholar 

  • Senthilraj S, Raja R, Zhu QX, Samidurai R, Yao ZS (2016) New delay-interval-dependent stability criteria for static neural networks with time-varying delays. Neurocomputing 186:1–7

    Article  Google Scholar 

  • Seuret A, Gouaisbaut F (2013) Wirtinger-based integral inequality: application to time delay systems. Automatica 49(9):2860–2866

    Article  MathSciNet  Google Scholar 

  • Steinberger M, Horn M (2021) A less-conservative stability criterion for networked control systems with time-varying packet delays. IET Control Theory Appl. https://doi.org/10.1049/cth2.12182

    Article  Google Scholar 

  • Wu YB, Zhang HX, Hu XX, Hui JJ, Li GL, Zhou X (2017) Novel robust stability condition for uncertain neutral systems with mixed time-varying delays. Adv Mech Eng 9(10):1–11

    Google Scholar 

  • Wu YB, Zhang HX, Hui JJ, Li GL, Zhou X, Sun DW (2018) Novel robust stability condition for uncertain systems with interval time-varying delay. Syst Eng Electron 40(4):878–884

    Google Scholar 

  • Yang B, Sun YZ (2014) A new wide area damping controller design method considering signal transmission delay to damp interarea oscillations in power system. J Cent South Univ 1(11):4193–4198

    Article  Google Scholar 

  • Zhang HX, Hui JJ, Zhou X, Li GL (2014) New robust stability criteria for uncertain systems with interval time-varying delay based on delay-partitioning approach. Control Decis 29(5):907–912

    Google Scholar 

  • Zhang XY, Wang P, Lin JM, Chen H, Hong JL, Zhang L (2021) Real-time nonlinear predictive controller design for drive-by-wire vehicle lateral stability with dynamic boundary conditions. Fund Res. https://doi.org/10.1016/j.fmre.2021.07.010

    Article  Google Scholar 

Download references

Funding

The research is partially supported by the Key Laboratory Fund under Grant No. 6142003190204, and the Special Scientific Research Program of Department of Education of Shaanxi Province (Grant no.20JK0728).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xing He.

Ethics declarations

Conflict of interest

All the authors declared no potential conflicts of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

Proof

For the sake of simplicity, Theorem 1 holds when \(h(t) \in \left[ {h_{2} ,h_{3} } \right]\), and then Theorem 1 is extended to be suitable for use when \(h(t) \in \left[ {h_{i} ,h_{i + 1} } \right]\), i = 1,3,4,…,N1.

For \(h(t) \in \left[ {h_{2} ,h_{3} } \right]\), the LKF is constructed as follows:

$$ V_{2} (x(t)) = V_{21} (x(t)) + V_{22} (x(t)) + V_{23} (x(t)) + V_{24} (x(t)) + V_{25} (x(t)) $$
(7)

where

$$ \begin{aligned} V_{21} (x(t)) & = x^{T} (t)P_{1} x(t) + \int_{{t - h_{2} }}^{t} {x^{T} (s){\text{d}}s} P_{2} \int_{{t - h_{2} }}^{t} {x(s){\text{d}}s} \\ & \quad + \,\int_{{t - h_{3} }}^{{t - h_{2} }} {x^{T} (s)} {\text{d}}sP_{3} \int_{{t - h_{3} }}^{{t - h_{2} }} {x(s)} {\text{d}}s + \int_{{ - h_{2} }}^{0} {\int_{t + \beta }^{t} {x^{T} (s){\text{d}}s{\text{d}}\beta } } P_{4} \int_{{ - h_{2} }}^{0} {\int_{t + \beta }^{t} {x(s){\text{d}}s{\text{d}}\beta } } \\ & \quad + \,\int_{{ - h_{3} }}^{{ - h_{2} }} {\int_{t + \beta }^{t} {x^{T} (s){\text{d}}s{\text{d}}\beta } } P_{5} \int_{{ - h_{3} }}^{{ - h_{2} }} {\int_{t + \beta }^{t} {x(s){\text{d}}s{\text{d}}\beta } } , \\ \end{aligned} $$
$$ V_{22} (x(t)) = \int_{{t - h_{2} }}^{t} {x^{T} (s)Q_{1} x(s){\text{d}}s} + \int_{{t - h_{3} }}^{{t - h_{2} }} {x^{T} (s)} Q_{2} x(s){\text{d}}s $$
$$ \begin{aligned} V_{23} (x(t)) & = h_{2} \int_{{ - h_{2} }}^{0} {\int_{t + \beta }^{t} {x^{T} (s)} } X_{1} x(s){\text{d}}s{\text{d}}\beta + h_{2} \int_{{ - h_{2} }}^{0} {\int_{t + \beta }^{t} {\dot{x}^{T} (s)} } X_{2} \dot{x}(s){\text{d}}s{\text{d}}\beta \\ & \quad + \,(h_{3} - h_{2} )\int_{{ - h_{3} }}^{{ - h_{2} }} {\int_{t + \beta }^{t} {x^{T} (s)} } X_{3} x(s){\text{d}}s{\text{d}}\beta + (h_{3} - h_{2} )\int_{{ - h_{3} }}^{{ - h_{2} }} {\int_{t + \beta }^{t} {\dot{x}^{T} (s)} } X_{4} \dot{x}(s){\text{d}}s{\text{d}}\beta , \\ \end{aligned} $$
$$ \begin{aligned} V_{24} (x(t)) & = \left( {{{h_{2}^{2} } \mathord{\left/ {\vphantom {{h_{2}^{2} } 2}} \right. \kern-\nulldelimiterspace} 2}} \right)\int_{{ - h_{2} }}^{0} {\int_{\beta }^{0} {\int_{t + \lambda }^{t} {x^{T} (s)} } R_{1} x(s){\text{d}}s{\text{d}}\lambda } {\text{d}}\beta \\ & \quad + \left( {{{h_{2}^{2} } \mathord{\left/ {\vphantom {{h_{2}^{2} } 2}} \right. \kern-\nulldelimiterspace} 2}} \right)\int_{{ - h_{2} }}^{0} {\int_{\beta }^{0} {\int_{t + \lambda }^{t} {\dot{x}^{T} (s)} } R_{2} \dot{x}(s){\text{d}}s{\text{d}}\lambda } {\text{d}}\beta \\ & \quad + \left( {{{(h_{3}^{2} - h_{2}^{2} )} \mathord{\left/ {\vphantom {{(h_{3}^{2} - h_{2}^{2} )} 2}} \right. \kern-\nulldelimiterspace} 2}} \right)\int_{{ - h_{3} }}^{{ - h_{2} }} {\int_{\beta }^{0} {\int_{t + \lambda }^{t} {x^{T} (s)} } R_{3} x(s){\text{d}}s{\text{d}}\lambda } {\text{d}}\beta \\ & \quad + \left( {{{(h_{3}^{2} - h_{2}^{2} )} \mathord{\left/ {\vphantom {{(h_{3}^{2} - h_{2}^{2} )} 2}} \right. \kern-\nulldelimiterspace} 2}} \right)\int_{{ - h_{3} }}^{{ - h_{2} }} {\int_{\beta }^{0} {\int_{t + \lambda }^{t} {\dot{x}^{T} (s)} } R_{4} \dot{x}(s){\text{d}}s{\text{d}}\lambda } {\text{d}}\beta , \\ \end{aligned} $$
$$ \begin{aligned} V_{25} (x(t)) & = \left( {{{h_{2}^{3} } \mathord{\left/ {\vphantom {{h_{2}^{3} } 6}} \right. \kern-\nulldelimiterspace} 6}} \right)\int_{{ - h_{2} }}^{0} {\int_{\beta }^{0} {\int_{\lambda }^{0} {\int_{t + \varphi }^{t} {\dot{x}^{T} (s)U_{1} \dot{x}(s)} } {\text{d}}s{\text{d}}\varphi } } {\text{d}}\lambda {\text{d}}\beta \\ & \quad + \left( {{{(h_{3}^{3} - h_{2}^{3} )} \mathord{\left/ {\vphantom {{(h_{3}^{3} - h_{2}^{3} )} 6}} \right. \kern-\nulldelimiterspace} 6}} \right)\int_{{ - h_{3} }}^{{ - h_{2} }} {\int_{\beta }^{0} {\int_{\lambda }^{0} {\int_{t + \varphi }^{t} {\dot{x}^{T} (s)U_{2} \dot{x}(s)} } {\text{d}}s{\text{d}}\varphi } } {\text{d}}\lambda {\text{d}}\beta , \\ \end{aligned} $$

The derivative of LKF V(t) along the nominal system (3) is calculated as Eq. (8).

$$ \dot{V}_{2} (t) = \dot{V}_{21} (t) + \dot{V}_{22} (t) + \dot{V}_{23} (t) + \dot{V}_{24} (t) + \dot{V}_{25} (t) $$
(8)

where

$$ \begin{aligned} \dot{V}_{21} (t) & = 2x^{T} (t)A^{T} P_{1} x(t) + 2x^{T} (t - h(t))B^{T} P_{1} x(t) + 2x^{T} (t)P_{2} \int_{{t - h_{2} }}^{t} {x(s)} {\text{d}}s \\ & \quad - \,2x^{T} (t - h_{2} )P_{2} \int_{{t - h_{2} }}^{t} {x(s)} {\text{d}}s + 2x^{T} (t - h_{2} )P_{3} \int_{{t - h_{3} }}^{{t - h_{2} }} {x(s)} {\text{d}}s \\ & \quad - \,2x^{T} (t - h_{3} )P_{3} \int_{{t - h_{3} }}^{{t - h_{2} }} {x(s)} {\text{d}}s - 2\int_{{t - h_{2} }}^{t} {x^{T} (s)} {\text{d}}sP_{4} \int_{{ - h_{2} }}^{0} {\int_{t + \beta }^{t} {x(s)} {\text{d}}s} {\text{d}}\beta \\ & \quad + \,2h_{2} x^{T} (t)P_{4} \int_{{ - h_{2} }}^{0} {\int_{t + \beta }^{t} {x(s)} {\text{d}}s} {\text{d}}\beta + 2(h_{3} - h_{2} )x^{T} (t)P_{5} \int_{{ - h_{3} }}^{{ - h_{2} }} {\int_{t + \beta }^{t} {x(s)} {\text{d}}s} {\text{d}}\beta \\ & \quad - \,2\int_{{t - h_{3} }}^{{t - h_{2} }} {x^{T} (s)} dsP_{5} \int_{{ - h_{3} }}^{{ - h_{2} }} {\int_{t + \beta }^{t} {x(s)} {\text{d}}s} {\text{d}}\beta , \\ \end{aligned} $$
$$ \begin{aligned} \dot{V}_{22} (t) & = x^{T} (t)Q_{1} x(t) - x^{T} (t - h_{2} )Q_{1} x(t - h_{2} ) + x^{T} (t - h_{2} )Q_{2} x(t - h_{2} ) \\ & \quad - x^{T} (t - h_{3} )Q_{2} x(t - h_{3} ), \\ \end{aligned} $$
$$ \begin{aligned} \dot{V}_{23} (t) & = h_{2}^{2} x^{T} (t)X_{1} x(t) - h_{2} \int_{{t - h_{2} }}^{t} {x^{T} (s)} X_{1} x(s){\text{d}}s - h_{2} \int_{{t - h_{2} }}^{t} {\dot{x}^{T} (s)} X_{2} \dot{x}(s){\text{d}}s \\ & \quad + h_{2}^{2} \dot{x}^{T} (t)X_{2} \dot{x}(t) + (h_{3} - h_{2} )^{2} x^{T} (t)X_{3} x(t) + (h_{3} - h_{2} )^{2} \dot{x}^{T} (t)X_{4} \dot{x}(t) \\ & \quad - (h_{3} - h_{2} )\int_{{t - h_{3} }}^{{t - h_{2} }} {x^{T} (s)} X_{3} x(s){\text{d}}s - (h_{3} - h_{2} )\int_{{t - h_{3} }}^{{t - h_{2} }} {\dot{x}^{T} (s)} X_{4} \dot{x}(s){\text{d}}s, \\ \end{aligned} $$
$$ \begin{aligned} \dot{V}_{24} (t) & = \left( {{{h_{2}^{4} } \mathord{\left/ {\vphantom {{h_{2}^{4} } 4}} \right. \kern-\nulldelimiterspace} 4}} \right)x^{T} (t)R_{1} x(t) - \left( {{{h_{2}^{2} } \mathord{\left/ {\vphantom {{h_{2}^{2} } 2}} \right. \kern-\nulldelimiterspace} 2}} \right)\int_{{ - h_{2} }}^{0} {\int_{t + \beta }^{t} {x^{T} (s)} R_{1} x(s)} {\text{d}}s{\text{d}}\beta \\ & \quad + \left( {{{h_{2}^{4} } \mathord{\left/ {\vphantom {{h_{2}^{4} } 4}} \right. \kern-\nulldelimiterspace} 4}} \right)\dot{x}^{T} (t)R_{2} \dot{x}(t) - \left( {{{h_{2}^{2} } \mathord{\left/ {\vphantom {{h_{2}^{2} } 2}} \right. \kern-\nulldelimiterspace} 2}} \right)\int_{{ - h_{2} }}^{0} {\int_{t + \beta }^{t} {\dot{x}^{T} (s)R_{2} \dot{x}(s)} } {\text{d}}s{\text{d}}\beta \\ & \quad + \left( {{{(h_{3}^{2} - h_{2}^{2} )^{2} } \mathord{\left/ {\vphantom {{(h_{3}^{2} - h_{2}^{2} )^{2} } 4}} \right. \kern-\nulldelimiterspace} 4}} \right)x^{T} (t)R_{3} x(t) - \left( {{{(h_{3}^{2} - h_{2}^{2} )} \mathord{\left/ {\vphantom {{(h_{3}^{2} - h_{2}^{2} )} 2}} \right. \kern-\nulldelimiterspace} 2}} \right)\int_{{ - h_{3} }}^{{ - h_{2} }} {\int_{t + \beta }^{t} {x^{T} (s)R_{3} x(s)} } {\text{d}}s{\text{d}}\beta \\ & \quad + \left( {{{(h_{3}^{2} - h_{2}^{2} )^{2} } \mathord{\left/ {\vphantom {{(h_{3}^{2} - h_{2}^{2} )^{2} } 4}} \right. \kern-\nulldelimiterspace} 4}} \right)\dot{x}^{T} (t)R_{4} \dot{x}(t) - \left( {{{(h_{3}^{2} - h_{2}^{2} )} \mathord{\left/ {\vphantom {{(h_{3}^{2} - h_{2}^{2} )} 2}} \right. \kern-\nulldelimiterspace} 2}} \right)\int_{{ - h_{3} }}^{{ - h_{2} }} {\int_{t + \beta }^{t} {\dot{x}^{T} (s)R_{4} \dot{x}(s)} } {\text{d}}s{\text{d}}\beta , \\ \end{aligned} $$
$$ \begin{aligned} \dot{V}_{25} (t) & = \left( {{{h_{2}^{6} } \mathord{\left/ {\vphantom {{h_{2}^{6} } {36}}} \right. \kern-\nulldelimiterspace} {36}}} \right)\dot{x}^{T} (t)U_{1} \dot{x}(t) + \left( {{{(h_{3}^{3} - h_{2}^{3} )^{2} } \mathord{\left/ {\vphantom {{(h_{3}^{3} - h_{2}^{3} )^{2} } {36}}} \right. \kern-\nulldelimiterspace} {36}}} \right)\dot{x}^{T} (t)U_{2} \dot{x}(t) \\ & \quad - \left( {{{h_{2}^{3} } \mathord{\left/ {\vphantom {{h_{2}^{3} } 6}} \right. \kern-\nulldelimiterspace} 6}} \right)\int_{{ - h_{2} }}^{0} {\int_{\beta }^{0} {\int_{t + \lambda }^{t} {\dot{x}^{T} (s)} U_{1} \dot{x}(s){\text{d}}s} {\text{d}}\lambda } {\text{d}}\beta \\ & \quad - \left( {{{(h_{3}^{3} - h_{2}^{3} )} \mathord{\left/ {\vphantom {{(h_{3}^{3} - h_{2}^{3} )} 6}} \right. \kern-\nulldelimiterspace} 6}} \right)\int_{{ - h_{3} }}^{{ - h_{2} }} {\int_{\beta }^{0} {\int_{t + \lambda }^{t} {\dot{x}^{T} (s)} U_{2} \dot{x}(s){\text{d}}s} {\text{d}}\lambda } {\text{d}}\beta , \\ \end{aligned} $$

From Lemmas 1 and 2, we can obtain the follow inequalities.

$$ - h_{2} \int_{{t - h_{2} }}^{t} {x^{T} (s)} X_{1} x(s){\text{d}}s \le - \zeta^{T} (t)e_{5} X_{1} e_{5}^{T} \zeta (t) $$
(9)
$$ \begin{aligned} & - h_{2} \int_{{t - h_{2} }}^{t} {\dot{x}^{T} (s)} X_{2} \dot{x}(s){\text{d}}s \le - \zeta^{T} (t)(e_{1} - e_{3} )X_{2} (e_{1}^{T} - e_{3}^{T} )\zeta (t) \\ & - 3\zeta^{T} (t)(e_{1} + e_{3} - \left( {{2 \mathord{\left/ {\vphantom {2 {h_{2} }}} \right. \kern-\nulldelimiterspace} {h_{2} }}} \right)e_{5} )X_{2} (e_{1}^{T} + e_{3}^{T} - \left( {{2 \mathord{\left/ {\vphantom {2 {h_{2} }}} \right. \kern-\nulldelimiterspace} {h_{2} }}} \right)e_{5}^{T} )\zeta (t) \\ \end{aligned} $$
(10)

where \(\varsigma \left( t \right)\) is consistent with i = 2 in Lemma 3.

From Lemma 3, we can obtain as follows:

$$ \begin{aligned} - & (h_{3} - h_{2} )\int_{{t - h_{3} }}^{{t - h_{2} }} {x^{T} (s)} X_{3} x(s){\text{d}}s \le - \zeta^{T} (t)e_{7} X_{3} e_{7}^{T} \zeta (t) \\ - & \zeta^{T} (t)e_{6} X_{3} e_{6}^{T} \zeta (t) - \alpha \zeta^{T} (t)e_{7} X_{3} e_{7}^{T} \zeta (t) - (1 - \alpha )\zeta^{T} (t)e_{6} X_{3} e_{6}^{T} \zeta (t) \\ \end{aligned} $$
(11)

Similarly, according to Lemma 3, we can obtain the follow inequalities.

$$ \begin{aligned} & - (h_{3} - h_{2} )\int_{{t - h_{3} }}^{{t - h_{2} }} {\dot{x}^{T} (s)} X_{4} \dot{x}(s)ds \le - \zeta^{T} (t)(e_{2} - e_{4} )X_{4} (e_{2}^{T} - e_{4}^{T} )\zeta (t) \\ & - \zeta^{T} (t)(e_{3} - e_{2} )X_{4} (e_{3}^{T} - e_{2}^{T} )\zeta (t) - \alpha \zeta^{T} (t)(e_{2} - e_{4} )X_{4} (e_{2}^{T} - e_{4}^{T} )\zeta (t) \\ & - (1 - \alpha )\zeta^{T} (t)(e_{3} - e_{2} )X_{4} (e_{3}^{T} - e_{2}^{T} )\zeta (t) \\ \end{aligned} $$
(12)
$$ - \left( {{{h_{2}^{2} } \mathord{\left/ {\vphantom {{h_{2}^{2} } 2}} \right. \kern-\nulldelimiterspace} 2}} \right)\int_{{ - h_{2} }}^{0} {\int_{t + \beta }^{t} {x^{T} (s)R_{1} x(s)} } {\text{d}}s{\text{d}}\beta \le - \zeta^{T} (t)e_{8} R_{1} e_{8}^{T} \zeta (t) $$
(13)
$$ - \left( {{{h_{2}^{2} } \mathord{\left/ {\vphantom {{h_{2}^{2} } 2}} \right. \kern-\nulldelimiterspace} 2}} \right)\int_{{ - h_{2} }}^{0} {\int_{t + \beta }^{t} {\dot{x}^{T} (s)R_{2} \dot{x}(s)} } {\text{d}}s{\text{d}}\beta \le - \zeta^{T} (t)(h_{2} e_{1} - e_{5} )R_{2} (h_{2} e_{1}^{T} - e_{5}^{T} )\zeta (t) $$
(14)
$$ \begin{aligned} & - \left( {{{(h_{3}^{2} - h_{2}^{2} )} \mathord{\left/ {\vphantom {{(h_{3}^{2} - h_{2}^{2} )} 2}} \right. \kern-\nulldelimiterspace} 2}} \right)\int_{{ - h_{3} }}^{{ - h_{2} }} {\int_{t + \beta }^{t} {x^{T} (s)R_{3} x(s)} } {\text{d}}s{\text{d}}\beta \le - \zeta^{T} (t)e_{10} R_{3} e_{10}^{T} \zeta (t) \\ & - \zeta^{T} (t)e_{9} R_{3} e_{9}^{T} \zeta (t) - \varepsilon \zeta^{T} (t)e_{10} R_{3} e_{10}^{T} \zeta (t) - (1 - \varepsilon )\zeta^{T} (t)e_{9} R_{3} e_{9}^{T} \zeta (t) \\ \end{aligned} $$
(15)
$$ \begin{aligned} & - \left( {{{(h_{3}^{2} - h_{2}^{2} )} \mathord{\left/ {\vphantom {{(h_{3}^{2} - h_{2}^{2} )} 2}} \right. \kern-\nulldelimiterspace} 2}} \right)\int_{{ - h_{3} }}^{{ - h_{2} }} {\int_{t + \beta }^{t} {\dot{x}^{T} (s)R_{4} \dot{x}(s)} } dsd\beta \\ & \le - \zeta^{T} (t)((h_{3} - h_{2} )e_{1} - e_{7} )R_{4} ((h_{3} - h_{2} )e_{1}^{T} - e_{7}^{T} )\zeta (t) \\ & \quad - \zeta^{T} (t)((h_{3} - h_{2} )e_{1} - e_{6} )R_{4} ((h_{3} - h_{2} )e_{1}^{T} - e_{6}^{T} )\zeta (t) \\ & \quad - \varepsilon \zeta^{T} (t)((h_{3} - h_{2} )e_{1} - e_{7} )R_{4} ((h_{3} - h_{2} )e_{1}^{T} - e_{7}^{T} )\zeta (t) \\ & \quad - (1 - \varepsilon )\zeta^{T} (t)((h_{3} - h_{2} )e_{1} - e_{6} )R_{4} ((h_{3} - h_{2} )e_{1}^{T} - e_{6}^{T} )\zeta (t) \\ \end{aligned} $$
(16)
$$ \begin{aligned} & - \left( {{{h_{2}^{3} } \mathord{\left/ {\vphantom {{h_{2}^{3} } 6}} \right. \kern-\nulldelimiterspace} 6}} \right)\int_{{ - h_{2} }}^{0} {\int_{\beta }^{0} {\int_{t + \lambda }^{t} {\dot{x}^{T} (s)} U_{1} \dot{x}(s){\text{d}}s} {\text{d}}\lambda } {\text{d}}\beta \\ & \le - \zeta^{T} (t)(\left( {{{h_{2}^{2} } \mathord{\left/ {\vphantom {{h_{2}^{2} } 2}} \right. \kern-\nulldelimiterspace} 2}} \right)e_{1} - e_{8} )U_{1} (\left( {{{h_{2}^{2} } \mathord{\left/ {\vphantom {{h_{2}^{2} } 2}} \right. \kern-\nulldelimiterspace} 2}} \right)e_{1}^{T} - e_{8}^{T} )\zeta (t) \\ \end{aligned} $$
(17)
$$ \begin{aligned} & - \left( {{{(h_{3}^{3} - h_{2}^{3} )} \mathord{\left/ {\vphantom {{(h_{3}^{3} - h_{2}^{3} )} 6}} \right. \kern-\nulldelimiterspace} 6}} \right)\int_{{ - h_{3} }}^{{ - h_{2} }} {\int_{\beta }^{0} {\int_{t + \lambda }^{t} {\dot{x}^{T} (s)} U_{2} \dot{x}(s){\text{d}}s} {\text{d}}\lambda } {\text{d}}\beta \\ & \le - \zeta^{T} (t)(\left( {{{(h_{3}^{2} - h_{2}^{2} )} \mathord{\left/ {\vphantom {{(h_{3}^{2} - h_{2}^{2} )} 2}} \right. \kern-\nulldelimiterspace} 2}} \right)e_{1} - e_{9} - e_{10} )U_{2} (\left( {{{(h_{3}^{2} - h_{2}^{2} )} \mathord{\left/ {\vphantom {{(h_{3}^{2} - h_{2}^{2} )} 2}} \right. \kern-\nulldelimiterspace} 2}} \right)e_{1}^{T} - e_{9}^{T} - e_{10}^{T} )\zeta (t) \\ \end{aligned} $$
(18)

Substituting (9)–(18) to (8), then we can obtain \(\dot{V}_{2} (x(t))\) as the following inequality.

$$ \dot{V}_{2} (x(t)) \le \zeta^{T} (t)\left[ {\alpha \Gamma_{1} + (1 - \alpha )\Gamma_{2} + \varepsilon \Gamma_{3} + (1 - \varepsilon )\Gamma_{4} } \right]\zeta (t) $$
(19)

where

$$ \Gamma_{1} = {\Phi \mathord{\left/ {\vphantom {\Phi 2}} \right. \kern-\nulldelimiterspace} 2} - e_{7} X_{3} e_{7}^{T} - (e_{2} - e_{4} )X_{4} (e_{2}^{T} - e_{4}^{T} ) $$
$$ \Gamma_{2} = {\Phi \mathord{\left/ {\vphantom {\Phi 2}} \right. \kern-\nulldelimiterspace} 2} - e_{6} X_{3} e_{6}^{T} - (e_{3} - e_{2} )X_{4} (e_{3}^{T} - e_{2}^{T} ) $$
$$ \Gamma_{3} = {\Phi \mathord{\left/ {\vphantom {\Phi 2}} \right. \kern-\nulldelimiterspace} 2} - e_{10} R_{3} e_{10}^{T} - ((h_{3} - h_{2} )e_{1} - e_{7} )R_{4} ((h_{3} - h_{2} )e_{1}^{T} - e_{7}^{T} ) $$
$$ \Gamma_{4} = {\Phi \mathord{\left/ {\vphantom {\Phi 2}} \right. \kern-\nulldelimiterspace} 2} - e_{9} R_{3} e_{9}^{T} - ((h_{3} - h_{2} )e_{1} - e_{6} )R_{4} ((h_{3} - h_{2} )e_{1}^{T} - e_{6}^{T} ) $$

For 0 ≤ α, ε ≤ 1, using the convex combination technique, we can obtain the following two inequalities.

$$ \alpha (\Gamma_{1} + \lambda_{1} I) + (1 - \alpha )(\Gamma_{2} + \lambda_{1} I) < 0 $$
(20)
$$ \varepsilon (\Gamma_{3} - \lambda_{2} I) + (1 - \varepsilon )(\Gamma_{4} - \lambda_{2} I) < 0 $$
(21)

Further, we can obtain the follow inequalities conveniently

$$ \alpha \Gamma_{1} + (1 - \alpha )\Gamma_{2} < - \lambda_{1} I $$
(22)
$$ \varepsilon \Gamma_{3} + (1 - \varepsilon )\Gamma_{4} < \lambda_{2} I $$
(23)

Due to λ1 > λ2, combining (22) and (23), the following inequality is available.

$$ \alpha \Gamma_{1} + (1 - \alpha )\Gamma_{2} + \varepsilon \Gamma_{3} + (1 - \varepsilon )\Gamma_{4} < (\lambda_{2} - \lambda_{1} )I < 0 $$
(24)

If \(\alpha \Gamma_{1} + (1 - \alpha )\Gamma_{2} + \varepsilon \Gamma_{3} + (1 - \varepsilon )\Gamma_{4} < 0\), according to the L–K stability theorem, there exists a sufficient small positive number δ2 makes \(\dot{V}_{2} (t) < - \delta_{2} \left\| {x(t)} \right\|^{2}\) hold, and then the system (3) is asymptotically stable.

Without loss of generality, when \(h(t) \in \left[ {h_{i},h_{i + 1} } \right]\), i = 1,3,4,…,N1, the LKF is constructed as follows:

$$ V_{i} (x(t)) = V_{i1} (x(t)) + V_{i2} (x(t)) + V_{i3} (x(t)) + V_{i4} (x(t)) + V_{i5} (x(t)) $$
(25)

where

$$ \begin{aligned} V_{i1} (x(t)) & = x^{T} (t)P_{1} x(t) + \int_{{t - h_{i} }}^{t} {x^{T} (s){\text{d}}s} P_{2} \int_{{t - h_{i} }}^{t} {x(s){\text{d}}s} \\ & \quad + \int_{{t - h_{i + 1} }}^{{t - h_{i} }} {x^{T} (s)} dsP_{3} \int_{{t - h_{i + 1} }}^{{t - h_{i} }} {x(s)} {\text{d}}s + \int_{{ - h_{i} }}^{0} {\int_{t + \beta }^{t} {x^{T} (s){\text{d}}s{\text{d}}\beta } } P_{4} \int_{{ - h_{i} }}^{0} {\int_{t + \beta }^{t} {x(s){\text{d}}s{\text{d}}\beta } } \\ & \quad + \int_{{ - h_{i + 1} }}^{{ - h_{i} }} {\int_{t + \beta }^{t} {x^{T} (s){\text{d}}s{\text{d}}\beta } } P_{5} \int_{{ - h_{i + 1} }}^{{ - h_{i} }} {\int_{t + \beta }^{t} {x(s){\text{d}}s{\text{d}}\beta } } , \\ \end{aligned} $$

\(V_{i2} (x(t)) = \int_{{t - h_{i} }}^{t} {x^{T} (s)Q_{1} x(s){\text{d}}s} + \int_{{t - h_{i + 1} }}^{{t - h_{i} }} {x^{T} (s)Q_{2} x(s){\text{d}}s}\),

$$ \begin{aligned} V_{i3} (x(t)) & = h_{i} \int_{{ - h_{i} }}^{0} {\int_{t + \beta }^{t} {x^{T} (s)} } X_{1} x(s){\text{d}}s{\text{d}}\beta + h_{i} \int_{{ - h_{i} }}^{0} {\int_{t + \beta }^{t} {\dot{x}^{T} (s)} } X_{2} \dot{x}(s){\text{d}}s{\text{d}}\beta \\ & \quad + (h_{i + 1} - h_{i} )\int_{{ - h_{i + 1} }}^{{ - h_{i} }} {\int_{t + \beta }^{t} {x^{T} (s)} } X_{3} x(s){\text{d}}s{\text{d}}\beta \\ & \quad + (h_{i + 1} - h_{i} )\int_{{ - h_{i + 1} }}^{{ - h_{i} }} {\int_{t + \beta }^{t} {\dot{x}^{T} (s)} } X_{4} \dot{x}(s){\text{d}}s{\text{d}}\beta , \\ \end{aligned} $$
$$ \begin{aligned} V_{i4} (x(t)) & = \left( {{{h_{i}^{2} } \mathord{\left/ {\vphantom {{h_{i}^{2} } 2}} \right. \kern-\nulldelimiterspace} 2}} \right)\int_{{ - h_{i} }}^{0} {\int_{\beta }^{0} {\int_{t + \lambda }^{t} {x^{T} (s)} } R_{1} x(s){\text{d}}s{\text{d}}\lambda } {\text{d}}\beta \\ & \quad + \left( {{{h_{i}^{2} } \mathord{\left/ {\vphantom {{h_{i}^{2} } 2}} \right. \kern-\nulldelimiterspace} 2}} \right)\int_{{ - h_{i} }}^{0} {\int_{\beta }^{0} {\int_{t + \lambda }^{t} {\dot{x}^{T} (s)} } R_{2} \dot{x}(s){\text{d}}s{\text{d}}\lambda } {\text{d}}\beta \\ & \quad + \left( {{{(h_{i + 1}^{2} - h_{i}^{2} )} \mathord{\left/ {\vphantom {{(h_{i + 1}^{2} - h_{i}^{2} )} 2}} \right. \kern-\nulldelimiterspace} 2}} \right)\int_{{ - h_{i + 1} }}^{{ - h_{i} }} {\int_{\beta }^{0} {\int_{t + \lambda }^{t} {x^{T} (s)} } R_{3} x(s){\text{d}}s{\text{d}}\lambda } {\text{d}}\beta \\ & \quad + \left( {{{(h_{i + 1}^{2} - h_{i}^{2} )} \mathord{\left/ {\vphantom {{(h_{i + 1}^{2} - h_{i}^{2} )} 2}} \right. \kern-\nulldelimiterspace} 2}} \right)\int_{{ - h_{i + 1} }}^{{ - h_{i} }} {\int_{\beta }^{0} {\int_{t + \lambda }^{t} {\dot{x}^{T} (s)} } R_{4} \dot{x}(s){\text{d}}s{\text{d}}\lambda } {\text{d}}\beta, \\ \end{aligned} $$
$$ \begin{aligned} V_{i5} (x(t)) & = \left( {{{h_{i}^{3} } \mathord{\left/ {\vphantom {{h_{i}^{3} } 6}} \right. \kern-\nulldelimiterspace} 6}} \right)\int_{{ - h_{i} }}^{0} {\int_{\beta }^{0} {\int_{\lambda }^{0} {\int_{t + \varphi }^{t} {\dot{x}^{T} (s)U_{1} \dot{x}(s)} } {\text{d}}s{\text{d}}\varphi } } {\text{d}}\lambda {\text{d}}\beta \\ & \quad + \left( {{{(h_{i + 1}^{3} - h_{i}^{3} )} \mathord{\left/ {\vphantom {{(h_{i + 1}^{3} - h_{i}^{3} )} 6}} \right. \kern-\nulldelimiterspace} 6}} \right)\int_{{ - h_{i + 1} }}^{{ - h_{i} }} {\int_{\beta }^{0} {\int_{\lambda }^{0} {\int_{t + \varphi }^{t} {\dot{x}^{T} (s)U_{2} \dot{x}(s)} } {\text{d}}s{\text{d}}\varphi } } {\text{d}}\lambda {\text{d}}\beta. \\ \end{aligned} $$

where ζ(t) is the same as in Lemma 3. Pi(i = 1,2,3,4,5), Q1, Q2, U1, U2, Xj, Rj (j = 1,2,3,4) are the matrices as the same as in inequality (4). The same method is available, and then, the following conclusions can be achieved.

$$ \dot{V}_{i} (x(t)) \le \zeta^{T} (t)\left[ {\alpha \Gamma_{i1} + (1 - \alpha )\Gamma_{i2} + \varepsilon \Gamma_{i3} + (1 - \varepsilon )\Gamma_{i4} } \right]\zeta (t) $$
(26)

where

$$ \Gamma_{i1} = {\Phi \mathord{\left/ {\vphantom {\Phi 2}} \right. \kern-\nulldelimiterspace} 2} - e_{7} X_{3} e_{7}^{T} - (e_{2} - e_{4} )X_{4} (e_{2}^{T} - e_{4}^{T} ) $$
$$ \Gamma_{i2} = {\Phi \mathord{\left/ {\vphantom {\Phi 2}} \right. \kern-\nulldelimiterspace} 2} - e_{6} X_{3} e_{6}^{T} - (e_{3} - e_{2} )X_{4} (e_{3}^{T} - e_{2}^{T} ) $$

\(\Gamma_{i3} = {\Phi \mathord{\left/ {\vphantom {\Phi 2}} \right. \kern-\nulldelimiterspace} 2} - e_{10} R_{3} e_{10}^{T} - ((h_{i + 1} - h_{i} )e_{1} - e_{7} )R_{4} ((h_{i + 1} - h_{i} )e_{1}^{T} - e_{7}^{T} )\)

\(\Gamma_{i4} = {\Phi \mathord{\left/ {\vphantom {\Phi 2}} \right. \kern-\nulldelimiterspace} 2} - e_{9} R_{3} e_{9}^{T} - ((h_{i + 1} - h_{i} )e_{1} - e_{6} )R_{4} ((h_{i + 1} - h_{i} )e_{1}^{T} - e_{6}^{T} )\)

In the same way, there also exists a sufficient small positive number δi to make \(\dot{V}_{i} (t) < - \delta_{i} \left\| {x(t)} \right\|^{2}\) hold, and then, the nominal system (3) is asymptotically stable.

The combination of the inequalities (19) and (26) is equivalent to (4). This fulfills the proof.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

He, X., Wu, Yb. & Song, Lj. Novel robust stability analysis method for uncertain systems with interval time-varying delay. Soft Comput 26, 10465–10475 (2022). https://doi.org/10.1007/s00500-022-06889-0

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00500-022-06889-0

Keywords

Navigation