Skip to main content
Log in

Pseudo-fractional operators of variable order and applications

  • Foundation, algebraic, and analytical methods in soft computing
  • Published:
Soft Computing Aims and scope Submit manuscript

Abstract

The fractional calculus provides, over the decades, new tools based on formulations of definitions and discussions of properties, which allows greater connections with other areas. As highlighted, two pillars well-founded and built over these years, the first we highlight the fractional calculus that addresses integrals and derivatives of a non-variable order. Second, a natural consequence of the classic fractional calculus, they investigated the possibility of fractional integrals and derivatives of a variable order, although more restricted when discussing basic and fundamental properties of the fractional calculus. From these two pillars and the g-calculus theory (pseudo-analysis), a third pillar started to be built, although recently, but there are already some interesting results. In this sense, in the present paper, we present new extensions of pseudo-fractional operators for integral and derivative in the sense of g-calculus and investigate some essential properties of fractional calculus. In order to elucidate the results discussed, we present an application involving the \(\psi \)-pseudo fractional integral inequality of Chebyshev.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

Data Availability

Data sharing not applicable to this article as no datasets were generated or analysed during the current study.

References

  • Abbas S, Kavitha V, Murugesu R (2015) Stepanov-like weighted pseudo almost automorphic solutions to fractional order abstract integro-differential equations. Proc Math Sci 125(3):323–351

    Article  MathSciNet  Google Scholar 

  • Abundo M, Pirozzi E (2019) On the Integral of the fractional Brownian motion and some pseudo-fractional Gaussian processes. Mathematics 7(10):991

    Article  Google Scholar 

  • Agahi H, Alipour M (2017) On pseudo-Mittag-Leffler functions and applications. Fuzzy Sets Syst 327:21–30

    Article  MathSciNet  Google Scholar 

  • Agahi H, Babakhani A, Mesiar R (2015) Pseudo-fractional integral inequality of Chebyshev type. Inf Sci 301:161–168

    Article  MathSciNet  Google Scholar 

  • Agahi H, Karamali G, Yadollahzadeh M (2019) Stochastic \(g\)-fractional integrals and their bounds for convex stochastic processes. Results Math 74(4):1–15

    Article  MathSciNet  Google Scholar 

  • Almeida R (2017) A Caputo fractional derivative of a function with respect to another function. Commun Nonlinear Sci Numer Simul 44:460–481

    Article  MathSciNet  Google Scholar 

  • Almeida R (2017) Caputo-Hadamard fractional derivatives of variable order. Numer Funct Anal Optim 38:1–19. https://doi.org/10.1080/01630563.2016.1217880

    Article  MathSciNet  MATH  Google Scholar 

  • Almeida R, Bastos Nuno RO, Monteiro M, Teresa T (2018) A fractional Malthusian growth model with variable order using an optimization approach. Stat Opt Inf Comput 6(1):4–11

    MathSciNet  Google Scholar 

  • Almeida R, Kamocki R, Malinowska AB, Odzijewicz T (2021) On the necessary optimality conditions for the fractional Cucker-Smale optimal control problem. Commun Nonlinear Sci Numer Simul 96:105678

  • Almeida R, Tavares D, Torres Delfim FM (2019) The variable-order fractional calculus of variations. Springer

  • Almeida R, Torres Delfim FM (2015) Computing Hadamard type operators of variable fractional order. Appl Math Comput 257:74–88

  • Babakhani A, Yadollahzadeh M, Neamaty A (2018) Some properties of pseudo-fractional operators. J Pseudo-Differ Oper Appl 9:677–700. https://doi.org/10.1007/s11868-017-0206-z

    Article  MathSciNet  MATH  Google Scholar 

  • Boudjerida A, Seba D, N’Guérékata GM (2020) Controllability of coupled systems for impulsive \(\phi \)-Hilfer fractional integro-differential inclusions. Appl Anal 1–18

  • Diethelm K, Ford NJ (2002) Analysis of fractional differential equations. J Math Anal Appl 265(2):229–248

    Article  MathSciNet  Google Scholar 

  • Frederico, Gastão SF, Lazo Matheus J (2016) Fractional Noether’s theorem with classical and Caputo derivatives: constants of motion for non-conservative systems. Nonlinear Dyn 85(2):839–851

  • Frederico GSF, Torres Delfim FM (2008) Fractional conservation laws in optimal control theory. Nonlinear Dyn 53(3):215–222

    Article  MathSciNet  Google Scholar 

  • Hassani H, Tenreiro Machado JA, Mehrabi S (2021) An optimization technique for solving a class of nonlinear fractional optimal control problems: application in cancer treatment. Appl Math Model 93:868–884

  • Hosseini M, Babakhani A, Agahi H, Rasouli SH (2016) On pseudo-fractional integral inequalities related to Hermite-Hadamard type. Soft Comput 20:2521–2529. https://doi.org/10.1007/s00500-015-1910-3

    Article  MATH  Google Scholar 

  • Hosseini M, Babakhani A, Agahi H, Hashem Rasouli S (2016) On pseudo-fractional integral inequalities related to Hermite-Hadamard type. Soft Comput. 20(7):2521–2529

  • Jarad F, Abdeljawad T, Baleanu D (2012) Caputo-type modification of the Hadamard fractional derivatives. Adv Diff Equ 2012(1):1–8

    Article  MathSciNet  Google Scholar 

  • Kilbas AA, Srivastava HM, Trujillo J (2006) Theory and applications of the fractional differential equations 204, Elsevier, Amsterdam

  • Kuich W (1986) Semirings, automata languages. Sringer, Berlin

    Book  Google Scholar 

  • Lazo MJ, Frederico GSF, Carvalho-Neto PM (2019) Noether-type theorem for fractional variational problems depending on fractional derivatives of functions. Appl Anal 1–17

  • Leibniz GW (1849) Letter from Hanover, Germany, to GFA L’Hopital. Math Schr 2:301–302

    Google Scholar 

  • Leibniz GW (1962) Letter from Hanover, Germany to Johann Bernoulli, December 28, 1695. Leibniz Mathematische Schriften, Olms-Verlag, Hildesheim, p 226

    Google Scholar 

  • Leibniz GW (1962) Letter from Hanover, Germany to John Wallis, May 28, 1697. Leibniz Mathematische Schriften, Olms-Verlag, Hildesheim, p 25

    Google Scholar 

  • Mesiar R, Rybárik J (1993) Pseudo-arithmetical operations. Tatra Mt Math Publ 2:185–192

    MathSciNet  MATH  Google Scholar 

  • Nemati S, Lima Pedro M, Torres Delfim FM (2019) A numerical approach for solving fractional optimal control problems using modified hat functions. Commun Nonlinear Sci Numer Simul 78:104849

  • Nikan O, Tenreiro Machado JA, Golbabai A, Rashidinia J (2021) Numerical evaluation of the fractional Klein-Kramers model arising in molecular dynamics. J Comput Phy 428:109983

  • Oliveira DS, Capelas de Oliveira E (2018) “Hilfer-Katugampola fractional derivatives.” Comput Appl Math 37(3):3672–3690

  • Oliveira DS, Capelas de Oliveira E (2019) On a Caputo-type fractional derivative. Adv Pure Appl Math 10(2):81–91

  • Pap E (1993) “g-calculus”, Univ. u Novom Sadu Zb. Rad Prirod-Mat Fak Ser Mat Ser Mat 23:145–156

  • Pap E (2002) Pseudo-additive measures and their applications. In: Pap E (ed) Handbook of measure theory. Elsevier, Amsterdam, pp 1403–1465

    Chapter  Google Scholar 

  • Pap E (2005) Applications of the generated pseudo-analysis to nonlinear partial differential equations. Contemp Math 377:239–260

    Article  MathSciNet  Google Scholar 

  • Pap E, Štrboja M (2010) Generalization of the Jensen inequality for pseudo-integral. Inf Sci 180:543–548

    Article  MathSciNet  Google Scholar 

  • Pap E, Štrboja M, Rudas I (2014) Pseudo-\(L^p\) space and convergence. Fuzzy Sets Syst 238:113–128. https://doi.org/10.1016/j.fss.2013.06.010

    Article  MATH  Google Scholar 

  • Song CJ, Zhang Y (2019) Perturbation to Noether symmetry for fractional dynamic systems of variable order. Indian J Phys 93(8):1057–1067

    Article  Google Scholar 

  • Sousa J Vanterler da C, Jarad Fahd, Abdeljawad Thabet (2021) Existence of mild solutions to Hilfer fractional evolution equations in Banach space. Ann Funct Anal 12(1):1–16

  • Sousa J Vanterler da C, Vellappandi M, Govindaraj V, Frederico Gastão (2020) Reachability of fractional dynamical systems using \(\psi \)-Hilfer pseudo-fractional derivative. https://hal.archives-ouvertes.fr/hal-02963296

  • Sousa J, da Vanterler C, Capelas de Oliveira E (2018) On the \(\psi \)-Hilfer fractional derivative. Commun Nonlinear Sci Numer Simul 60:72–91

    Article  MathSciNet  Google Scholar 

  • Sousa J, da Vanterler C, Mouffak B, N’Guérékata Gaston M (2020) Attractivity for differential equations of fractional order and \(\psi \)-Hilfer type. Frac Cal Appl Anal 23(4):1188–1207

    Article  MathSciNet  Google Scholar 

  • Sousa J, da Vanterler C, Tenreiro Machado JA, Capelas de Oliveira E (2020) The \(\psi \)-Hilfer fractional calculus of variable order and its applications. Comp Appl Math 39:296. https://doi.org/10.1007/s40314-020-01347-9

    Article  MathSciNet  MATH  Google Scholar 

  • Sousa J. Vanterler da C, Frederico GSF, Capelas de Oliveira E (2020) \(\psi \)-Hilfer pseudo-fractional operator: new results about fractional calculus. Comp Appl Math 39:254. https://doi.org/10.1007/s40314-020-01304-6.

  • Tavares D, Almeida R, Torres DFM (2016) Caputo derivatives of fractional variable order: numerical approximations. Commun Nonlinear Sci Numer Simul 35:69–87. https://doi.org/10.1016/j.cnsns.2015.10.027

    Article  MathSciNet  MATH  Google Scholar 

  • Tavares D, Almeida R, Torres Delfim F M (2015) Optimality conditions for fractional variational problems with dependence on a combined Caputo derivative of variable order. Optimization 64(6):1381–1391

  • Tavares D, Almeida R, Torres Delfim FM (2018) Combined fractional variational problems of variable order and some computational aspects. J Comput Appl Math 339:374–388

  • Vanterler J Vanterler da C, Frederico Gastão, Babakhani A (2020) Existence and uniqueness of global solution in \(g\)-variational calculus. https://hal.archives-ouvertes.fr/hal-02955494

  • Xia Z, Chai J (2018) Pseudo almost automorphy of two-term fractional functional differential equations. J Appl Anal Comput 8(6):1604–1644

    MathSciNet  MATH  Google Scholar 

  • Yadollahzadeh M, Babakhani A, Neamaty A (2019) Hermite Hadamard’s inequality for pseudo-fractional integral operators. Stoch Anal Appl 37:620–635. https://doi.org/10.1080/07362994.2019.1605909

  • Yang X-J, Abdel-Aty M, Cattani C (2019) A new general fractional-order derivataive with Rabotnov fractional-exponential kernel applied to model the anomalous heat transfer. Therm Sci 23(3) Part A:1677–1681

  • Yang M, Wang Q (2019) Pseudo asymptotically periodic solutions for fractional integro-differential neutral equations. Sci China Math 62(9):1705–1718

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

Frederico acknowledges the financial support of the “Fundação Cearense de Apoio ao Desenvolvimento Científico Tecnológico” (FUNCAP) Agency Processo No. BP4-00172-00054.02.00/20.

Funding

There is no funding information.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. S. Oliveira.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Data Availability

Data sharing not applicable to this article as no datasets were generated or analysed during the current study.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Informed consent

Informed consent was obtained from all individual participants included in the study.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Oliveira, D.S., Sousa, J.V.d.C. & Frederico, G.S.F. Pseudo-fractional operators of variable order and applications. Soft Comput 26, 4587–4605 (2022). https://doi.org/10.1007/s00500-022-06945-9

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00500-022-06945-9

Keywords